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1 Introduction

We define a selective sweep [1] as the process in which a new allele in an individual resulting from a
beneficial mutation in the individual’s genome can spread through the entire population of individ-
uals over a period of time. In this paper, we propose an approximation for a selective sweep based
on Markov Chains and Differential Equations.

In the classical Moran model [2] for population dynamics, we have a population (or collection)
of individuals with a fixed size of N . At a single site on a chromosome, each individual can have
two alleles (or different copies of a gene). Now, each individual in the population can live for an
amount of time that is exponentially distributed with parameter λ, after which it dies. At this point,
another individual is born, with its parent chosen randomly from the population. The newly birthed
individual inherits the same copy of the allele as its parent individual.

In this paper, we examine a similar model to the classical Moran model where we model two different
loci on a chromosome - one where a beneficial mutation occurs and another, neutral allele situated
at a certain distance away from the first locus. We assume that at the site where the beneficial
mutation occurs, which we call the selected site, the two possible alleles are denoted as type-0 and
type-1, where 0 represents the beneficial (mutated) allele and 1 represents the ancestral (original)
allele. Furthermore, at the neutral site, we also label the gene there as type-0 or type-1, where type-0
represents that the gene was descended from the individual that acquired the beneficial mutation and
type-1 represents that it was descended from one of the other chromosomes at the start of the sweep.

We define selection to be a notion of how advantageous the beneficial allele is over the ancestral
allele when new individuals are being born. For all N , we denote sN as the selection probability,
where 1/N ≪ sN ≪ 1. We choose sN such that for some 0 < α < 1, as N → ∞, snN

α → s. Then,
we let the relative fitnesses of the 0 and 1 alleles be 1 and 1− sN . We then follow the same, Moran
model as before, except we reject the replacement of a gene with a type-0 allele at the selected site
by a gene with the type-1 allele at the selected site with probability 1− sN .

In this model, we also take the notion of recombination into account. Recombination is a bio-
logical process where chromosome pieces in parent individuals are broken and then rearranged so
new allele combinations can be produced, and the birthed individual inherits those alleles. In this
model, each individual in the population is really a chromosome, so recombination here would mean
that a newly birthed individual can inherit the gene at the selected site from one parent and the
gene at the neutral site from another parent. Because of this, we examine the alleles at the selected
and neutral site separately, and hence we model it with a multi-dimensional Markov chain. Now, the

1



recombination probability is proportional to the distance between the seleccted and neutral sites.
For all N , we let this probability be equal to rN , where 1/N ≪ rN . Now, we choose rN such that
for some α > 0, rNNα → r as N → ∞, where r is a positive real number. We then examine this
model under the weak genetic draft [3] regime, a regime in which r and s are related in that 0 < r < s.

We divide this paper into two sections. In the first section, we give a more in-depth description
of the model we use for the selective sweep with recombination under the weak genetic draft regime.
We use an ordinary differential equation to approximate a continuous-time Markov chain modeling
the middle of the selective sweep. In the second section, we describe the beginning and end portions
of the sweep.

2 Sweep Model

2.1 Results from Darling-Norris (2007)

One of the core principles of Differential Equation Approximations for Markov Chains [4] is to un-
derstand when the paths of a Markov chain (Xt)t≥0 will be close to the solution of a differential
equation with high probability. To show the convergence of this Markov chain, we define a drift
vector, b(x(t)), and set it equal to the product of the average jump size and the expected rate of
the jumps. We then set the limit of the Markov chain to be equal to the solution of the differential
equation x′(t) = b(x(t)).

To prove this concept, we use Theorem 4.1 from [4]. If (Xt)t≥0 = (X1
t , ..., X

d
t ) is a d-dimensional

continuous time Markov chain and x = (x1, ..., xd) : S → Rd is a set of coordinate functions, then
for all ξ ∈ S (where S is the state space), we define the drift vector as

β(ξ) =
∑
ξ′ ̸=ξ

(x(ξ′)− x(ξ))q(ξ, ξ′).

Suppose x0 ∈ U ⊆ Rd and b : U → Rd is a Lipschitz vector field, and let T1 = inf{t ≥ 0 : β(Xt) =
∞}. Define (Mt)t∈[0,T1] such that

Xt = X0 +Mt +

∫ t

0

β(Xs)ds, 0 ≤ t ≤ T1

and define xt such that

xt = x0 +

∫ t

0

b(xs)ds, 0 ≤ t.

Now, we let t0 < ζ, ϵ > 0, A > 0 and δ = ϵe−Kt0/3 (where K is the Lipschitz constant for b
on U). For all ξ ∈ S, we let α(ξ) =

∑
ξ′ ̸=ξ |x(ξ′) − x(ξ)|2q(ξ, ξ′). Then, theorem 4.1 of [4] states

that:

P

(
sup
t≤t0

|Xt − xt| > ϵ

)
≤ 4At0

δ2
+ P (Ωc

0 ∪ Ωc
1 ∪ Ωc

2) ,

where Ω0,Ω1,Ω2 are events such that Ω0 = {|X0−x0| ≤ δ}, Ω1 = {
∫ T∧t0
0

|β(Xt)−b(x(Xt))|dt ≤ δ},
and Ω2 = {

∫ t∧T0

0
α(Xt)dt ≤ At0}.

2



In the rest of this section, we derive a differential equation approximation for the selective sweep
using the techniques above. We define a continuous-time Markov Chain showing the movement of
the evolutionary process. We then use the previous technique to approximate these Markov Chains
by differential equations.

2.2 One locus

We first create an approximation for the number of individuals with the type-0 (beneficial) allele
at the selected site during the course of the sweep. Suppose that (X̃t)t≥0 is a continuous-time
Markov chain representing the number of lineages with the type-0 allele at the selected site. Let
S = {0, 1, ..., N} be the state space. If the chain is in state i, it means that i lineages have the type-0
allele. We let q̃i,j represent the transition rate from state i to state j.

When the Markov Chain is in state i it could jump to either state i+1 or state i−1. The chain will
jump from i to i+1 if a type-1 individual dies, the new individual has a type-0 allele, and the change
is accepted. The chain will jump from i to i− 1 if a type-0 individual dies, the new individual has
a type-1 allele, and the change is accepted. Note that since the relative fitness of the type 0 allele
to the type 1 allele is 1 to 1 − sN , the probability that a change from a type-1 to a type-0 allele
is accepted is 1 and the probability that a change from a type-0 to a type-1 allele is accepted is 1−sN .

The number of alleles that are of type 1 when the Markov chain is in state i equals N − i and
the probability that the parent of a new allele will be of type 0 is i/N . The probability that the
change is accepted will be 1. This gives us:

q̃(i, i+ 1) = (N − i)
i

N
· 1 =

i(N − i)

N
.

Similarly, the number of alleles that are of type 0 equals i and the probability that the parent of a
new allele will be of type 0 is (N − i)/N . The probability that the change is accepted will be 1− s.
So,

q̃(i, i− 1) = i · N − i

N
· (1− s) =

i(N − i)

N
(1− s).

Now, we rescale X̃t to a scale over the interval [0, 1]. Define Xt = X̃Nαt/N . For all N ∈ N, we let
sN = sN−α be the rescaled selection probability. Then, S = {0, 1/N, 2/N, ..., (N − 1)/N, 1} will be
the new state space. The rescaled transition rates will be:

q(i/N, (i+ 1)/N) = Nα i(N − i)

N
,

q(i/N, (i− 1)/N) = Nα i(N − i)

N
(1− sN ).

Now, we use the concept of the drift vector, which we previously defined as a differential equation
where the rate of change at a certain time is equal to the average jump rate of this Markov chain.
We then use a fluid limit [4,5] to show convergence of the Markov chain to this differential equation.

Theorem 2.1. Suppose that ϵ > 0 and X0 = ⌊ϵN⌋/N . Define the function xt, where x
′
t = sxt(1−xt)

and x0 = ϵ as N → ∞. Then, for all t0 > 0 and η > 0, for sufficiently large N we have

P

(
sup
t≤t0

|Xt − xt| > ϵ

)
≤ η.
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Proof. Given N , the drift vector for the Markov chain (Xt)t≥0 is

βN

(
i

N

)
=

1

N
· q
(

i

N
,
i+ 1

N

)
+

(−1)

N
· q
(

i

N
,
i− 1

N

)
= Nα i(N − i)

N2
−Nα i(N − i)

N2
(1− sN )

= Nα i(N − i)

N2
(1− 1 + sN )

= sNNα i

N

(
N − i

N

)
.

Note that we have sNNα → s as N → ∞. So, we let the drift vector be b(xt) = sxt(1 − xt). Let
x0 = ϵ for some ϵ > 0 and x′

t = b(xt).

To prove convergence, we use the previous theorem described in Section 2.1. We know that (Xt)t≥0

is the Markov chain. Then if δ = ϵe−Kt0/3, the quantity 4At0/δ
2 will go to 0 if A → 0. So for all

A, we have
P (sup

t≤t0

|Xt − xt| > ϵ) ≤ 4At0/δ
2 + P (Ωc

0 ∪ Ωc
1 ∪ Ωc

2).

Recall that x0 = ϵ and X0 = ⌊ϵN⌋/N . Then, |X0 − x0| ≤ 1/N < δ as N → ∞. So for sufficiently
large N , P (|X0 − x0| < δ) = 1, and so P (Ω0) = 1. Thus P (Ωc

0) = 0.

Now, for all i, |βN (i/N) − b(i/N)| = |sNNαi(N − i)/N2 − si(N − i)/N2| → 0 as N → ∞ (since
limn→∞ sNNα = s). So for sufficiently large N ,∫ t0

0

|βN (Xt)− bN (Xt)|dt ≤ δ

and so P (Ω1) = P (
∫ t0
0

|βN (i/N)− b(i/N)|dt ≤ δ) = 1 for sufficiently large N . Therefore, P (Ωc
1) = 0

for sufficiently large N . Now, suppose A > 0. Then,

α

(
i

N

)
=
∑
i′ ̸=i

∣∣∣∣ iN ′
− i

N

∣∣∣∣2 q( i

N
,
i′

N

)
= (2− sN )

1

N2
Nα i(N − i)

N

so ∫ t0

0

α(Xt)dt ≤ (2− sN )

∫ t0

0

1

N2
NαXt(N −Xt)

N
dt → 0 as N → ∞.

This means that for sufficiently large N , P (Ω2) = P (
∫ t0
0

α(Xt)dt ≤ At0) = 1. Therefore P (Ωc
2) = 0,

and hence for sufficiently large N , we have P (Ωc
0 ∪ Ωc

1 ∪ Ωc
2) = 0.

This means that for any fixed A and large N , we have

P

(
sup
t≤t0

|Xt − xt| > ϵ

)
≤ 4At0/δ

2 (⋆)

and since A can be arbitrarily small,

P

(
sup
t≤t0

|Xt − xt| > ϵ

)
≤ η

for all η > 0.
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We know that the process starts at ϵ. Then, the initial value of xt at time 0 is ϵ, and so the logistic
equation modeling this process will be:

xt =
1

1 + 1−ϵ
ϵ e−st

. (1)

which is the solution to the differential equation in Theorem 2.1.

2.3 Two loci

We now extend this model to the two-locus scenario - one being the selected site and one being the
neutral site. In this scenario, each individual (in the population of size N) can be in one of 4 states:

(0, 0): the individual has the type-0 allele at the selected site and the type-0 allele at the neu-
tral site
(0, 1): the individual has the type-0 at the selected site and the type-1 allele at the neutral site
(1, 0): the individual has the type-1 allele at the selected site and the type-0 allele at the neutral
site
(1, 1): the individual has the type-1 at the selected site and the type-1 allele at the neutral site.

We let W̃t, X̃t, Ỹt, and Z̃t be the number of individuals in the population in the (0, 0), (0, 1), (1, 0),
and (1, 1) states respectively at time t. Clearly, W̃t + X̃t + Ỹt + Z̃t = N as there are a total of N
individuals and each can be in exactly one of these states. We extend the previous Markov Chain
to a three dimensional one, where the state space is {0, ..., N}4 and if the chain is state (i, j, k, l) at
time t, then W̃t = i, X̃t = j, Ỹt = k, and Z̃t = l.

Now, suppose that 0 < ϵ < 1 is arbitrary. In our model, we assume that we start with one
(0, 0) individual and that at first, the number of individuals with the type-0 allele in the selected site
grows approximately like a supercritical branching process with rate s. Then after a short time t,
the number of individuals with the type-0 allele at the selected site is approximately est. So initially,
W̃t + X̃t ∝ est ∝ N . On the other hand, the number of (0, 0) individuals grows approximately like
a supercritical branching process with rate s − r. Therefore, after a short time t, the number of
individuals with the type-0 allele at the neutral site is approximately e(s−r)t So, we let β = 1− r/s
and W̃t + Ỹt ∝ e(s−r)t ∝ Nβ . Furthermore, we assume that r/s < (1− α)/2.

Then, we define the initial conditions to be after the short time frame described above. Let W̃0 = Nβ ,
X̃0 = ⌊ϵN⌋, Ỹ0 = 0, and Z̃0 = 1− ⌊ϵN⌋ −Nβ .

At any given time, there are 12 possible transitions that can be made. We will formulate the
first one as follows:

q̃((i, j, k, l), (i+ 1, j − 1, k, l)) = (1− rN )(j)
(i)

N
+ rN (j)

(i+ j)

N

(i+ k)

N

Here, the first term arises from the scenario where no recombination occurs. Here, one of the (0, 1)
individuals dies and is replaced by a (0, 0) individual. The second term arises from the scenario
where recombination occurs. Here, one of the (0, 1) individuals dies and is replaced by an individual
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with a 0 allele at both sites. Simplifying this equation, we get

q̃((i, j, k, l), (i+ 1, j − 1, k, l)) = j

[
i

N
(1− rN ) + rN

(
i+ j

N

)(
i+ k

N

)]
which is this transition probability. We use the same method to calculate the other transition
probabilities, as follows:

q̃((i, j, k, l), (i+ 1, j, k − 1, l)) = k

[
i

N
(1− rN ) + rN

(
i+ j

N

)(
i+ k

N

)]

q̃((i, j, k, l), (i+ 1, j, k, l − 1)) = l

[
i

N
(1− rN ) + rN

(
i+ j

N

)(
i+ k

N

)]

q̃((i, j, k, l), (i− 1, j + 1, k, l)) = i

[
j

N
(1− rN ) + rN

(
i+ j

N

)(
j + l

N

)]
q̃((i, j, k, l), (i, j + 1, k − 1, l)) = k

[
j

N
(1− rN ) + rN

(
i+ j

N

)(
j + l

N

)]
q̃((i, j, k, l), (i, j + 1, k, l − 1)) = l

[
j

N
(1− rN ) + rN

(
i+ j

N

)(
j + l

N

)]

q̃((i, j, k, l), (i− 1, j, k + 1, l)) = i

[
k

N
(1− rN ) + rN

(
i+ k

N

)(
k + l

N

)]
(1− sN )

q̃((i, j, k, l), (i, j − 1, k + 1, l)) = j

[
k

N
(1− rN ) + rN

(
i+ k

N

)(
k + l

N

)]
(1− sN )

q̃((i, j, k, l), (i, j, k + 1, l − 1)) = l

[
k

N
(1− rN ) + rN

(
i+ k

N

)(
k + l

N

)]

q̃((i, j, k, l), (i− 1, j, k, l + 1)) = i

[
l

N
(1− rN ) + rN

(
j + l

N

)(
k + l

N

)]
(1− sN )

q̃((i, j, k, l), (i, j − 1, k, l + 1)) = j

[
l

N
(1− rN ) + rN

(
j + l

N

)(
k + l

N

)]
(1− sN )

q̃((i, j, k, l), (i, j, k − 1, l + 1)) = k

[
l

N
(1− rN ) + rN

(
j + l

N

)(
k + l

N

)]

We then rescale these equations. Suppose that α ∈ (0, 1) and β are as defined previously.

We let Wt, Xt, Yt, and Zt be the rescaled versions of W̃t, X̃t, Ỹt, and Z̃t. Then, Wt = W̃Nαt/N
β , Xt =
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X̃Nαt/N, Yt = ỸNαt/N
β , and Zt = Z̃Nαt/N . So the rescaled transition rates will be:

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i+ 1

Nβ
,
j − 1

N
,

k

Nβ
,
l

N

))
= Nαj

[
i

N
(1− rN ) + rN

(
i+ j

N

)(
i+ k

N

)]

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i+ 1

Nβ
,
j

N
,
k − 1

Nβ
,
l

N

))
= Nαk

[
i

N
(1− rN ) + rN

(
i+ j

N

)(
i+ k

N

)]

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i+ 1

Nβ
,
j

N
,

k

Nβ
,
l − 1

N

))
= Nαl

[
i

N
(1− rN ) + rN

(
i+ j

N

)(
i+ k

N

)]

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i− 1

Nβ
,
j + 1

N
,

k

Nβ
,
l

N

))
= Nαi

[
j

N
(1− rN ) + rN

(
i+ j

N

)(
j + l

N

)]

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i

Nβ
,
j + 1

N
,
k − 1

Nβ
,
l

N

))
= Nαk

[
j

N
(1− rN ) + rN

(
i+ j

N

)(
j + l

N

)]

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i

Nβ
,
j + 1

N
,

k

Nβ
,
l − 1

N

))
= Nαl

[
j

N
(1− rN ) + rN

(
i+ j

N

)(
j + l

N

)]

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i− 1

Nβ
,
j

N
,
k + 1

Nβ
,
l

N

))
= Nαi

[
k

N
(1− rN ) + rN

(
i+ k

N

)(
k + l

N

)]
(1−sN )

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i

Nβ
,
j − 1

N
,
k + 1

Nβ
,
l

N

))
= Nαj

[
k

N
(1− rN ) + rN

(
i+ k

N

)(
k + l

N

)]
(1−sN )

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i

Nβ
,
j

N
,
k + 1

Nβ
,
l − 1

N

))
= Nαl

[
k

N
(1− rN ) + rN

(
i+ k

N

)(
k + l

N

)]

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i− 1

Nβ
,
j

N
,

k

Nβ
,
l + 1

N

))
= Nαi

[
l

N
(1− rN ) + rN

(
j + l

N

)(
k + l

N

)]
(1−sN )

q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i

Nβ
,
j − 1

N
,

k

Nβ
,
l + 1

N

))
= Nαj

[
l

N
(1− rN ) + rN

(
j + l

N

)(
k + l

N

)]
(1−sN )
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q

((
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
,

(
i

Nβ
,
j

N
,
k − 1

Nβ
,
l + 1

N

))
= Nαk

[
l

N
(1− rN ) + rN

(
j + l

N

)(
k + l

N

)]

We then use the theorem in section 2.1 to show convergence to a set of differential equations.

Theorem 2.2. Suppose θ, ϵ > 0. Given the Markov chains (Wt)t≥0, (Xt)t≥0, (Yt)t≥0, (Zt)t≥0, sup-
pose W0 = ⌊θNβ⌋/Nβ, X0 = ⌊ϵN⌋/N , Y0 = 0, and Z0 = ((N − ⌊ϵN⌋)/N) − (⌊θNβ⌋/Nβ). Then,
define:

w′
t = sw(y + z) + r(xy − wz)

x′
t = sx(y + z) + r(wz − xy)

y′t = −s(1− r)y(w + x)− sr(w + y)(y + z)(w + x) + r(w + y)(y + z)− ry

z′t = −s(1− r)z(w + x)− sr(x+ z)(y + z)(w + x) + r(x+ z)(y + z)− rz,

with w0 = θ, x0 = ϵ, y0 = 0, and z0 = 1− ϵ. Then,

P

(
sup
t≤t0

|Wt − wt| > ϵ

)
≤ η

P

(
sup
t≤t0

|Xt − xt| > ϵ

)
≤ η

P

(
sup
t≤t0

|Yt − yt| > ϵ

)
≤ η

P

(
sup
t≤t0

|Zt − zt| > ϵ

)
≤ η

for all η > 0.

Proof. We can then write the Markov chains for Wt, Xt, Yt, and Zt as follows:

βW,N

(
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
=

1

Nβ
(q((i, j, k, l), (i+ 1/N, j − 1/N, k, l)) + q((i, j, k, l), (i+ 1/N, j, k − 1/N, l))

+ q((i, j, k, l), (i+ 1/N, j, k, l − 1/N))− q((i, j, k, l), (i− 1/N, j + 1/N, k, l))

− q((i, j, k, l), (i− 1/N, j, k + 1/N, l))− q((i, j, k, l), (i− 1/N, j, k, l − 1/N)))

=
Nα

Nβ

(sN
N

i(k + l) +
rN
N

(jk − il)
)

Now, for large N , NαsN ≈ s and NαrN ≈ r. Also, since i and k are of order Nβ , for large N ,
i/N ≈ 0 and k/N ≈ 0. So, the above equation can be approximated as follows:

Nα

Nβ

(sN
N

i(k + l) +
rN
N

(jk − il)
)
≈ s

(
i

Nβ
· l

N

)
− r

(
j

N
· k

Nβ
− i

Nβ
· l

N
.

)
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Similarly,

βX,N

(
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
= Nα

( sN
N2

j(k + l) +
rN
N2

(il − jk)
)
≈ s

(
j

N
· l

N

)
βY,N

(
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
=

Nα

Nβ
(−sN

N
(1− rN )k(i+ j)− sN

N2
rN (i+ k)(k + l)(i+ j)

+
rN
N

(i+ k)(k + l)− rNk)

≈ −s

(
k

Nβ
· j

N
+ r

(
i+ k

Nβ
· l

N

)
− r

k

Nβ

)
βZ,N

(
i

Nβ
,
j

N
,

k

Nβ
,
l

N

)
= Nα(− sN

N2
(1− rN )l(i+ j)− sN

N3
rN (j + l)(k + l)(i+ j)

+
rN
N2

(j + l)(k + l)− rN
N

l)

≈ −s

(
l

N
· j

N

)

So, we define the drift functions as follows:

bw(wt, xt, yt, zt) = swz + r(xy − wz)

bx(wt, xt, yt, zt) = sxz

by(wt, xt, yt, zt) = −syx+ r(w + y)z − ry

bz(wt, xt, yt, zt) = −szx

We define wt, xt, yt, zt as functions such that w′
t = bw(wt, xt, yt, zt), x

′
t = bx(wt, xt, yt, zt), y

′
t =

by(wt, xt, yt, zt), and z′t = bz(wt, xt, yt, zt) (where w0 = θ > 0, x0 = ϵ, y0 = 0 and z0 = 1 − ϵ). To
show convergence of (Wt), (Xt), (Yt), (Zt) to w, x, y, z, we use the same theorem as before. We know
that (Wt, Xt, Yt, Zt)t≥0 is the Markov Chain being measured. Then, as ϵ → 0, for δ = ϵe−Kt0/3,
and for sufficiently small A, we have

P

(
sup
t≤t0

|Wt − wt| > ϵ

)
≤ 4At0/δ

2 + P (Ωc
0 ∪ Ωc

1 ∪ Ωc
2),

P

(
sup
t≤t0

|Xt − xt| > ϵ

)
≤ 4At0/δ

2 + P (Ωc
0 ∪ Ωc

1 ∪ Ωc
2),

P

(
sup
t≤t0

|Yt − yt| > ϵ

)
≤ 4At0/δ

2 + P (Ωc
0 ∪ Ωc

1 ∪ Ωc
2),

P

(
sup
t≤t0

|Zt − zt| > ϵ

)
≤ 4At0/δ

2 + P (Ωc
0 ∪ Ωc

1 ∪ Ωc
2).

Clearly, if the process starts where w0 = ϵ and z0 = 1 − ϵ, with W0 = ⌊θNβ⌋/Nβ , X0 = ⌊ϵN⌋/N ,
Y0 = 0, and Z0 = ((N − ⌊ϵN⌋)/N)− (⌊θNβ⌋/Nβ), then P (Ω0) = 1 < δ, so P (Ωc

0) = 0.

We now bound P (Ω1). For sufficiently large N , we check each of the four chains. We see that:∫ t0

0

∣∣∣βW,N (W̃t, X̃t, Ỹt, Z̃t)− bw(Wt, Xt, Yt, Zt)
∣∣∣ dt

9



=

∫ t0

0

∣∣∣∣Nα

Nβ

(sN
N

W̃t(Ỹt + Z̃t) +
rN
N

(
X̃tỸt − W̃tZ̃t

))
− sWtZt − rXtYt + rWtZt

∣∣∣∣ dt
≤
∫ t0

0

∣∣∣∣∣NαsN

(
W̃t

Nβ

Z̃t

N

)
− sWtZt

∣∣∣∣∣+
∣∣∣∣∣NαsN

W̃t

Nβ

Ỹt

N

∣∣∣∣∣+
∣∣∣∣∣NαrN

X̃t

N

Ỹt

Nβ
− rXtYt

∣∣∣∣∣+∣∣∣∣∣NαrN
W̃t

N

Z̃t

Nβ
− rWtZt

∣∣∣∣∣ dt
=

∫ t0

0

(
|NαsN − s|WtZt +

∣∣NαsNNβ−1WtYt

∣∣+ |NαrN − r|XtYt + |NαrN − r|WtZt

)
dt

Now, for some constant K > 0, we stop the process when either Wt or Yt reaches K. Suppose this
time is TK . Then, as N → ∞,∫ t0∧TK

0

(
|NαsN − s|WtZt +

∣∣NαsNNβ−1WtYt

∣∣+ |NαrN − r|XtYt + |NαrN − r|WtZt

)
dt → 0

Using similar calculations, we get∫ t0∧TK

0

∣∣∣βX,N (W̃t, X̃t, Ỹt, Z̃t)− bx(Wt, Xt, Yt, Zt)
∣∣∣ dt → 0∫ t0∧TK

0

∣∣∣βY,N (W̃t, X̃t, Ỹt, Z̃t)− by(Wt, Xt, Yt, Zt)
∣∣∣ dt → 0∫ t0∧TK

0

∣∣∣βZ,N (W̃t, X̃t, Ỹt, Z̃t)− bz(Wt, Xt, Yt, Zt)
∣∣∣ dt → 0

as N → ∞. By taking K sufficiently large, we see that P (Ω1) → 1 as N → ∞ and so P (Ωc
1) = 0.

Lastly, suppose A is small. Let C0, C1, C2 be constants. Then,∫ t0

0

α(Wt)dt =

∫ t0

0

 ∑
W ′

t ̸=Wt

|W ′
t −Wt|q((Wt, Xt, Yt, Zt), (W

′
t , X

′
t, Y

′
t , Z

′
t))dt


≤
∫ t0∧TK

0

C0 ·
1

N2β
(NαN(1 + rN ))dt

≤
∫ t0∧TK

0

C0 ·
1

N2β
(C1N

1+α)dt

≤
∫ t0∧TK

0

C2N
1+α−2βdt → 0

as N → ∞ (since β > (1+α)/2). So for sufficiently large N , P (
∫ t0
0

αWtdt ≤ At0) = 1. Similarly, for

sufficiently large N , P (
∫ t0
0

αXtdt ≤ At0) = 1, P (
∫ t0
0

αYtdt ≤ At0) = 1, and P (
∫ t0
0

αZtdt ≤ At0) = 1.
So P (Ω2) = 1 and hence P (Ωc

2) = 0.

Thus P (Ωc
0 ∪ Ωc

1 ∪ Ωc
2) → 0 as N → ∞, and thus

P

(
sup
t≤t0

|Wt − wt| > ϵ

)
≤ 4At0/δ

2
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P

(
sup
t≤t0

|Xt − xt| > ϵ

)
≤ 4At0/δ

2

P

(
sup
t≤t0

|Yt − yt| > ϵ

)
≤ 4At0/δ

2

P

(
sup
t≤t0

|Zt − zt| > ϵ

)
≤ 4At0/δ

2.

And since A can be arbitrarily small, then for all η > 0, we have

P

(
sup
t≤t0

|Wt − wt| > ϵ

)
≤ η

P

(
sup
t≤t0

|Xt − xt| > ϵ

)
≤ η

P

(
sup
t≤t0

|Yt − yt| > ϵ

)
≤ η

P

(
sup
t≤t0

|Zt − zt| > ϵ

)
≤ η.

Now, we get that xt + zt = 1 because the number of individuals of the other two types is of order
O(Nβ), and Nβ ≪ N . The equations for xt and zt can be solved to give x = Lt and zt = 1 − Lt,
where Lt is the function in (1). So, we can then eliminate the variables x and z to get three equations:

w′(t) = sw(1− L) + r(yL− w(1− L))

= sw(1− L) + ryL− rw + rwL

= sw − swL− rw − rwL+ rLy

= (s− r)(1− L)w + rLy

Doing similar calculations for y, we get:

y′(t) = −syL+ r(w + y)(1− L)− ry

= −syL+ rw − rwL− ryL

= r(1− L)w − (r + s)Ly

and
L′(t) = sL(1− L)

is a logistic function.

This leaves us with a system of three differential equations:

w′(t) = (s− r)(1− L)w + rLy

y′(t) = rw(1− L)− yL(r + s)

11



L′(t) = sL(1− L)

These equations model the rate of change of the number of individuals with the beneficial allele at
the selected and neutral sites at each given point in time. The differential equation for w shows the
rate of change of the number of alleles with the type-0 allele at the selected site and the type-0 allele
at the neutral site as a function of time, and the differential equation for y shows the rate of change
of the number of individuals with the type-0 allele at the selected site and the type-1 allele at the
neutral site as a function of time.

Therefore, the combined quantity w′ + y′ shows the rate of change of the number of individuals
with the type-0 allele at the neutral site as a function of time. We also know that the logistic equa-
tion L shows the rate of change of the number of individuals with the type-0 allele at the selected
site over time.

By solving these differential equations, we can model the number of individuals with the type-0
allele at the selected site and the neutral site, separately. We have not found a closed-form solution
to these equations.

3 Beginning and End of the Sweep

In this section, we show that in the two locus case, recombination is unlikely to occur during the
beginning and end of the sweep. This would imply that most of the recombination occurs during
the middle of the sweep, where the above differential equation approximations can be applied.

The results described in the coming sections follow from proofs described in Schweinsberg and
Durrett [6].

3.1 Beginning of the Sweep

We create a separate model for the beginning and end of the selective sweep. For these two ends,
we switch to thinking backwards in time when doing our calculations. We first model the beginning
of the sweep in this section.

We state that a lineage is in the type-0 population at time t if it has the beneficial allele in the
neutral site at time t. Otherwise, we state that the lineage is in the type-1 population at time t.
Now, we randomly sample a lineage at the end of the selective sweep, or when the number of type-0
individuals at the selected site reaches N , and try to keep track of its ancestry. We want to prove
that if its descended from the original type-0 individual, then it is highly likely that it is also in the
type-0 population at a time close to time 0.

In mathematical terms, for all j ∈ {0, ..., N}, we let τJ be the most recent time at which the
number of type-0 individuals is equal to J (i.e., looking backwards in time, the first time in which
the number of individuals is equal to J). Then, if a lineage is in the type-0 population at the start
of the sweep, then we try to show that with high probability, the lineage is in the type-0 population
at time τJ .

12



Suppose that at time τJ , a lineage is in the type-0 population. Here, we use a result from Schweins-
berg and Durrett [6] showing that the probability that a lineage recombines from the type-0 to the
type-1 population when there are k type-0 individuals is approximately 1− exp{−r/ks}. Then, the
probability that no recombination occurs at any step is

P (no recombination) ≈ exp

(
−

N∑
k=1

r

ks

)
≍ exp

(
−r

s
logN

)
= N−r/s.

Now, suppose that the lineage starts in the type-1 population, recombines before time τJ , and
does not recombine after that. By Proposition 2.2 in Schweinsberg and Durrett [6], we know that
the probability that the lineage recombines from type-1 to type-0 when there are k individuals
with the beneficial allele is r/(s(N − k)). And, the probability of no recombination after that is
exp{−(r/s) log k}. So, this probability is approximately equal to:

P (recombination when k type-0 individuals) ≈ r

s(N − k)
exp

(
−r

s
log k

)
So the total probability of this occurring, accounting for all values of k, is

P (type 0 at time 0 | type 1 at time τJ) ≈
J∑

k=1

r

s(N − k)
exp

(
−r

s
log k

)
≤ C

r

sN

J∑
k=1

k−r/s

≤ C
r

sN
J (1−r/s).

for some constant C. Now, suppose J = δN , where δ ≪ 1. Then,

P (type 0 at time 0 | type 1 at time τJ) ≈
r

sN
(δN)(1−r/s) =

r

s
δ(1−r/s)N−r/s ≪ N−r/s

as δ ≪ 1 and r < s. Therefore the probability of one recombination occurring is significantly less than
the probability of no recombinations occurring, and therefore, P (type 0 at time τJ | type 0 at time 0)
goes to 1.

This shows that for J = δN where δ ≪ 1, the probability that any given lineage descended from
the original beneficial allele did not recombine into the ancestral population before time τJ is high,
and that no recombination before time τJ is the most likely outcome for this lineage. Therefore the
probability that recombinations occur early in the sweep is low. We want to find the probability
that a lineage is descended from the individual that got the mutation in the neutral site, and we
show that the probability is not affected much by recombination early on in the sweep.

Therefore we can ignore the recombinations that occur at the beginning of the sweep, as they
are negligible compared to those in the middle of the sweep. Most of the recombinations occur
during the middle of the sweep, which the previous differential equation approximation model can
be applied to.
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3.2 End of the Sweep

Towards the end of the sweep, we use the same logic as at the beginning of the sweep, except that
we examine time τN−J instead. We aim to show that if a lineage has the type-0 allele at the neutral
site at the end of the sweep, it also has the type-0 allele at the neutral at time τN−J .

In this case, we examine the model backwards in time. We let R(i) be the time of the first re-
combination going backwards in time. We use a method similar to the ones in Propositions 2.2 and
2.1 in Schweinsberg and Durrett [6] to get the result:

P (R(i) ≥ τN−J)

≤ Cr2

sN(N − J − 1)
+

Cr

s(N − J)
+

Cr

s
√
N − J

+

(
1−

(
N − J

N

)r/s
)

+O

(
1

N
+

(1− s)N−J

(N − J) logN

)

≤ C

N(2N − J − 1)
+

C

N − J
+

C√
N − J

+

(
1−

(
N − J

N

)r/s
)

+O

(
1

N
+

(1− s)N−J

(N − J) logN

)
→ 0 (as N → ∞)

So for all fixed J , as N gets large, P (R(i) ≥ τN−J) → 0 as N → ∞. And so the probability that
there is at least 1 recombination after time τN−J is 0. Hence, if a lineage is in the type-0 population
at the end of the sweep, it is highly likely that it is in the type-0 population at time τN−J .

This combined with the previous section show that recombinations are unlikely to occur towards
the beginning and end of the selective sweep.
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