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Abstract

We give an overview of Bergman theory, including the Bergman space and the Bergman kernel

function. We state and prove some properties of minimal domains and introduce the classification of

minimal domains in C. We then present some results from representation theory of compact Lie groups

to give a modified definition of quasi-Reinhardt domains, as well as an intrinsic definition. Finally, we use

the intrinsic definition to develop some properties of quasi-Reinhardt domains and mappings on them.
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Introduction

Let D ⊂ Cn be a domain, and denote the Bergman space of D by A2(D) = O(D)∩L2(D). The Bergman

space is a separable Hilbert space with the inner product inherited from L2(D) (with respect to the

Lebesgue R2n measure). Let {φj}∞j=1 be a complete orthonormal basis for A2(D), and one definition of

the Bergman kernel function is given by

K(z, w) =

∞∑
j=1

φj(z)φj(w).

If D is a bounded domain, then the constant function c0 ≡ µ(D)−1/2 is in A2(D) and has norm equal

to 1. Therefore, if {φj}∞j=1 is an complete orthonormal basis containing c0, then

K(z, z) =

∞∑
j=1

|φ(z)|2 ≥ 1

µ(D)
.

If the equality is achieved at z0 ∈ D, then D is called a minimal domain with center z0. In 2021, Robert

Xin Dong and John Treuer ([DT21]) compeletely classified minimal domains in C, claiming that they

are disks up to subtracting a polar set. However, this result does not generalize to Cn with n > 1.

By considering Cartan egg-domains, one can see that there are many minimal domains that are not

biholomorphic to both of the unit ball Bn and the polydisk Dn. Therefore, we want to study a larger

class of domain which contains the collection of minimal domains.

Quasi-Reinhardt domains become the central topic of this thesis because every quasi-Reinhardt do-

main is a minimal domain. A domain D is quasi-Reinhardt with respect to a torus action ρA : Tr →

GLn(C), if D is ρA-invariant and O(Cn)ρA = C. These notions and symbols shall be defined in Section 4

of this thesis. Quasi-Reinhardt domains are first studied by Fusheng Deng, Feng Rong, and Fengbai Li

([DR16], [LR19]). However, an argument in [DR16] has a flaw in it, and the definition of quasi-Reinhardt

thus need to be modified to remedy this flaw. In this thesis, we will provide a modified definition of

quasi-Reinhardt domains. We will also provide an intrinsic definition of quasi-Reinhardt domains and

use it to study some properties of mappings on quasi-Reinhardt domains.

1 Bergman Theory

In this section, we provide an introduction and exposition of Bergman theory, which would be essential

for the discussion of minimal domains in Section 2. [Kra13] will be the main reference for this exposition.
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1.1 Bergman Space

Let D ⊂ Cn be a bounded domain (open and connected), and let dµ be the R2n Lebesgue volume

measure on D. Define the Bergman space by the collection of all L2 holomorphic functions on D.

A2(D) =

{
f : D → C holomorphic

∣∣∣∣∣
∫
D

|f(z)|2dµ(z) <∞

}
.

equipped with the inner product and norm inherited from L2(D):

⟨f, g⟩ =
∫
D

f(z)g(z)dµ(z)

and

||f ||A2(D) :=

(∫
D

|f(z)|2dµ(z)
)1/2

.

That is, A2(D) = O(D) ∩ L2(D), where O(D) is the space of holomorphic functions on D. We have

that the uniform norm of f ∈ A2(D) on compact subsets of D is bounded by its A2(D)-norm.

Proposition 1.1. ([Kra13], Lemma 1.1.1) Suppose D ⊂ Cn is a bounded domain. Let K ⊂ D be a

compact set. Then there is a constant CK,n > 0, such that

sup
z∈K

|f(z)| ≤ CK,n||f ||A2(D)

for all f ∈ A2(D).

Suppose fn is a Cauchy sequence in A2(D) ⊂ L2(D). By completeness of L2, we may find f so that

fn → f in L2(D). By Proposition 1.1, we see that this convergence is also uniform over compact subsets

of D, and thus f is holomorphic on D. That is, f ∈ A2(D), which means we have proved the following:

Proposition 1.2. A2(D) with the inner product ⟨f, g⟩ =
∫
D
f(z)g(z)dµ(z) is a Hilbert space.

Remark 1.3. As L2(D) is a separable Hilbert space, so is A2(D) ⊂ L2(D). Therefore, we can find a

complete countable orthonormal basis {φj}∞j=1 for A2(D).

1.2 Bergman Kernel

We now construct the Bergman Kernel for a given domain D ⊂ Cn. If z ∈ D, notice that applying

Proposition 1.1 with the compact set K = {z}, we have

|f(z)| ≤ C||f ||A2(D)
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for all f ∈ A2(D). Hence, for each fixed z ∈ D, Φz : A2(D) → C, the evaluation map Φz(f) = f(z)

is a bounded linear functional, and is thus continuous. By Riesz representation theorem, there is some

Kz ∈ A2(D) with the property that

f(z) = Φz(f) = ⟨f,Kz⟩.

Definition 1.4. The Bergman kernel (on D) is defined by the function KD(z, w) = Kz(w), where

z, w ∈ D. When it is clear by the context, we also write K(z, w) in place of KD(z, w) for the Bergman

kernel.

Example 1.5. Let Bn = {(z1, . . . , zn) ∈ Cn | |z1|2 + · · · + |zn|2 < 1} be the unit ball in Cn. The

Bergman Kernel of the unit ball is given by

KBn(z, w) =
n!

πn

1

(1− z · w)n+1

where z · w = z1w1 + · · ·+ znwn is the standard inner product on Cn.

We have the following reproducing property of Bergman kernel immediately from the definition.

Proposition 1.6. Let D ⊂ C2 be a bounded domain and K(z, w) the associated Bergeman kernel.

Then

f(z) =

∫
D

f(w)K(z, w)dµ(w)

for all z ∈ D and f ∈ A2(D).

The Bergman kernel is conjugate symmetric by the reproducing property.

Proposition 1.7. Let D and K(z, w) be the same as in Proposition 1.6. Then K(z, w) = K(w, z) for

all z, w ∈ D.

Proof. By definition, we have that the function gω(ζ) = K(ω, ζ) is in A2(D) for each fixed ω ∈ D. Fix

z, w ∈ D. Applying the reproducing property yields

K(w, z) = gw(z) =

∫
D

K(w, t)K(z, t)dµ(t) =

∫
D

K(z, t)K(w, t)dµ(t) = gz(w) = K(z, w).

Proposition 1.8. The Bergman kernel K(z, w) is the unique function D×D → C that is A2(D) in the

z variable, conjugate symmetric (Proposition 1.7), and satisfies the reproducing property (Proposition

1.6).

Proof. Suppose K ′(z, w) is another kernel with the given properties. By the same argument as in

Proposition 1.7, we obtain

K ′(z, w) = K ′(w, z) =

∫
D

K ′(w, t)K(z, t)dµ(t) =

∫
D

K(z, t)K ′(w, t)dµ(t) = K(z, w).

3



Recall from Remark 1.3 that we may find a complete countable orthonormal basis {φj}∞j=1 for A
2(D).

We now give an alternative definition of the Bergman kernel.

Proposition 1.9. (Alternative definition of Bergman kernel) Let {φj}∞j=1 be an orthonormal basis for

A2(D). Consider the series
∞∑
j=1

φj(z)φj(w).

If S ⊂ D is compact, then the series converges to the Bergman kernel uniformly over S × S.

Remark 1.10. Notice that this definition does not depend on the choice of orthonormal basis. Suppose

D ⊂ Cn is a bounded domain. Then every constant function is in A2(D). Therefore, we may use Gram-

Schmidt to produce an orthonormal basis that contains the constant function φ1 ≡ µ(D)−1/2, where

µ(D) is the Lebesgue R2n measure of D. Suppose the orthonormal basis is given by

{φj}∞j=1 = {µ(D)−1/2} ∪ {φj}∞j=2.

By Proposition 1.9, we have the following diagonal estimate for the Bergman Kernel K(z, w):

K(z, z) =

∞∑
j=1

φj(z)φj(z) =

∞∑
j=1

|φj(z)|2 ≥ |φ1(z)|2 =
1

µ(D)
.

This leads to one definition of minimal domains, and we will further discuss this in Section 2.

Definition 1.11. Suppose D ⊂ Cn is a domain, and f : D → Cn is holomorphic. Write f(z) =

(f1(z), . . . , fn(z)), and wj = fj(z). The holomorphic Jacobian matrix of f is the matrix

JCf =
∂(w1, . . . , wn)

∂(z1, . . . , zn)
.

Theorem 1.12. (Transformation formula of Bergman kernel) Suppose D1, D2 are domains in Cn, and

f : D1 → D2 is a biholomorphism. Then

detJCf(z)KD2(f(z), f(w)) detJCf(w) = KD1(z, w).

2 Minimal Domains

2.1 Definition and Properties

Definition 2.1. Let D ⊂ Cn be a domain, and p ∈ D. We say that D is a minimal domain with

center p if

KD(p, p) =
1

µ(D)
.
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Remark 2.2. To say that a domain D ⊂ Cn is a minimal domain with center p is equivalent to say that

the equality in the diagonal estimate in Remark 1.10 is achieved at p.

There is an alternative definition of bounded minimal domains, which concerns the property of

biholomorphisms on it:

Definition 2.3. (Alternative definition, [DT21]) Let D ⊂ Cn be a bounded domain. D is called a

minimal domain with center p ∈ D if µ(D) ≤ V (D′) for any biholomorphism φ : D → D′ such that

detJCφ(p) = 1.

Proposition 2.4. Suppose D ⊂ Cn is a bounded domain, and let p ∈ D. Write Hp = {f ∈ A2(D) |

f(p) = 0}, and let Tp = (Hp)
⊥ ⊂ A2(D). Then:

(1) Hp is a Hilbert subspace of A2(D);

(2) dimC Tp = 1;

(3) KD(z, p) ∈ Tp.

Proof. To prove (1), it suffices to prove that Hp is closed, because A2(D) is a Hilbert space. Suppose

{fn} is a sequence in Hp and fn → f in A2(D). Applying Proposition 1.1 gives fn converges to f locally

uniformly over D. Since fn(p) = 0 for all n, we have f(p) = 0, and therefore f ∈ Hp. This completes

the proof of (1).

For (3), if g ∈ Hp, then by the reproducing property we have

0 = g(p) =

∫
D

g(w)KD(p, w)dµ(w)

=

∫
D

g(w)KD(w, p)dµ(w)

= ⟨g,KD(·, p)⟩,

which is what we want.

To prove (2), first notice that we have the following:

Claim. If h1, h2 ∈ Tp and h1(p) = h2(p), then h1 = h2 over D.

Proof of Claim. Let φ = h1 − h2. Then φ(p) = 0, so

φ ∈ Hp ∩ Tp = Hp ∩ (Hp)
⊥ = {0}.

Suppose h1, h2 ∈ Tp \{0}. Then h1(p), h2(p) are nonzero, because Tp∩Hp = {0}. Let λ = h1(p)
h2(p)

, ψ =

λh2. Observe that ψ ∈ Tp as h2 ∈ Tp, and

ψ(p) =
h1(p)

h2(p)
h2(p) = h1(p).
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By the claim, this implies λh2 = ψ = h1, so Tp has dimension at most 1. As we showed thatKD(z, p) ∈ Tp

and KD(z, p) is not the zero function, we conclude that dimC Tp = 1.

This implies the following equivalent characterization of bounded minimal domains.

Proposition 2.5. Let D ⊂ Cn be a bounded domain, and p ∈ D. The following are equivalent:

(1) D is a minimal domain with center p;

(2) Tp = {f | f ≡ C for some C ∈ C};

(3) KD(z, p) is a constant function in z.

Proof. It is immediate from the previous proposition that (2) is equivalent to (3). To see that (1) implies

(2), let

{µ(D)−
1
2 } ∪ {φj}∞j=2

be a complete orthonormal basis for A2(D). Then we have

KD(z, z) =
1

µ(D)
+

∞∑
j=2

|φj(z)|2

and

KD(p, p) =
1

µ(D)
.

Therefore φm(p) = 0 for all m ≥ 2, so the subspace spanned by {φm} is a subspace of Hp. On the other

hand, every function g ∈ Hp ⊂ A2(D) is a countable linear combination of {µ(D)−1/2} ∪ {φn}∞n=2. As

g(p) = 0, it follows g is a linear combination of φm’s only. Thus Hp is spanned by {φm}, and the span

of {µ(D)−1/2} is the space of all constant functions (denote it by M). Since the basis is an orthogonal

set, we conclude that M ⊥ Hp. Hence, M ⊂ Tp. As Tp is 1-dimensional, we have M = Tp.

To see that (3) implies (1), suppose KD(z, p) is constant. By conjugate symmetry of the Bergman

kernel this implies KD(p, z) is also constant. Say KD(p, z) ≡ C. Applying the reproducing property to

the constant function f ≡ µ(D)−1 gives

1

µ(D)
=

∫
D

1

µ(D)
KD(p, w)dµ(w) =

∫
D

C

µ(D)
dµ(w) = C.

Therefore, KD(p, p) = KD(p, z) = C = µ(D)−1, soD is a minimal domain with center p by definition.

Example 2.6. Recall from Example 1.5 that the Bergman kernel of the unit ball Bn is given by

KBn(z, w) =
n!

πn

1

(1− z · w)n+1
.

Thus, K(z, 0) is a constant, so Bn is a minimal domain with center 0.

The center of a bounded minimal domain is unique.
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Proposition 2.7. If D is bounded minimal domain with centers p ∈ D and q ∈ D, then p = q.

Proof. If D is minimal with centers p and q, then Tp = Tq = {f | f ≡ C}. As Hp, Hq are closed subspace

of A2(D), we have (Tp)
⊥ = ((Hp)

⊥)⊥ = Hp, and similarly for Hq. Therefore, Hp = (Tp)
⊥ = (Tq)

⊥ = Hq.

That is, if f ∈ A2(D), then f(p) = 0 if and only if f(q) = 0. But this could happen only when p = q.

Proposition 2.8. Suppose D1, D2 are domains in Cn, and f : D1 → D2 is a biholomorphism such that

detJCf is constant. If D1 is a minimal domain with center p, then D2 is a minimal domain with center

f(p).

Proof. Since D1 is a minimal domain with center p, KD1(z, p) is constant. Applying the transformation

formula of Bergman kernel gives

detJCf(z)KD2
(f(z), f(p)) detJCf(p) = KD1

(z, p).

By assumption, f is a biholomorphism whose complex Jacobian has constant determinant. In particular,

the determinant of its Jacobian never vanishes, so KD2(f(z), f(p)) is a constant. This proves that D2 is

a minimal domain with center f(p).

Definition 2.9. f : Cn → Cn is called a shear if there exists a holomorphic function g : Cn−1 → C

such that g(0) = 0, and f(z, w) = (z, w + g(z)) for all z ∈ Cn−1, w ∈ C.

Remark 2.10. In particular, shears are biholomorphisms with determinant of Jacobian being constant.

Therefore, the image of a minimal domain under a shear is still a minimal domain.

Theorem 2.11. LetD1, D2 ⊂ Cn be bounded minimal domains with centers p1, p2 respectively. Suppose

f : D1 → D2 is a biholomorphism with f(p1) = p2. Then detJCf is constant.

Proof. Since f is biholomorphic, for all z, w ∈ D1 we have

detJCf(z)KD2
(f(z), f(w)) detJCf(w) = KD1

(z, w). (∗)

Take w = p1 in (∗) gives

detJCf(z)KD2
(f(z), p2) detJCf(p1) = KD1

(z, p1).

As D1, D2 are minimal domains with centers p1, p2 respectively, we have KD2
(f(z), p2) and KD1

(z, p1)

are constant (and nonzero). Therefore, detJCf(z) is also constant.

Remark 2.12. Let D1, D2 ⊂ C be minimal domains both with center 0. Suppose f : D1 → D2 is a

biholomorphism with f(0) = 0. Then Theorem 2.11 implies that f is linear. However, this does not

hold in Cn with n > 1 due to the existence of shear maps. Let D1 ⊂ C2 be a minimal domain with

center 0, and take f(z, w) = (z, w + g(z)) with a nonlinear holomorphic function g satisfying g(0) = 0
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(for example, g(z) = ez − 1). Then f(D1) is a minimal domain with center 0 by Proposition 2.8, and f

is a biholomorphism from D1 to its image.

For D ⊂ Cn a bounded domain, write Aut(D) for the group of all biholomorphisms f : D → D. For

p ∈ D, we further define the following subgroups of Aut(D):

Ap(D) = {φ ∈ Aut(D) | φ(p) = p}

SAp(D) = {φ ∈ Ap(D) | JCφ ≡ C, C ∈ C}.

Set

Fp = {f ∈ A2(D) | f ◦ φ = f, ∀ φ ∈ SAp(D)}.

Notice that all constant functions are contained in Fp.

Theorem 2.13. If Fp contains only constant functions, then D is a minimal domain with center p.

Proof. Fix φ ∈ SAp(D). By the transformation formula of Bergman Kernel, we have

KD(z, w) = KD(φ(z), φ(w))|λ|2, (⋆)

where λ = JCφ is a constant by definition of SAp. Take z = w = p in (⋆) gives |λ| = 1 because φ ∈

SAp(D) ⊂ Ap(D). Therefore, KD(z, w) = KD(φ(z), φ(w)). Let Kp(z) = KD(z, p), then Kp ∈ A2(D),

and

(Kp ◦ φ)(z) = KD(φ(z), p) = KD(φ(z), φ(p)) = KD(z, p) = Kp(z).

Hence, Kp ∈ Fp by definition. By assumption Kp(z) = KD(z, p) must be a constant, which proves that

D is a minimal domain with center p.

Corollary 2.14. Suppose G ⊂ GLn(C) is a subgroup and D ⊂ Cn is a domain invariant under the

action of G and containing the origin. Define F(G,D) := {f ∈ A2(D) | f ◦ T = f, ∀ T ∈ G}. If F(G,D)

contains only constant functions, then D is a minimal domain with center 0.

Proof. By assumption G ⊂ SA0(D), so F0 ⊂ F(G,D). Notice that F0 contains all constant functions,

and the assumption gives F(G,D) = {f ∈ A2(D) | f is constant}. Therefore, F0 contains only constant

functions and the preceding theorem now gives the desired result.

Remark 2.15. Notice that the converse of above corollary does not hold. Let D ⊂ C be the unit disk,

and consider G = {id,−id}. Then D is a minimal domain with center 0 and is invariant under G, but

the function f(z) = z2 is in F(G,D).

There is an open question regarding the exsitence of center-preserving biholomorphisms from a min-

imal domain to another minimal domain.
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Question 2.16. Let D1, D2 be minimal domains with center p1, p2, respectively. Suppose that there

exists a biholomorphism g : D1 → D2, not necessarily g(p1) = p2. Does there always exist a biholomor-

phism f : D1 → D2 such that f(p1) = p2?

2.2 Minimal Domains in C

We introduce the classification of minimal domains in C. This is done in [DT21].

Definition 2.17. P ⊂ C is said to be polar if there is a subharmonic function u, not identically −∞,

such that P = {z ∈ C | u(z) = −∞}.

Let ∆(z, r) denote the disk in C with center z and radius r.

Theorem 2.18. ([DT21], Theorem 1) Let Ω ⊂ C be a domain, and let K(z, w) be the Bergman kernel

on Ω. Suppose there is a point z0 ∈ Ω such that

K(z0, z0) =
1

µ(Ω)
,

where if µ(Ω) = ∞ then µ(Ω)−1 = 0. Then:

(1) If µ(Ω) = ∞, then Ω = C \ P , where P is a closed polar set (possibly empty).

(2) If µ(Ω) < ∞, then Ω = ∆(z0, r) \ P , where P is a polar set (possibly empty) closed in the relative

topology of ∆(z0, r), with r =
√
µ(Ω)π−1.

Remark 2.19. [DT21] If P is a closed polar subset of a domain Ω, then A2(Ω \ P ) = A2(Ω).

Remark 2.20. Compact subsets of a polar set are totally disconnected. Therefore, if Ω is assumed to

have smooth boundary in Theorem 2.18, then P is empty in the conclusion.

We end this section by remarking that one should not expect a similar classification to hold in Cn

if n > 1. Indeed, the polydisc Dn is a Reinhardt domain (and is thus minimal, we will see this result in

Section 4) which is not biholomorphic to the ball Bn. However, Dn does not have smooth boundary, so

one may ask instead if we could expect a result like Theorem 2.18 to hold if we assume the domain has

smooth boundary. The answer turns out to be negative also in this case.

Example 2.21. ([DT21], Theorem 3) Let D = {z ∈ C2 | |z1|4 + |z1|2 + |z2|2 < 1}. Then D is complete

Reinhardt, strongly convex, and not biholomorphic to B2.

Definition 2.22. [Sak89] Let D ⊂ Cn be a bounded domain with C2 boundary. D is called weakly

pseudoconvex if, for every p on the boundary ofD and for every C2 function ρ on an open neighborhood

U of p in Cn such that dρ(p) ̸= 0 and D ∩ U = {z ∈ U | ρ(z) < 0}, we have

L[ρ;w](p) =
∑
j,k

∂2ρ

∂zj∂zk
(p)wjwk ≥ 0

9



whenever w is non-zero with ∑
j

∂ρ

∂zj
(p)wj = 0.

We say D is strongly pseudoconvex if we have L[ρ;w](p) > 0 with p, ρ, w same as above.

Theorem 2.23. [Bel81] A smooth bounded weakly pseudoconvex domain (that is not strongly pseudo-

convex) cannot be biholomorphic to a strongly pseudoconvex domain.

Example 2.24. Let Ω = {(z, w) ∈ C2 | |z|2 + |w|4 < 1}. Then Ω is weakly pseudoconvex, but not

strongly pseudoconvex. In particular, Ω is not biholomorphic to the ball B2.

In general, one could consider a family of domains, called Cartan egg-domains or Thullen do-

mains, given by

Ωm = {(z, w) ∈ C2 | |z|2 + |w|2m < 1}

for positive integers m. Ωm are complete Reinhardt domains, so they are minimal domains. If m1 ̸= m2,

then Ωm1
is not biholomorphic to Ωm2

. This suggest that in Cn(n > 1), there are many families of

minimal domains that are not biholomorphic to each other. Therefore, when n > 1, we want to study

a larger class of domains that includes the collection of minimal domains in Cn. This will be the main

topic of Section 4.

3 Representations of Compact Lie Groups

In this section, we introduce some results about representations of compact Lie groups that will be useful

for our discussion in Section 4.

3.1 Torus

Definition 3.1. A matrix Lie group T is a torus if it is isomorphic (as a Lie group) to a finite direct

product of S1 ∼= U(1).

Theorem 3.2. ([Hal15], Theorem 11.2) Every connected, compact, abelian matrix Lie group is a torus.

Remark 3.3. Notice that the direct product of S1 is connected, compact, and abelian, so the above

theorem actually gives an alternative definition of the torus.

Definition 3.4. Let K be a compact Lie group. A subgroup T of K is a torus if T is isomorphic to a

finite direct product of S1. T is called a maximal torus if it is a torus and it is not contained in any

other torus of K.
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Example 3.5. A maximal torus of U(n) is given by

T =



t1

. . .

tn


∣∣∣∣∣|tj | = 1, 1 ≤ j ≤ n

 .

Theorem 3.6. ([Hal15], Theorem 11.9) Let K be a compact Lie group. Then:

(1) If T1 and T2 are maximal tori of K, then there exists x ∈ K such that T1 = xT2x
−1.

(2) Every element of K is contained in some maximal torus.

Theorem 3.7. ([HT94], Theorem A) Let G be a Lie group. Denote CG the set of all compact subgroups

of G, partially ordered by inclusion. Then every element in CG is contained in a maximal element.

3.2 Representations of Tr

Let T = R/Z ∼= S1 be the one dimensional torus. In this section we develop some properties of complex

representations of Tr.

Theorem 3.8. ([Bum13], Theorem 2.2) Suppose ρ and ρ′ are irreducible representations of a group G

on finite dimensional vector spaces V and V ′, respectively. If L : V → V ′ is a linear map, such that

ρ′(g)L = Lρ(g)

for all g ∈ G, then either L is an isomorphism, or L = 0.

Corollary 3.9. Suppose ρ is an irreducible representation of a group G on a finite dimensional vector

space V such that ρ(g)L = Lρ(g) for all g ∈ G. Then L is multiplication by a scalar.

Proof. Let λ be an eigenvalue of L. As the kernel of L− λI is nonempty (it contains the eigenvectors),

by applying Schur’s lemma to L− λI we see that L− λI = 0.

Corollary 3.10. Let G be a compact abelian group. Then any irreducible finite-dimensional represen-

tation of G is 1-dimensional.

Proof. Fix h ∈ G and let L = ρ(h). As G is abelian, we have Lρ(g) = ρ(g)L for all g ∈ G. Applying

Corollary 3.9 gives that L = ρ(h) is a multiplication by scalar, so every one dimensional subspace is

ρ-invariant. As ρ is an irreducible representation, it follows that ρ is 1-dimensional.

In particular, because Tr is compact and abelian, all irreducible representations of Tr are one dimen-

sional. Furthermore, we can explicitly compute the character of irreducible representations of Tr.

Proposition 3.11. ([Bum13], Proposition 15.4) Every irreducible complex representation of (R/Z)r is

of form

(x1, . . . .xr) 7→ exp(2πi

r∑
j=1

kjxj), x = (x1, . . . , xr) ∈ [0, 1)r ∼= (R/Z)r

11



for some (k1, . . . kr) ∈ Zr.

Remark 3.12. Therefore, the irreducible characters of Tr corresponds to the group Zr.

We have the following Maschke’s theorem for compact Lie groups.

Theorem 3.13. ([Bum13], Proposition 2.2) If G is a compact Lie group, then every finite dimensional

representation of G is a direct sum of irreducible representations.

Remark 3.14. Let ρ be a representation of Tr on a finite dimensional complex vector space V (say

dimV = n). As Tr is a compact Lie group, by the above results, we have

V =

n⊕
l=1

Vk(l) ,

where k(l) = (k
(l)
1 , . . . , k

(l)
r ) ∈ Zr, and Vk(l) is an irreducible representation of Tr as in Proposition 3.11,

for all 1 ≤ l ≤ n. Let A be the n × r matrix whose l-th row is k(l). By applying a change of basis if

needed, we may assume that the matrix of ρ(x) is given by

ρ(x) =


exp

(
2πi

∑r
j=1 k

(1)
j xj

)
. . .

exp
(
2πi

∑r
j=1 k

(n)
j xj

)
 (1)

for all x ∈ (R/Z)r.

Proposition 3.15. Let ρ, V , Vk(l) , and A be the same as in Remark 3.14. If ρ is further assumed to be

a faithful representation, then rankA = r.

Proof. Since A is an n × r matrix, we only need to prove that kerA = {0}. Suppose for contradiction

that x = (x1, . . . , xr) ∈ Rr \ {0} satisfies Ax = 0. Then we may assume that x ̸∈ Zr by scaling. For

x ∈ Rr, define ρ(x) using equation (1). Let [x] ∈ [0, 1)r be the decimal part (taken component-wise) of

x. Then [x] is congruent to x modulo Z, so [x] ̸= 0 and ρ(x) = ρ[x] because the exponential function in

(1) is Z-periodic. We compute

0 = Ax =


k
(1)
1 · · · k

(1)
r

...
. . .

...

k
(n)
1 · · · k

(n)
r



x1
...

xr



=


∑r

j=1 k
(1)
j xj

...∑r
j=1 k

(n)
j xj

 .

Therefore, ρ[x] = ρ(x) = I. As ρ is faithful, we must have [x] = 0, so x ∈ Zr, which is a contradiction.

Therefore we must have kerA = 0 and hence rankA = r.
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4 Quasi-Reinhardt Domains

4.1 Original Definition

Definition 4.1. Let ρ : G → GLn(C) be a representation of the group G. A holomorphic function

f : Cn → C is ρ-invariant if f(ρ(g)z) = f(z) for all g ∈ G and all z ∈ Cn. Denote the algebra of

ρ-invariant functions on Cn by O(Cn)ρ. A domain D ⊂ Cn is ρ-invariant if ρ(g)(D) = D for all g ∈ G.

We now give the definition of quasi-Reinhardt domains. Let Tr be the torus group of dimension

r ≥ 1. For ai = (ai1, . . . , air) ∈ Zr for 1 ≤ i ≤ n, λ = (λ1, . . . , λr) ∈ Tr and z = (z1, . . . , zn) ∈ Cn, define

λai =
∏r

j=1 λ
aij

j , and define ρA : Tr → GLn(C) to be the linear action given by

ρA(λ)z = (λa1z1, . . . , λ
anzn),

where A is the matrix (aij).

Definition 4.2. (Original definition in [LR19]) Suppose D ⊂ Cn is a domain. If there exists some ρA

such that O(Cn)ρ = C and D is ρA-invariant, then D is a quasi-Reinhardt domain of rank r with

respect to ρA.

Remark 4.3. Throughout this section, we consider domains D ⊂ Cn that contains the origin.

Discussion 4.4. Definition 4.2 is the original definition of quasi-Reinhardt domain given in [LR19], and

it is also discussed in [DR16]. In Section 4 of [DR16], the following claims are made: If ρ : Tr → GLn(C)

is a holomorphic linear action such that O(Cn)ρ = C and D is a quasi-Reinhardt domain with respect

to ρ, then (by considering the induced action of ρ on A2(D)) there exists unique ai ∈ Zr for 1 ≤ i ≤ n

and a corresponding coordinate system z = (z1, . . . , zn), such that the representation can be written as

ρ(λ)(z) = (λa1z1, . . . , λ
anzn)

for every λ ∈ Tr, and the n × r matrix A formed by ai satisfies rankA = r. However, we will see

later that this claim is incorrect, and as a possible correction, we could add the condition rankA = r

to the definition of quasi-Reinhardt domains. We shall also see that the definition of the rank of a

quasi-Reinhardt domain should be modified.

Question 4.5. Suppose ρA : Tr → GLn(C) is a representation of Tr as in Definition 4.2, how could one

check if all ρA-invariant holomorphic functions on Cn are constant?

Theorem 4.6. Suppose D ⊂ Cn is a domain and A ∈ Matn×r(Z). Let ρA : Tr → GLn(C) be the

associated torus representation. The following are equivalent:

(1) There exists a non-constant ρA-invariant holomorphic function on D.

(2) There exists a non-constant ρA-invariant holomorphic function on Cn.

Proof. To show that (2) ⇒(1), suppose there is a ρA-invariant holomorphic function f on Cn. Then f |D
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is a ρA-invariant holomorphic function on D. Conversely, say f ∈ O(D) is ρA-invariant. As 0 ∈ D, by

[Hör66] Theorem 2.4.5 we have

f(z) =
∑

bk1,...,kn
zk1
1 · · · zkn

n ,

for unique constants bk1,...,kn
, in some neighborhood of 0. Let A be an n× r matrix in integers with rank

r, and denote its rows by aj , 1 ≤ j ≤ n. Then by ρA-invariance:

∑
bk1,...,kn

zk1
1 · · · zkn

n = f(z) = f(ρA(λ)z) =
∑

bk1,...,kn
λa1k1+···+anknzk1

1 · · · zkn
n . (2)

Since f is not constant, there is a nonzero multi-index (m1, · · · ,mn) such that bm1,...,mn
̸= 0.

By comparing coefficients in the above equality of series we have λa1m1+···+anmn = 1, so g(z) =

bm1,...,mnz
m1
1 · · · zmn

n is a ρA-invariant holomorphic function on Cn.

Remark 4.7. The above proof could be modified to give an answer to Question 4.5. By using equation

(2) in the above proof, we see that if ai ∈ Zr for 1 ≤ i ≤ n, then an entire function f is ρA-invariant if

and only if

bk1,...,kn = bk1,...,knλ
a1k1 · · ·λankn = bk1,...,kn

n∏
i=1

r∏
j=1

λ
kiaij

j

for any λ ∈ Tr and any non-zero multi-index (k1, · · · , kn). Thus, for given ai’s, if the equation ktA = 0

yields no solution k = (k1, . . . kn) ∈ Zn \ {0} with kj ≥ 0, then f must be a constant function. A

more useful case is, in particular, if A ∈ Matn×r(Z) satisfies aij > 0 for all i, j, then all ρA-invariant

holomorphic functions on Cn are constant.

We now look back at Discussion 4.4. Consider the following example:

Example 4.8. Consider the domain Ω = {(z1, z2, z1z2 + z3) | zj ∈ D, 1 ≤ j ≤ 3}. Take a1 = (1, 0),a2 =

(0, 1),a3 = (1, 1). For λ = (λ1, λ2) ∈ T2 and w = (w1, w2, w3) ∈ C3, we compute

ρA(λ)w = (λa1w1, λ
a2w2, λ

a3w3) = (λ1w1, λ2w2, λ1λ2w3).

By Remark 4.7, we see that O(Cn)ρA = C. Furthermore, set w1 = z1, w2 = z2, w3 = z1z2 + z3, we have

ρA(λ)w = (λ1z1, λ2z2, λ1λ2(z1z2 + z3)) = (z̃1, z̃2, z̃1z̃2 + z̃3),

where z̃1 = λ1z1, z̃2 = λ2z2, z̃3 = λ1λ2z3. As λj ∈ D, we have Ω is ρA-invariant, so Ω is a quasi-

Reinhardt domain of rank 2 with respect to ρA by Definition 4.2. Let’s now consider b1 = (1, 1, 0),b2 =

(0, 0, 1),b3 = (1, 1, 1), and let B be the matrix whose rows are bj. Then for λ = (λ1, λ2, λ3) ∈ T3 and

w ∈ Z3 same as above, we compute

ρB(λ)w = (λ1λ2z1, λ3z2, λ1λ2λ3(z1z2 + z3)) = (z′1, z
′
2, z

′
1z

′
2 + z′3),

where z′1 = λ1λ2z1, z
′
2 = λ3z2, z

′
3 = λ1λ2λ3z3. Again because λj ∈ D we have Ω is ρB-invariant.
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Therefore, Ω is also a quasi-Reinhardt domain of rank 3 with respect to ρB . This contradicts the claim

by [DR16] in Discussion 4.4, because rankB = 2 while B is a 3× 3 matrix.

Remark 4.9. We also see from Example 4.8 that the rank of a quasi-Reinhardt domain could vary by

choosing appropriate representations of torus of varying dimensions. In fact, by [LR19], if D is a quasi-

Reinhardt domain of rank r as in Definition 4.2, then it is also of rank s for any 1 ≤ s < r. To better

study the behavior of rank under biholomorphisms, we will also define the rank of a quasi-Reinhardt

domain to be a fixed value, as we shall see in the following definition. However, it is worth noticing

that the preceding conclusion of [LR19] regarding the rank still holds if we formulate it in a different

way: if D is a quasi-Reinhardt domain of rank r, then for any 1 ≤ s < r, there is some representation

ρ : T s → GLn(C) such that O(Cn)ρ = C and D is ρ-invariant.

4.2 A Modified Definition

With the example and remark in Section 4.1, we give a modified definition of quasi-Reinhardt domains.

Definition 4.10. (Modified definition) Suppose D ⊂ Cn is a domain, and r is an integer between 1 and

n. If there exists A ∈ Matn×r(Z) such that rankA = r, O(Cn)ρA = C, and D is ρA-invariant, then D is

a quasi-Reinhardt domain with respect to ρA. The rank of a quasi-Reinhardt domain D is defined

to be the maximum of r (1 ≤ r ≤ n) such that there exists A ∈ Matn×r(Z) with rankA = r and D is

quasi-Reinhardt with respect to ρA.

Definition 4.11. A domain D ⊂ Cn is m-quasi-circular (where m = (m1, . . . ,mn), mj being positive

integers) if for all θ ∈ R, D is invariant under the map ρm(θ) : D → Cn defined by

ρm(θ)(z1, . . . , zn) = (eim1θz1, . . . , e
imnθzn).

If mj = 1 for all 1 ≤ j ≤ n, then D is called a circular domain.

If we regard ρm as a map T → GLn(C), θ 7→ ρm(θ), then any m-quasi-circular domain is a quasi-

Reinhardt domain with respect to ρm. In particular, any circular domain is a quasi-Reinhardt domain.

Example 4.12. For a concrete example, G2 = {(z1 + z2, z1z2) | z1, z2 ∈ D} is a (1, 2)-quasi-circular

domain in C2. More generally, the symmetrized polydisc Gn = {(pn,1(z), . . . , pn,n(z)) | z ∈ Dn}, where

pn,k(z) =
∑

1≤j1<...<jk≤n zj1 · · · zjk , is a (1, . . . , n)-quasi-circular domain in Cn, and is thus a quasi-

Reinhardt domain.

Definition 4.13. A domain D ⊂ Cn is called a Reinhardt domain if z = (z1, . . . , zn) ∈ D implies

that (eiθ1z1, . . . , e
iθnzn) ∈ D for all θ1, . . . , θn ∈ R.

Therefore, Reinhardt domains are quasi-Reinhardt domains with respect to ρI : Tn → GLn(C), with

I being the n-dimensional identity matrix. Notice that this implies the rank of a Reinhardt domain (as a

quasi-Reinhardt domain) is n, because the rank of a quasi-Reinhardt domain is at most n by definition.
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Remark 4.14. We know that Reinhardt domains in Cn are quasi-Reinhardt domains of rank n. With

the original definition in [DR16], quasi-circular domains are quasi-Reinhardt domains of rank 1. However,

we do not have any assertion regarding the rank of quasi-circular domains with the modified definition.

This is illustrated by the following: Let Ω and ρA be as in Example 4.8. The example shows that Ω

is a quasi-Reinhardt domain with rank at least 2. On the other hand, Ω is also (1, 1, 2)-quasi-circular.

Therefore, Ω is an example of quasi-circular domain whose rank as a quasi-Reinhardt domain (with the

modified definition) is higher than 1.

4.3 An Intrinsic Extension

To determine if a domain D is a quasi-Reinhardt domain requires to check if there is a ρA : Tr → GLn(C)

such that rankA = r, O(Cn)ρA = C, and that D is ρA-invariant. This task is not easy to perform in

general. Furthermore, we need to consider all such representations in order to compute the rank of a

quasi-Reinhardt domain. Therefore, we attempt to give an intrinsic definition. Namely, we consider the

group of unitary automorphisms of D.

Lemma 4.15. ([GKK11], Theorem 1.3.4) Let Ω be a bounded domain in Cn. If {fj} is a sequence

in Aut(Ω) which converges uniformly on compact subsets of Ω and if, for some p0 ∈ Ω, the limit

limj→∞ fj(p0) is a point in Ω, then the limit holomorphic mapping f0 : Ω → Ω has image precisely equal

to Ω and f0 ∈ Aut(Ω).

Proposition 4.16. Suppose D ⊂ Cn is a bounded domain containing the origin. Let UA(D) = U(n) ∩

Aut(D) be the group of unitary automorphisms of D. Then UA(D) is a closed subgroup of U(n), and is

thus a Lie subgroup ([Lee13], Theorem 20.12). In particular, since U(n) is compact, so is UA(D).

Proof. Let {Tj} be a sequence in UA(D), such that Tj → T in U(n). Then this convergence is also

uniform because U(n) is finite dimensional, so all norms on U(n) are equivalent to each other. Notice

that 0 ∈ D, and T (0) = 0, so by Lemma 4.15 we have T ∈ Aut(D). Therefore, T ∈ UA(D), which is

what we want.

Definition 4.17. (Intrinsic definition) Suppose D ⊂ Cn is a domain containing the origin. We say that

D is a quasi-Reinhardt domain of rank r if the following conditions hold:

(1) There exists a maximal torus T of UA(D) such that if f : Cn → C is a T -invariant holomorphic

function (that is, f ◦ φ = f for all φ ∈ T ), then f is constant;

(2) dimT = r.

We wish to prove that this definition really agrees with the modified Definition 4.10.

Lemma 4.18. Let T be a torus in UA(D) of dimension r. Then there is A ∈ Matn×r(Z) such that

rankA = r, and the associated torus representation ρA : Tr → GLn(C) satisfies T = Image(ρA).

Proof. By definition, we know that T is isomorphic (as a Lie group) to Tr for some r ∈ Z, r ≥ 1. On

the other hand, T is a subgroup of UA(D), so it is also a subgroup of GLn(C). Define ρ : Tr → GLn(C)
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to be the composition of these isomorphism and inclusions, so that the following diagram commutes:

Tr T UA(D) GLn(C).
∼=

ρ

Then ρ is a faithful representation of Tr. By Proposition 3.15, there exists A ∈ Matn×r(Z) such that

rankA = r and ρ = ρA up to a change of basis in Cn.

Proposition 4.19. Definition 4.10 is equivalent to Definition 4.17.

Proof. We first prove that Definition 4.10 implies Definition 4.17. Suppose D is quasi-Reinhardt with

respect to ρA : Tr → GLn(C), and rankD = r.

Claim. rank dρA(λ) = r for all λ. In particular, ρA : Tr → GLn(C) is a smooth immersion.

Proof of claim. Suppose aj = (aj1, . . . , ajn) is the the j-th row of A. Choose local coordinates λ =

(e2πix1 , . . . , e2πixr ) = (λ1, . . . , λr), and identify the image ρA(λ) with points in Cn2

by

ρA(λ) =


λa1

. . .

λan


∼ (λa1 , . . . , λan , 0, . . . , 0) ∈ Cn2

.

Then ρA is obviously a smooth map, and the differential of ρA is given by

dρA(λ) =



a11
λa1

λ1
· · · a1r

λa1

λr

...
. . .

...

an1
λan

λ1
· · · anr

λan

λr

0 · · · 0
...

. . .
...

0 · · · 0


∼



a11λ2 · · ·λr · · · a1kλ1 · · · λ̂k · · ·λr · · · a1rλ1 · · ·λr−1

...
...

an1λ2 · · ·λr · · · ankλ1 · · · λ̂k · · ·λr · · · anrλ1 · · ·λr−1

0 · · · 0 · · · 0
...

...

0 · · · 0 · · · 0


(3)

where ∼ denotes the row equivalence of matrices, and λ1 · · · λ̂k · · ·λr indicates that the k-th component

of λ is omitted in the product. This row equivalence is achieved by dividing the j-th row of dρA(λ)

λ
aj1−1
1 · · ·λajr−1

r . Notice that in the matrix after this division, the non-zero block is achived by multi-

plying λ1 · · · λ̂k · · ·λr on the k-th column of A. Thus rank dρA(λ) = rankA = r for all λ, and ρA is thus

a smooth immersion.

As ρA is an immersion with constant rank, T := Image ρA is thus an immersed submanifold (and

hence a Lie subgroup) of U(n) with dimension r. T is connected, compact, and abelian because Tr is,
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so it is also a torus. By the respective property of ρA, T is contained in Aut(D), and O(Cn)T = C.

We only need to prove that T is a maximal torus in UA(D). If not, then by definition T is properly

contained in some other torus T ′ of UA(D). Then s := dimT ′ > dimT = r. By Lemma 4.18, there

exists B ∈ Matn×s(Z) with rankB = s, so that D is ρB-invariant and O(Cn)ρB = C. This contradicts

the definition of r that it is the maximal number with this property. Conversely, if T ⊂ UA(D) is a

maximal torus satisfying properties as in Definition 4.17, then using Lemma 4.18 we find a ρA as desired,

and the rank of D in the sense of Definition 4.10 is r because T is a maximal torus.

We have the following lemma follows from page 708 of [Hei92].

Lemma 4.20. Suppose D is a quasi-Reinhardt domain with respect to ρ. Then O(D)ρ = C.

4.4 Mappings on Quasi-Reinhardt Domains

As remarked in Section 2.2, one should not expect a simple classification theorem for minimal domains

to hold in Cn when n > 1. Therefore, we attempt to find and study a broader class of domains to reveal

more general properties of minimal domains. Quasi-Reinhardt domains are considered exactly due to

this reason.

Theorem 4.21. ([LR19], Theorem 1.3) Let D ⊂ Cn be a bounded quasi-Reinhardt domain containing

the origin. Then D is a minimal domain with center 0.

Proof. Suppose D is quasi-Reinhardt with respect to ρA : Tr → GLn(C), where A ∈ Matn×r(Z) is rank

r. Let aj , 1 ≤ j ≤ n be the rows of A. Then ρA(λ) ∈ GLn(C) is a biholomorphism from D to D. Let

K(z, w) be the Bergman kernel on D. By the transformation formula of Bergman kernel (Theorem 1.12),

for all λ = (λ1, . . . , λr) ∈ Tr, we have

[detJCρA(λ)(z)]K(ρA(λ)z, ρA(λ)w)detJCρA(λ)(w) = K(z, w).

Notice that detJCρA(λ)(z) = λa1 · · ·λan is constant, and |λk| = 1 for all 1 ≤ k ≤ r, so

detJCρA(λ)(z)detJCρA(λ)(w) = λa1 · · ·λanλa1 · · ·λan = 1.

Take w = 0 now gives

K(z, 0) = K(ρA(λ)z, 0)

because ρA(w)(0) = 0. Recall that K(·, w) ∈ A2(D) for all w ∈ D, so K(·, w) ∈ O(D)ρA . By Lemma

4.20 we have K(z, 0) is constant, and thus D is a minimal domain by Proposition 2.5.

The converse of Theorem 4.21, however, does not hold in general. Recall that the image of a minimal

domain under a shear is still a minimal domain. We see that the same property does not have to hold

for quasi-Reinhardt domains.
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Lemma 4.22. ([LR19], Corollary 5.4) Let D and D′ be bounded quasi-Reinhardt domains in Cn con-

taining the origin. Suppose f : D → D′ is a proper holomorphic map such that f−1(0) = 0. Then f is a

polynomial.

Example 4.23. Let B2 be the unit ball in C2. B2 is a Reinhardt domain, so it is also quasi-Reinhardt.

Let f : C2 → C2 be given by

f(z, w) = (z, w + ez − 1).

Notice that f is a shear, so it is a biholomorphism. Its inverse is given by

f−1(ξ, η) = (ξ, η − eξ + 1).

In particular, it is also a proper map. Let D = f(B2) = {(ξ, η) ∈ C2 | |ξ|2 + |η − eξ + 1|2 < 1}. We

show that D is not a quasi-Reinhardt domain. Suppose for contradiction that D was a quasi-Reinhardt

domain. Then as f−1(0) = 0 we have f is a polynomial by Lemma 4.22, but f is obviously not a

polynomial by its definition. Notice, however, that B2 is a minimal domain, so D is also a minimal

domain as it is the image under the shear map f .

In the remaining of this section, we study the biholomorphisms between quasi-Reinhardt domains.

Proposition 4.24. Suppose D and D′ are bounded quasi-Reinhardt domains. If there exists a unitary

biholomorphism f : D → D′, then rankD = rankD′.

Proof. Let T be a maximal torus of dimension r in UA(D), such that all T -invariant holomorphic

functions on Cn are constant. As f : D → D′ is a biholomorphism, we have

Aut(D′) = {f ◦ α ◦ f−1 | α ∈ Aut(D)}.

Since f is unitary, for α ∈ Aut(D), we have β = f ◦ α ◦ f−1 ∈ UA(D′) if and only if α ∈ UA(D), and

T ′ = f ◦ T ◦ f−1 := {f ◦ φ ◦ f−1 | φ ∈ T} is a maximal torus of dimension r in UA(D′).Furthermore, if

g ∈ O(D)T
′
, then

g ◦ f ◦ φ ◦ f−1 = g

for all φ ∈ UA(D), which is equivalent to

g ◦ f ◦ φ = g ◦ f

for all φ ∈ UA(D). Therefore, g ◦ f ∈ O(D)T , and is therefore a constant by identifying T as the image

of some ρA and applying Theorem 4.6. As f is biholomorphic, g must be a constant, so O(D)T
′
= C. By

identifying T ′ with the image of some ρA′ and applying Theorem 4.6 again, we conclude that O(Cn)T
′

is constant.

In the setting of Proposition 4.24, if we only assume D and D′ are merely biholomorphic (so, without
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assuming the existence of a unitary biholomorphism), then the rank is in general not preserved.

Let Bn be the unit ball in Cn, and fix a ∈ Bn. Define P0 = 0

Pa(z) =
⟨z, a⟩
⟨a, a⟩

a if a ̸= 0

and Qa = I − Pa where I is the identity map on Cn. Let sa = (1− |a|2)1/2 and define

φa(z) =
a− Pa(z)− saQa(z)

1− ⟨z, a⟩
.

Notice that similar to the 1-dimensional case, we have φa ∈ Aut(Bn). The following lemma concerning

the automorphisms of Bn will be used to construct an example of two biholomorphic quasi-Reinhardt

domains with different rank.

Lemma 4.25. [Rud08] If ψ ∈ Aut(Bn) and a = ψ−1(0), then there exists a unique U ∈ U(n) such that

ψ = Uφa.

Remark 4.26. We compute

φ0(z) =
0− P0(z)− s0Q0(z)

1− ⟨z, 0⟩
= −I.

In particular, if ψ ∈ Aut(Bn) satisfies ψ(0) = 0, then ψ ∈ U(n).

Example 4.27. Let f : C2 → C2 be the shear map defined by

f(z, w) = (z, w + z2).

Its inverse is given by

f−1(ξ, η) = (ξ, η − ξ2).

Set D = f(B2) = {(ξ, η) ∈ C2 | |ξ|2 + |η − ξ2|2 < 1}. B2 is a Reinhardt domain in C2, so it is a quasi-

Reinhardt domain of rank 2. We show that D is a quasi-Reinhardt of rank 1 by computing UA(D) and

using Definition 4.17. Let φ ∈ UA(D) ⊂ U(2). Then there exists ψ ∈ Aut(B2) such that φ = f ◦ψ ◦ f−1.

As φ ∈ U(2), we have φ(0) = 0. Also notice that f(0) = 0, so it follows that ψ(0) = 0. By Lemma 4.25,

ψ ∈ U(2). Suppose

ψ =

a b

c d

 .
For (ξ, η) ∈ D, we compute

φ(ξ, η) = f ◦ ψ ◦ f−1(ξ, η)

= f ◦ ψ(ξ, η − ξ2)

= f(aξ + b(η − ξ2), cξ + d(η − ξ2))

= (aξ + b(η − ξ2), cz + d(η − ξ2) + (aξ + b(η − ξ2))2).
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As φ is linear, by looking at the first component of φ we must have b = 0. Then

φ(ξ, η) = (aξ, cξ + d(η − ξ2) + a2ξ2).

As ψ is unitary, we must have that |a| = |d| = 1 (in particular, a, d are non zero), and that c = 0.

Therefore, for φ to be linear, it must follow that d = a2. This implies

ψ =

eiθ 0

0 e2iθ


for some θ ∈ R. Furthermore, by the above computation,

φ(ξ, η) = (eiθξ, e2iθη) = ψ(ξ, η).

Therefore, we conclude that

UA(D) =


eiθ 0

0 e2iθ

 ∣∣∣∣∣ θ ∈ R

 .

Therefore, UA(D) itself is a torus, and dimUA(D) = 1. This implies that rankD = 1, and that f maps

a quasi-Reinhardt domain of rank 2 to a quasi-Reinhardt domain of rank 1.
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