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Abstract. This thesis examines two types of factored matrix approximations that are fast and
accurate in different contexts: low-rank approximations of positive definite matrices and sparse fac-
tored approximations of positive definite matrix inverses. The thesis combines these two approaches
using the theoretical framework of Vecchia approximation. The main algorithmic contribution is a
greedy method for computing the low-rank portion of a low-rank plus sparse approximation that
achieves near-optimal theoretical guarantees. The greedy method is applied to produce precon-
ditioners for iteratively solving linear systems arising from Gaussian processes, where numerical
experiments demonstrate significant convergence rate improvements over existing methods.
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1. Motivation. This thesis asks and answers the following question: what is a
fast, accurate algorithm that provides a factored approximation of a positive definite
matrix?

A factored approximation of a positive definite matrix is useful for scientific com-
puting in at least two ways. The approximation can be used as a “direct solver”,
when it is substituted for the original matrix when solving linear systems, calculating
determinants, or calculating eigenvectors. Direct solvers are computationally efficient,
and they induce error, but the error level is acceptable given a highly accurate ap-
proximation. As an alternative approach, a factored approximation can serve as a
preconditioner for an iterative method. Iterative methods for linear solves and eigen-
value solves drive the error all the way to zero, but the rate of convergence depends
on the approximation quality of the matrix preconditioner; for details see section 2.

In the large-data regime, both direct solvers and preconditioned iterative solvers
are much faster than dense factorization methods for scientific computing, and they
stretch the limits of the calculations that can be performed. For example, given a
105 × 105 matrix in single precision, it is impossible to execute dense factorization
methods using standard software (MATLAB or python) on a laptop-scale computer
(64GB RAM). In contrast, preconditioned iterative solvers execute in minutes or
hours, and direct solvers are even faster.

This thesis will examine a large, existing body of literature devoted to factored
approximations of positive definite matrices. The literature is divided into low-rank
approximations [4, 5, 6] and sparse factored approximations of the matrix inverse
[11, 18], as well as combinations of the two approaches [24]. All these approximation
methods execute quickly and apply in the large-data regime, since they examine just a
subset of entries in the matrix. Yet, they are based on different philosophies, since the
low-rank approximations are accurate for matrices with quickly decaying eigenvalues
and the sparse factored approximations are valid for matrices with off-diagonal decay
in the inverse. It is unclear whether these approximations can be combined in an
overarching framework.

The thesis considers a unified framework for low-rank plus sparse approximation,
and it makes the following three contributions:
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1. The thesis synthesizes the existing literature by showing how existing low-
rank and sparse approximation methods [4, 5, 6, 11, 18, 24] can be understood
as particular examples of Vecchia approximation [22] with different sparsity
patterns. Therefore, the optimality guarantees of the Vecchia approximation
[12, 23, 19] extend to all these methods.

2. Using the theory of Vecchia approximations, this thesis introduces a greedy
method to build the low-rank part of a low-rank plus sparse approximation
[24], and it proves near-optimal theoretical guarantees for this greedy method.

3. Numerical experiments show that the greedy method leads to significant con-
vergence rate improvements when used to precondition iterative methods.

The rest of the thesis is organized as follows. Subsection 1.1 introduces nota-
tion. Section 2 provides background on approximate matrix factorizations. Section 3
unifies approaches in section 2 using the theoretical framework of Vecchia approxima-
tion. Section 4 introduces the greedy algorithm. Last, section 5 presents numerical
experiments.

1.1. Notation. We denote scalars in lower case italics: m,n, r. We denote
vectors in lower case boldface: u,v. We denote matrices in boldface capital letters:
A,B. We use ui to refer to to the ith entry of a vector u ∈ Cn, and we use Ai,j to
refer to the (i, j) entry of a matrix A ∈ Cm×n. Given index sets S, T ⊆ {1, . . . , n}, we
use uS to refer to the subvector (ui)i∈S , and we use AS,T to refer to the submatrix
(Ai,j)i∈S,j∈T . Similarly, Ai,: and A:,i indicate the ith row and column of A.

We represent the vector of all ones by 1. We use ei to represent the ith standard
basis vector, which has ith entry 1 and all other entries 0. We write [n] to mean
{1 . . . n}, and write m : k to refer to {m. . . l}, especially when indexing vectors or
matrices. We use N (µ,Σ) to indicate the multivariate Gaussian distribution with
mean µ and covariance matrix Σ. The conjugate transpose of a matrix A ∈ Cm×n is
denoted A∗, and the Moore-Penrose pseudoinverse is A+.

The Nyström approximation of a positive definite matrix A ∈ Cn×n with respect
to a test matrix X ∈ Cn×r is defined as

A⟨X⟩ = AX(X∗AX)−1X∗A.

The column Nyström approximation using an index set R ⊆ {1, . . . , n} is defined as

A⟨R⟩ = A⟨I(:, R)⟩ = A:,R(AR,R)
−1AR,:.

The Schur complement with respect to index set R is defined as

A/R = A−A⟨R⟩.

2. Methods for factored approximations. This section describes several
methods to construct factored approximations for positive definite matrices A ∈
Cn×n. The main purpose of this section is to provide motivation and to set the
notation.

2.1. Approximate Cholesky factorization. Every positive definite matrix
A has a unique Cholesky factorization, A = LL∗, where L is a lower triangular
matrix. Since the inverse A−1 is positive definite, it also admits a unique Cholesky
factorization, A−1 = CC∗. However, the factorizations A = LL∗ and A = C−∗C−1

are distinct, because L is lower triangular while C−∗ is upper triangular.
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In practice, it is often too expensive to form a Cholesky factorization exactly.
However, we can consider an approximate Cholesky factorization Â = L̂L̂∗ or Â−1 =
ĈĈ∗, where the matrix L̂ or Ĉ is lower triangular and sparse. When such an approx-
imation is available, we can put this factorization into action to solve linear systems
Ax = b using a direct or indirect approach.

In the direct approach, we replace the original matrix A with an approximate
Cholesky factorization Â and then solve the modified linear system Âx̂ = b. At this
point, solving the system is extremely efficient. For example, given an approximate
factorization Â−1 = ĈĈ∗ we can solve the linear system using two matrix–vector
products, which require at most O(n2) operations and run even faster if Ĉ is sparse.

Alternatively, given an approximate factorization Â = L̂L̂∗, we can solve the linear
system using two instances of triangular substitution. The runtime for triangular
substitution is linear in the number of nonzero entries, so it requires O(n2) operations
for a dense matrix and runs even faster when the Cholesky factor L is sparse.

In an indirect method, we do not substitute Â for A directly. Rather, we use the
approximation Â as a preconditioner in the preconditioned conjugate gradient (PCG)
algorithm. We run PCG for some number of iterations, producing better and better
estimates of x = A−1b with each iteration. PCG requires just O(n2) operations per
iteration, and after k iterations it produces an approximation x̂(k) with error bounded
according to [9, Ch. 11]:

∥x̂(k) − x∥K ≤ 2∥x∥K exp

(
− 2k√

K(L−1KL−∗)

)
or

∥x̂(k) − x∥K ≤ 2∥x∥K exp

(
− 2k√

K(C∗KC)

)
The condition number K(M) of a positive definite matrix M ∈ Cn×n is defined as
the ratio of the largest eigenvalue of M to the smallest.

2.2. Column Nyström approximation. Suppose we are given a positive defi-
nite matrix A ∈ Cn×n with rapidly decreasing eigenvalues. Then, we can can consider
a factored approximation

Â = BDB∗, where B ∈ Cn×r and D ∈ Cr×r with r ≪ n.

This is called a low-rank approximation, because rank(BDB∗) ≤ r. If such a low-
rank approximation exists and we can find it quickly, then we can replace A by the
low-rank approximation Â to speed up linear algebra operations. For example, we can
quickly multiply Â by a vector in a sequence of three multiplications using each matrix
in the factorization. We can also efficiently compute the shifted inverse (Â + λI)−1

for λ > 0 by using the Woodbury formula.
A popular and useful low-rank approximation is the Nyström approximation:

(2.1) A⟨X⟩ := AX(X∗AX)−1X∗A.

The Nyström approximation can be defined with respect to any test matrixX ∈ Cn×r,
and it has rank at most r. The approximation (2.1) can be justified as the matrix
H = AXDX∗A that is closest toA in the spectral norm while maintaining a positive
semidefinite residual A−H.
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The Nyström approximation is defined for any X ∈ Cn×r, so how should we
choose X? In an ideal world, there is no better choice than making the columns
the dominant r eigenvectors of A, since computing A⟨X⟩ via (2.1) then recovers the
r-truncated eigendecomposition. In practice, running a few iterations of an iterative
eigenvector-finding method can give a high-accuracy Nyström approximation when
the eigenvalues decay quickly; see [21]. However, this approach is too expensive for
many computational settings, since it requires O(n2r) operations to execute.

A more efficient Nyström approximation is generated by the matrix X = I(:, R),
which is a block of columns from the identity indexed by a cardinality-r index set
R ⊆ {1, . . . , n}, often called a pivot set. Then, the Nyström approximation takes a
simplified form:

(2.2) A⟨R⟩ = A⟨I(:, R)⟩ = A:,R(AR,R)
−1AR,:.

We call (2.2) the column Nyström approximation, and it can be computed in just
O(nr2) operations by first forming and factoring the matrix AR,R and then incorpo-
rating by the matrix A:,R. This approach does not require reading all entries of the
matrix!

The column Nyström approximation can be represented as a block matrix approxi-
mation, after a suitable reordering of the indices. Given an index set R = {k1, . . . , kr},
we introduce the permutation matrix P ∈ Rn×n that satisfies Pei = eki for each
1 ≤ i ≤ r. Then the column Nyström approximation of A can be represented as

P ∗A⟨R⟩P =

[
AR,R AR,Rc

ARc,R ARc,R(AR,R)
−1AR,Rc

]
.

The residual matrix, which is called the Schur complement, can be represented as

P ∗(A/R)P = P ∗(A−A⟨R⟩)P =

[
0 0
0 ARc,Rc −ARc,R(AR,R)

−1ARc,R

]
The index reordering makes clear that the selected rows and columns are represented
exactly, while the remaining rows and columns are interpolated by a linear combina-
tion of the selected columns.

2.3. Vecchia approximation. An alternative way to approximate a positive
definite matrix A ∈ Rn×n or A ∈ Cn×n is based on approximating the distribution of
a real- or complex-valued random Gaussian vector y ∼ N (0,A) [17]. If we introduce
an exact inverse Cholesky factorization A−1 = CC∗, then we observe z = C∗y is a
white noise vector, z ∼ N (0, I), so the vectors z and y are linked by the regression
formula

(2.3) zi =

n∑
j=i

Cjiyj and consequently yi = −
n∑

j=i+1

Cji

Cii
yj +

zi
Cii

.

By this formula, when we linearly regress yi on yi+1, . . . ,yn, the coefficients are
−Cji/Cii and the residual is N (0, 1/C2

ii).
Next, we observe that many covariance matrices arising in applications have en-

tries yi and yj that satisfy the conditional independence relationship

(2.4) yi ⊥ yj | yj+1 . . .yn.

By the regression formula (2.3), the conditional independence relationship is equiv-
alent to a zero entry in the Cholesky factor Cji = 0. Given the tendency for many
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conditional independence relationships to hold simultaneously, we consider an approx-
imation Â−1 = ĈĈ∗ where the approximate Cholesky factor is sparse

Ĉij = 0, if j /∈ Si,

and the sparsity pattern is determined by index sets {Si}ni=1 which contain a small,
bounded number of elements subject to {i} ⊆ Si ⊆ {i, . . . , n}.

Taking one step further, we can explicitly approximate the Gaussian distribution
y ∼ N (0,A) using the sparsity pattern {Si}ni=1. Using the chain rule of conditional
probabilities, the exact Gaussian density function p is

p(y) =

n∏
i=1

pi | {i+1,...,n}(yi |y{i+1,...,n}),

where pi | {i+1,...,n} is the conditional density of yi given variables yi+1, . . . ,yn. If we
only consider the conditional dependencies specified in the sparsity pattern {Si}ni=1,
then the Gaussian density is naturally approximated as

(2.5) p̂(y) =

n∏
i=1

pi |Si\{i}(yi |ySi\{i}).

Each conditional density pi |Si\{i}(yi |ySi\{i}) is representing a Gaussian conditional
distribution, which can be written as

yi ∼ N

(
− e∗1(ASi,Si)

−1

e∗1(ASi,Si
)−1e1

[
0

ySi\{i}

]
,

1

e∗1(ASi,Si
)−1e1

)
.

Taken as a whole, the density p̂ is representing a multivariate Gaussian distribution
N (0, (ĈĈ∗)−1), where the inverse Cholesky factor has a closed-form, computationally
tractable expression:

(2.6) ĈSi,i =
(ASi,Si

)−1e1√
e∗1(ASi,Si

)−1e1
and ĈSc

i ,i
= 0, for each i = 1, . . . , n.

The approximation (2.6) is known as the Vecchia approximation in spatial statistics
[22].

The Vecchia approximation has several optimality properties among approxima-
tions Â−1 = CC∗ with a fixed sparsity pattern:

1. In 1990, Kaporin [12] discovered that the Vecchia approximation optimizes
the ratio of the trace to the normalized determinant

(2.7)
tr
(
CAC∗)

det
(
CAC∗

)1/n .
2. Later, Yeremin et al. [23] found that the Vecchia approximation minimizes

the Frobenius norm of the residual

(2.8) ∥I −CAC∗∥F

subject to the constraint diag(CACT ) = 1.
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3. Most recently, Schäfer et al. [18] observed that the Vecchia approximation
minimizes the KL divergence

(2.9) DKL

(
N (0,A)∥N (0, (CC∗)−1)

)
.

We also note two desirable computational properties of the Vecchia formula (2.6).
First, this formula does not use all entries of A, only blocks of entries corresponding
to each column’s nonzero set. Second, as a result, we can compute the nonzero entries
of Ĉ in only O(nr3) operations if |Si| ≤ r for each index set i.

Finally, we notice that the stipulation Si ⊆ {i, i + 1 . . . n} depends heavily on
the ordering of the indices. Therefore, we consider a permutation matrix P ∈ Rn×n

that puts the important indices last, and then we apply Vecchia approximation of the
permuted matrix

M = P ∗AP .

We obtain an approximation M̂−1 = ĈĈ∗, which transfers to an approximation of
the original matrix via

(2.10) Â−1 = PM̂−1P ∗ = (PĈP ∗)(PĈP ∗)∗.

We call the approximation (2.10) a generalized Vecchia approximation.

2.4. Column Nyström plus Vecchia. Last, we consider an approach that
combines low-rank and sparse structure when approximating a positive definite matrix
A ∈ Cn×n.

In this approach, we start by generating a column Nyström approximation using
an index set R = {k1, . . . , kr}:

A⟨R⟩ = A:,R(AR,R)
−1AR,:.

Following the exposition in subsection 2.2, the structure of the Nyström approximation
become clearer when we introduce a permutation matrix P ∈ Rn×n that puts the R
indices last: Pen−r+i = eki for each i = 1, . . . , r. The Nyström approximation can
then be written as

P ∗A⟨R⟩P =

[
ARc,R(AR,R)

−1AR,Rc ARc,R

AR,Rc AR,R

]
.

and the Schur complement is

P ∗(A/R)P =

[
ARc,Rc −ARc,R(AR,R)

−1AR,Rc 0
0 0

]
.

The residual from this approximation is a positive-definite residual matrix B =
ARc,Rc −ARc,R(AR,R)

−1AR,Rc , which we can systematically improve.
To improve our approximation, we apply sparse Vecchia approximation to B:

B̂−1 = FF ∗.

Combining the Nyström and sparse approximations then gives

(2.11) P ∗ÂP =

[
ARc,R(AR,R)

−1AR,Rc
+ F−∗F−1 ARc,R

AR,Rc AR,R

]
.
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This approximation was discovered by [24], who refer to their implementation as
“adaptive Factorized Nyström” due to an adaptive determination of the rank of the
Nyström part. However, for the rest of paper, we refer to the general class of approx-
imations based on (2.11) as “column Nyström plus Vecchia” (CNV) approximations.

Next, we make a new observation that the inverse of a CNV approximation can
be written explicitly as

(2.12) P ∗Â−1P

=

[
FF ∗ −FF ∗ARc,R(AR,R)

−1

−(A−1
R,R)AR,RcFF ∗ (AR,R)

−1 + (AR,R)
−1AR,RcFF ∗ARc,R(AR,R)

−1

]
This formula is a consequence of the block matrix inversion formula [3, p420], together
with the fact that (

ÂRc,Rc − ÂRc,R(ÂR,R)
−1ÂR,Rc

)−1
= FF ∗.

Equation (2.12) can be simplified further, by writing the approximation in terms of
its Cholesky decomposition:

(2.13) P ∗Â−1P =

[
F 0

−(AR,R)
−1AR,RcF C

] [
F 0

−(AR,R)
−1AR,RcF C

]∗
,

where (AR,R)
−1 = FF ∗.

Equation (2.13) gives an intuitive formula for the approximate Cholesky factor that
can be evaluated in O(r3 + r∥C∥0) operations, where ∥C∥0 denotes the number of
nonzero entries in C.

3. Column Nyström plus Vecchia approximations. This section extends
the theory of Vecchia approximation to show that column-Nyström-plus-Vecchia ap-
proximations are themselves Vecchia approximations in disguise.

Our main theoretical result is the following:

Theorem 3.1 (CNV = Vecchia). Let A ∈ Cn×n be a positive definite matrix and
partition the indices {1, . . . , n} into sets U = {1, . . . , n−r} and V = {n−r+1, . . . , n}.
Consider the column Nyström plus Vecchia approximation

(3.1) Â−1 =

[
C 0

−(AV,V )
−1AV,UC F

] [
C 0

−(AV,V )
−1AV,UC F

]∗
,

that incorporates the following components:
1. A−1

V,V = FF ∗ is a dense Cholesky factorization of A−1
V,V .

2. B̂−1 = CC∗ is a Vecchia approximation of B = AU,U −AU,V (AV,V )
−1AV,U

with sparsity pattern {Si}ni=1.

Then Â is the Vecchia approximation of A with sparsity pattern Ti = Si ∪ V for
i = 1, . . . , n− r and Ti = {i, i+ 1, . . . , n} for i = n− r + 1, . . . , n.

Proof. Columns i = n− r + 1, . . . , n of the approximate Cholesky factor in (3.1)
are generated via dense Cholesky factorization, which is the same as a Vecchia ap-
proximation with a dense sparsity pattern Ti = {i, i+ 1, . . . , n}.

Next consider columns i = 1, . . . , n − r of the approximate Cholesky factor in
(3.1). Using the definition (2.6) of the sparse Vecchia approximation B̂−1 = CC∗,
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each column i satisfies[
I

−(AV,V )
−1AV,U .

]
C:,i, where C =

(BSi,Si
)−1e1

e∗1(BSi,Si)
−1e1

Next, using the block matrix inversion formula [3, p420], we observe[
I

−(AV,V )
−1AV,U

]
(BSi,Si

)−1e1
e∗1(BSi,Si)

−1e1
=

(ASi∪V,Si∪V )
−1e1√

e1(ASi∪V,Si∪V )−1e1
.

This is precisely the formula (2.6) for the ith column in a Vecchia approximation of
A with sparsity pattern Ti = Si ∪ V .

Theorem 3.1 has several ramifications. Most immediately, the Kaporin, KL, and
Frobenius optimality results from [12, 18, 23] carry over to CNV approximations.
Also, the theorem implies that for fixed approximation rank r, the choice of column
Nyström approximation is equivalent to the choice of the last r indices in the order-
ing. Two existing methods with the same index ordering are “adaptive factorized
Nyström” approximation [24] and “sparse Cholesky approximation” [18]: these tech-
niques produce the same approximation when the bottom r rows are included to the
sparsity pattern.

4. Application: Gaussian Processes. The results in section 3 apply to all
positive-definite matrices, but one application which merits further elaboration is co-
variance matrices in Gaussian processes (GPs). A Gaussian process is a multivariate

Gaussian distribution whose dimensions are Rd, i.e., with mean m ∈ RRd

and covari-

ance matrix K̄ ∈ RRd×Rd

. Typically, K̄ is specified by setting K̄x,y = κ(x,y) or
Kx,y = κ(x,y) + µδx,y, for κ a kernel function, or a function with κ(x,x) = 1 for
which κ(x,y) decreases in ∥x− y∥ for some norm, and µ ∈ R≥0 a nugget parameter.
A random variable conforming to such a distribution can be thought of as a random
function f : Rd → R such that the covariance of f(x) and f(y) is given by K̄x,y. Since
estimating and subtracting off the mean is usually not a problem in applications, we
will take m = 0 in this paper.

When working with GPs, we often work in terms of a realization of a GP at some
finite number n points {x(i)}ni=1 ⊆ Rd. When we’re only concerned with these points,
K̄ behaves like a matrix in Rn×n; we thus often define some matrix K such that Ki,j

refers to K̄x(i),x(j) . If n is large, practitioners must often work with approximations
of K over these n points with advantageous computational properties for improved
computational speed at the cost of some approximation error. In this section, we apply
CNV to this task. Specifically, we discuss the compatibility of existing algorithms for
choosing pivot sets and sparsity patterns with CNV in the context of GPs. We also
propose our own pivot-choosing algorithm in subsection 4.1.3.

4.1. Matérn Kernels. We begin by examining existing methods for finding
sparse Vecchia approximations of covariance matrices corresponding to a particular
class of kernels, the Matérn kernels. Later in this section, we will show that these
methods are compatible with CNV approximations and adapt their theoretical bounds
to the CNV case, as well as propose heuristics based on these for choosing pivots during
the Nyström part of CNV-type approximations.
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The Matérn kernel functions take the form

κν,ρ,σ(x,x
′) = σ2 2

1−ν

Γ(ν)

(
√
2ν
∥x− x′∥2

ρ

)ν

Bν

(
√
2ν
∥x− x′∥2

ρ

)
where Bν is the modified Bessel function of the second kind, Γ is the gamma function,
ν is called a smoothness parameter, and ρ, σ > 0 are other parameters. For ν ∈
{ 12 ,

3
2 ,

5
2 . . .} = N+ 1

2 , this can be written

κν,ρ,σ(x,x
′) =

σ2 exp

(
−
√
2ν∥x− x′∥2

ρ

)
(ν − 1

2 )!

(2ν − 1)!

ν− 1
2∑

i=0

(ν − 1
2 + i)!

i!(ν − 1
2 − i)!

(
2
√
2ν∥x− x′∥2

ρ

)ν− 1
2−i

.

4.1.1. Reverse Maximin Ordering and Theoretical Sparse Vecchia Er-

ror Bounds. Let κ be a Matérn kernel function on Rd, let K̄ ∈ RRd×Rd

be the
corresponding covariance matrix, and let K be the covariance matrix it induces given
X = {x(i)}ni=1 according to Ki,j = κ(x(i),x(j)). Additionally, let Z ⊆ Rd (possibly
empty), which in this context can be thought of as an index set. Define

K/Z := (K̄/Z)XX = K̄XX − K̄XZK̄
−1
ZZK̄ZX .

Later in this subsection, we will state a result of [18] regarding the sparsity of
the Cholesky factor of (K/Z)−1 that gives us reason to believe the Cholesky factor of
K−1 is sparse, too. But before we do, we recall from subsection 2.3 that if we are to
find a sparse Vecchia approximation ofK, the ordering of the points {x(i)}ni=1 matters
significantly to the quality of our approximation. When d = 1, ordering the points
according to the usual ordering on R, or its reverse, tend to work well in practice.
However, methods of this type (e.g. lexicographically coordinate-by-coordinate in
some basis) tend to perform poorly in Rd ([10]).

An alternative which [10] shows performs well empirically, and which [18] require
a slightly weaker version of in their aforementioned result, is known as the reverse-
maximin ordering. It follows a procedure known as Farthest Point Sampling (FPS)
to choose the next-to-last point in the ordering at any given step. Mathematically,
assuming {kj}nj=i+1 in the reverse maximin ordering have been determined, and for
a given Z as above, one finds

(4.1) ki = argmax
k ̸∈{kj |j=i+1...n}

min
x∈{x(i+1)...x(n)}∪Z

∥x(k) − x(kj)∥2

for the next point in the ordering. Procedurally, a näıve algorithm for construction
such an ordering is given in Algorithm 4.1.

This algorithm takes O(n(n+ |Z|)d) operations; whether this would be a compu-
tational bottleneck generally depends on d and one’s application. If a faster algorithm
is needed and d is not too large, [19]’s Algorithm 4.1 yields a reverse-maximin ordering
in O(2ddn log2 n+ n|Z|d) operations.

We can now state a slightly weaker version of the result of [18]:

Theorem 4.1 ([18], Theorem 3.4). Let Ω ⊆ Rd be a bounded domain with
boundary ∂Ω, and let {x(i)}ni=1 ⊆ Ω be ordered according to the reverse-maximin
ordering. Also, let

(4.2) δ =
mini∈[n] minx∈{x(j)}n

j=1∪∂Ω\x(i) ∥x(i) − x∥2
maxx∈Ω minx′∈{x(i)}n

i=1∪∂Ω ∥x− x′∥2
,
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Algorithm 4.1 Construction of Reverse-Maximin Ordering

for z ∈ Z do
for i ∈ [n] do

di ← min(di, ∥x(i) − z∥2)
end for

end for
for i = n . . . 1 do

ki ← argmaxk dk

for j = 1 . . . n do
dj ← min(dj , ∥x(j) − x(ki)∥2)

end for
end for

and suppose K is the Matérn covariance matrix at {x(i)}ni=1 for κν,ρ,σ with ν ∈ N+ 1
2 .

Further suppose Si is given by the indices of the O((log(nε ))
d)-nearest neighbors of x(i)

which satisfy lower triangularity along with x(i) itself, with implicit constant depending
only on δ, ν, ρ, σ,Ω. Then if C is the sparse Vecchia approximation of K/∂Ω with
sparsity pattern {Si}ni=1 as given by (2.6), we have

(4.3) DKL

(
N (0,K/∂Ω) ∥N (0, (CC∗)−1)

)
+ ∥(K/∂Ω)− (CC∗)−1∥FRO < ε

We remark that while Theorem 4.1 requires conditioning on the boundary of a
bounded domain containing {x(i)}ni=1, [18] observed that this did not substantially
affect empirical results in settings that did not condition on the boundary. We also
remark that this result does not hold with nonzero nugget, and indeed various authors
([13, 14]) observe that the sparsity of C decreases as µ the nugget parameter increases.

4.1.2. Adapting Nearest Neighbors to CNV case. Now, we adapt Theo-
rem 4.1 from the sparse Vecchia case to the CNV case.

Before proceeding more generally, we first consider the case of CNV approxima-
tions whose Nyström pivot set is simply the last r indices in the reverse-maximin
ordering. Let {x(i)}ni=1, K, Ω, and the sparsity pattern {Si}ni=1 as in Theorem 4.1,
the latter for error tolerance ε > 0. Here, Theorem 3.1 implies that the sparse Vecchia
approximation with sparsity pattern Si ∪ {max(i, n − r + 1) . . . n} equals the CNV
approximation with r pivots and sparsity pattern {Si}ni=1 because the index ordering
is the same. By the optimality of the Vecchia approximation in the KL divergence
loss (2.9) and the Frobenius loss (2.8) 1, we cannot make our approximation worse in
these objectives by adding entries to the sparsity pattern. So by Theorem 4.1, which
we crucially can only apply because the ordering is still reverse-maximin, this CNV
approximation has error no worse than (4.3).

Though [24] did not know of Theorem 3.1 nor this result, this provides consid-
erable justification for their proposal to use farthest point sampling (FPS) to select
Nyström pivots. However, the literature on choosing Nyström pivots is very extensive,
and we might hope to use other algorithms than FPS for this purpose. Motivated by
this, we extend the bounds of Theorem 4.1 to other choices for pivot sets:

Theorem 4.2. Let {x(i)}, Ω, K, ε as in the setting of Theorem 4.1, let R ⊆ [n]
of size r. Let {ki}ni=1 an index reordering such that {ki}ni=n−r+1 = R and {ki}n−r

i=1

1Actually, the Frobenius losses in (2.8) and (4.3) are not exactly of the same form, though the
bound in Theorem 4.1 remains valid due to [19]’s Lemma B.8.
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contains the rest of the indices according to the positions of their respective x(ki)s
in the reverse maximin ordering initialized with ∂Ω ∪ {x(R)}. Also, let P be the
n × n permutation matrix such that Pe1 = eki . Finally, suppose that for i ̸∈ R,
we have that Si is given by the indices of the O((log(nε ))

d)-nearest neighbors of x(i)

among {xRC∩{kj}n
j=1)}, along with x(i) itself, with implicit constant depending only

on δ, ν, ρ, σ,Ω, as well as {x(R)} the choice of pivots. Then for (CC∗) the CNV
approximation of P ∗(K/∂Ω)P , we have
(4.4)
DKL

(
N (0,P ∗(K/∂Ω)P ) ∥N (0, (CC∗)−1)

)
+ ∥P ∗(K/∂Ω)P − (CC∗)−1∥FRO < ε

Proof. We’ll start by showing that ((K/∂Ω)/R)−1, the inverse column Nyström
residual of K/∂Ω for some index set R ⊆ [n], is also well-approximated by a matrix
with O((log(nε ))

d) entries per column in its Cholesky factor.
We first observe that

(K/∂Ω)/R = (K̄X∪∂Ω,X∪∂Ω − K̄X∪∂Ω,∂ΩK̄
−1
∂Ω,∂ΩK̄∂Ω,X∪∂Ω)X,X/R

= ((K̄X∪∂Ω,X∪∂Ω−K̄X∪∂Ω,∂ΩK̄
−1
∂Ω,∂ΩK̄∂Ω,X∪∂Ω)/{x(R)})X,X = (K/∂Ω∪{x(R)}).

Motivated by this, define Ω̃ = Ω \ {x(R)} for any index set R ⊆ [n], which is a
bounded domain containing {x([n]\R)}. Then ∂Ω̃ = ∂Ω ∪ {x(R)}, and we may apply
Theorem 4.1 to {x[n]\R} on Ω̃.

As such, let {ki}ni=1 and P be the index reordering and permutation matrix in the
proposition, and let P̃ = P1:n−r,k1:n−r

. Then by Theorem 4.1, the Frobenius and KL

divergence errors of the Vecchia approximation of P̃ ∗(K/∂Ω̃)P̃ decay exponentially
in the number of nonzeros per column.

Finally, we demonstrate that this propagates to the entire CNV approximation.
Letting GG∗ ≈ P̃ ∗(K/∂Ω̃)P̃ = P̃ ∗(K/∂Ω ∪ {x(R)})P̃ the sparse Vecchia part from
the last paragraph, we note that by (2.11) the residual of the entire CNV approxima-
tion of P ∗(K/∂Ω)P with this sparse component takes form[

(K/∂Ω)RC ,RC (K/∂Ω)RC ,R

(K/∂Ω)R,RC (K/∂Ω)R,R

]
−
[
(K/∂Ω)RC ,R(K/∂Ω)−1

R,R(K/∂Ω)R,RC +G∗−G−1 (K/∂Ω)RC ,R

(K/∂Ω)R,RC (K/∂Ω)R,R

]
=

[
P̃ ∗(K/∂Ω ∪ {x(R)})P̃ +G∗−G−1 0

0 0

]
.

We showed in the last paragraph that the Frobenius error of the upper right block
decays exponentially, so it follows that the Frobenius error of the entire RHS does,
too. For the KL divergence, this can also be shown directly, but we refer the reader
to Lemma B.8 in [18] for brevity.

4.1.3. Alternative pivot chooser: Approximate greedy KL minimiza-
tion. Motivated by Theorem 4.2, we now propose an alternative to [24]’s FPS for
choosing the indices in a column Nyström approximation. As theoretical motivation,
Theorem 3.1 shows how the column Nyström part of a CNV approximation is equiv-
alent to a Vecchia approximation. Moreover, a Vecchia approximation optimizes the
KL divergence

DKL

(
N (0,K)∥N (0, (CC∗)−1)

)
.
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given a specific sparsity pattern. Therefore, it is natural to search for the column
Nyström approximation that leads to the smallest KL divergence.

The KL divergence can be expanded according to

2DKL

(
N (0,K),N (0, (CC∗)−1

)
(4.5)

= Tr(C∗KC)− n+ log det(CC∗)−1 − log detK.(4.6)

Given a sparsity pattern Si, the corresponding Vecchia approximation (2.6) that op-
timizes the KL divergence is given by

CSi,i =
(ASi,Si

)−1e1√
e∗1(ASi,Si)

−1e1
.

This form of Cholesky factor C ensures that C∗KC has a diagonal of all ones. Hence,
(4.6) reduces to

(4.7) = log det(CC∗)−1 − log detK,

which can be shown (see [11], appendix A.1) to equal

(4.8)
∑n

i=1

[
log
(
(K/Si \ {i})ii

)
− log

(
(K/{i+ 1 : n})ii

)]
.

Next, we try to minimize the KL divergence with a “low rank plus diagonal”
sparsity pattern, defined by the diagonal entries together with the bottom rows that
indicate the low-rank component. Let k1, . . . , kn be an arbitrary index reordering, let
P be the permutation matrix with Pei = eki , and let M = P ∗KP . In particular,
the kith row of K exactly equals the ith row of M , so (M/J)i,i = (K/{kJ})ki,ki

for
any J ⊆ [n].

Suppose we are approximating M with a sparse Vecchia approximation, and that
that the sparsity pattern currently consists of rows n − j + 1 . . . n together with the
diagonal. If we added the n − jth row to this sparsity pattern, the change in KL
divergence would be given by

n−j∑
i=1

log
(
(M/{n . . . n− j} \ {i})i,i

)
−

n−j∑
i=1

log
(
(M/{n . . . n− j + 1})i,i

)
=
(
log det

(
(M/{n . . . n− j})1:n−j−1,1:n−j−1

)
+ log

(
(M/{n . . . n− j + 1})n−j,n−j

))
−
(
log det

(
(M/{n . . . n− j + 1})1:n−j,1:n−j

))
= log det

(
(M/{n . . . n− j})1:n−j−1,1:n−j−1

)
− log det

(
(M/{n . . . n− j + 1})1:n−j−1,1:n−j−1

)
where the higher terms of the sums on the first line cancel. For the second and
third lines, again see [11]’s appendix A.1. The above expression can be simplified by
an application of the matrix determinant lemma to the first term according to [11],
appendix B.5:

(4.9) log
(
(M/[n] \ n− j)n−j,n−j

)
− log

(
(M/{n− j + 1 : n})n−j,n−j

)
= log

(
(K/[n] \ kn−j)kn−j ,kn−j

)
− log

(
(K/{kn−j+1:n})kn−j ,kn−j

)
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This simplified expression leads to the consequence that the greedy optimization strat-
egy can be highly successful.

Theorem 4.3 (Greedy optimization strategy for Nyström approximation). Fix
a positive definite matrix K ∈ Cn×n. For each index set I with arbitrary ordering ≺,
let (F (I))−∗(F (I))−1 denote the generalized Vecchia approximation of K with sparsity
pattern Sj = {i ∈ I | i ≺ j} ∪ {j} for each j = 1, . . . , n. Also, introduce the objective
function

f(I) :=
1

2
DKL

[
N
(
0,K

)
∥N

(
0, (F (I))−∗(F (I))−1

) ]
.

Then the greedy approximation strategy

I0 ← ∅, It ← It−1 ∪ {it} for it ∈ argmin
1≤i≤n

f(It−1 ∪ {i}),

results in exponential convergence to the best cardinality-m objective function value:

f(It) ≤ min
|J|=k

f(J) + e−t/m
[
f(I0)− min

|J|=m
f(J)

]
, for each t = 0, 1, . . .

Proof. The proof technique is based on the classic idea of supermodular maxi-
mization, first developed by Nemhauser [16]. We will show f is supermodular, i.e.,

(4.10) f(I ∪ {ℓ})− f(I) ≤ f(I ∪ J ∪ {ℓ})− f(I ∪ J),

for any disjoint index sets I, J ⊆ {1, . . . , n} and any ℓ ∈ {1, . . . , n}. Using (4.9), we
have

f(I ∪ {ℓ})− f(I) = log
(
(K/{−ℓ})ℓℓ

)
− log

(
(K/I)ℓℓ

)
,

f(I ∪ J ∪ {ℓ})− f(I ∪ J) = log
(
(K/{−ℓ})ℓℓ

)
− log

(
(K/I ∪ J)ℓℓ

)
.

Subtracting the second line from the first line, we see

[f(I ∪ {ℓ})− f(I)]− [f(I ∪ J ∪ {ℓ})− f(I ∪ J)]

= log
(
(K/I ∪ J)ℓℓ

)
− log

(
(K/I)ℓℓ

)
.

By taking the Schur complement with respect to the index set I first and with respect
to the index set J second,

(K/I ∪ J)ℓℓ = (K/I)ℓℓ − (K/I)ℓJ [(K/I)JJ ]
−1(K/I)Jℓ ≤ (K/I)ℓℓ,

where the inequality comes from the fact that [(K/I)JJ ]
−1 is positive definite and

(K/I)Jℓ is a vector. This establishes the supermodularity property (4.10).
Let J∗ = {j1, . . . , jm} be an optimal index set that solves min|J|=m f(J). Then

for each time index t = 0, 1, . . . , calculate

f(J∗) ≥ f(J∗ ∪ It)(4.11)

= f(It) +
∑m

ℓ=1
f(Ij ∪ {j1, . . . , jℓ})− f(It ∪ {j1, . . . , jℓ−1})(4.12)

≥ f(It) +
∑m

ℓ=1
f(It ∪ {jℓ})− f(It)(4.13)

≥ f(It) +m(f(It+1)− f(It)),(4.14)
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In this expression, (4.11) comes from supermodularity, (4.12) is a telescoping sum,
(4.13) comes from another application of supermodularity, and (4.14) comes from the
definition of the greedy optimization approach. By rearrangement,

f(It+1)− f(J∗) ≤
(
1− 1

m

)
[f(It)− f(J∗)], for each t = 0, 1, . . . .

By induction, it follows

f(It)− f(J∗) ≤
(
1− 1

m

)t

[f(I0)− f(J∗)] ≤ e−t/m[f(I0)− f(J∗)]

which can be rearranged into the desired result.

To our knowledge, Theorem 4.3 is new. Krause et al. [15] studied a mutual
information objective function, which leads to the same greedy optimization strategy
based on (4.7). Yet the Kullback-Leibler divergence and mutual information are
different functions. Our result establishes rigorous guarantees for optimization of the
the Kullback-Leibler divergence, which is directly relevant to obtaining a good matrix
approximation.

Unfortunately, there are barriers to a practical implementation of the greedy
optimization strategy based on minimizing (4.9)

log
(
(K/[n] \ i)i,i

)
− log

(
(K/{kn−j+1:n})i,i

)
= − log(K−1

ii )− log
(
(K/{kn−j+1:n})i,i

)
We can keep track of the second term, which is the logarithm of the diagonal

entry in the residual of our partial Nyström approximation. However, keeping track
of the first term is not so easy. Our idea is to approximate diag(K−1) or each
(K/[n] \ i)ii and use the approximation in the optimization. We call this approach
Approximate Greedy KL Minimization (GKL). For a particular approximation h with
hi ≈K−1

ii = 1
(K/[n]\i)ii , Algorithm 4.2 codifies such a routine in pseudocode.

Algorithm 4.2 Column Nyström via Greedy KL Minimization

F ← 0 ∈ Rn×r

d← diag(K) (= 1) ▷ Diagonal of Nyström residual
for i ∈ [r] do

kn−i+1 ← argmaxl dlhl ▷ = argminl− log(hl)− log(dl)
F:,i ←K:,i

F:,i ← F:,i − F:,1:i−1(Fkn−i+1,1:i−1)
∗

F:,i ← F:,i

Fkn−i+1,i

for j ∈ [n] do
dj ← dj − |Fj,i|2

end for
end for
return {kn−r+1 . . . kn},F ▷ Pivot set, Nyström approximation’s Cholesky factor

To approximate K−1
ii for each i, we observe that if CC∗ ≈ K, then K−1

i,i ≈
Ci,:C

∗
:,i = ∥Ci,:∥22. For Matérn covariance matrices specifically, we already know

from the last two sections that the pure-sparse Vecchia approximation based on order
log n nearest neighbors per column is of high quality. Thus, we can produce such an
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Algorithm 4.3 Inverse Diagonal Approximation by Vecchia Row Norm

{Si}ni=1 ← kNNSparsityPattern(K, s) ▷ Or any other suitable sparsity pattern
C ← SparseVecchia(K, {Si}ni=1)
for i ∈ [n] do

hi ← ∥Ci,:∥22
end for
return h

approximation in order n log3d n operations and use the square 2-norm of its ith row
as an approximation of K−1

i,i . See Algorithm 4.3 for pseudocode.
Alternatively, we could approximate each (K/[n] \ {i})ii by (K/Si \ {i})ii for

any suitable set Si (not necessarily respecting lower triangularity). This also has an
interpretation in terms of (2.6) and Vecchia approximations. By lower triangularity,
K−1

1,1 ≈ C1,:C
∗
:,1 = C2

1,1. If we had reordered the indices such that point x(i) were

first instead of x(1) and adjusted the sparsity pattern to reflect that now all indices of
nearest neighbors of x(i) satisfy lower traingularity, we could approximate K as the
square of just the entry corresponding to index i of the vector (2.6) if Si is allowed to
ignore triangularity. We provide Algorithm 4.4 to illustrate this connection, although
in practice it is equivalent to inverting KSi,Si

and taking the first diagonal entry
(which should be used for practical implementations).

Algorithm 4.4 Inverse Diagonal Approximation by Columnwise Vecchia Diagonal

for i ∈ [n] do
Si ← kNN(x(i), {x(1) . . .x(n)}, s) ▷ Or any suitable set, ignoring triangularity
v ← SparseVecchiaColumn(K:,i, Si)
hi ← v2

i

end for
return h

4.1.4. Alternative Pivot Choosers: Randomly Pivoted Cholesky. In-
stead of approximating first term of (4.9), we could also ignore it entirely. Surprisingly,
this recovers a diagonal residual heuristic common to an already well-known class of
column Nyström algorithms for general positive-definite matrices ([7, 4, 20]). Since
the relative influence of the first term in (4.9) on the objective function diminishes as
r increases, such pre-existing column Nyström algorithms might be appropriate when
r is taken to be large. These methods also benefit from already-known error bounds
when applied to generic positive definite matrices.

This ”diagonal residual heuristic” class of algorithms computes Nyström approxi-
mations via the procedure in Algorithm 4.5, where ChoosePivot is a subroutine which
chooses the next pivot based on the information in the diagonal of the residual.

Several choices of ChoosePivot are used in practice. One such choice simply
ignores d and returns a uniformly random index among those not previously chosen.
This approach is well-motivated: especially in the case of kernel matrices K where
columns do not differ much in scale, invariant subspaces with respect to K must
align closely with many columns of K in order to be large. By sampling the columns
uniformly, we thus have a good chance of choosing such columns ([8]). We refer to
this strategy as uniform pivoting.

Another, which we’ll refer to as the greedy pivoting ([2, 7]), simply chooses
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Algorithm 4.5 Column Nyström via Diagonal Residual Heuristic

F ← 0 ∈ Rn×r

d← diag(K) (= 1) ▷ Diagonal of Nyström residual
for i ∈ [r] do

kn−i+1 = ChoosePivot(d)
F:,i ←K:,i

F:,i ← F:,i − F:,1:i−1(Fkn−i+1,1:i−1)
∗

F:,i ← F:,i

Fkn−i+1,i

for j ∈ [n] do
dj ← dj − |Fj,i|2

end for
end for

ChoosePivot(d) = argmaxi di. Historically, this been motivated by the fact that
for a generic positive definite matrix A, we have |Ai,j | <

√
Ai,iAj,j ; as the residual

of a Nyström approximation is positive definite, controlling the magnitude of the diag-
onal entries of its residual controls the magnitude of the off-diagonal entries, too. The
analysis in subsection 4.1.3 provides additional motivation when A is a covariance
matrix.

Both uniform and greedy pivoting have important failure cases associated with
them ([4]). In the context of GPs, if the data {x(i)}ni=1 is grouped into order r small
clusters, uniform pivoting will often fail to select a pivot corresponding to each cluster,
yielding poor approximations for columns corresponding to those missed clusters. On
the other hand, greedy pivoting is often derailed in the presence of order r points
of {x(i)}ni=1 which are far away from each other and the rest, as it often chooses
columns corresponding to these outliers that yield poor approximations for the rest
of the columns.

One method which mitigates both these failure modes is known as Randomly
Pivoted Cholesky (RPCholesky). To find ChoosePivot(d), this method samples index
i with likelihood di. This is a middle ground between uniform and greedy sampling:
[20] observes that all three methods can be viewed as sampling with likelihood dβ

i ,
with β = 0 for uniform, β → ∞ for greedy, and β = 1 for RPCholesky. For general
positive definite matrices, [4] prove the following bound on RPCholesky error:

Proposition 4.4. Suppose A is positive-definite, X∗ is such that A⟨X∗⟩ is the
best rank-l Nyström approximation of A in the Frobenius and spectral norms with
positive semi-definite residual, and

(4.15) r ≥ l

ε
+ l log

(
εTr(A)

Tr(A−A⟨X∗⟩)

)
.

Then for Â a rank-r RPCholesky approximation of A, we have

(4.16) ETr(A− Â) ≤ (1 + ε) Tr(A−A⟨X∗⟩).

Note that this bound is in terms of the trace rather than the Frobenius or spectral
norms. [5] also prove bounds on the spectral norm of the residual when A is a kernel
matrix with nonzero nugget parameter, but they are not useful in the general case
with no nugget.

In our case where diagonal heuristic methods are motivated by the form of (4.9),
RPCholesky can be justified over greedy pivoting because the second term’s magnitude
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will approach the first as r increases, but the terms have different signs. In other
words, optimizing only the second term of (4.9) may correlate with choosing an index
with worse first term, which the randomization attempts to adjust for. Together with
the above theoretical bounds, there is a strong case for using RPCholesky for the
Nyström part; we analyze its performance in section 5.

4.2. Greedy Conditional Selection. We now explore an alternative sparsity
pattern chooser to the nearest neighbors type method in subsection 4.1.1 and subsec-
tion 4.1.2. While Theorem 4.2 is encouraging for said method, ultimately, no purely
Euclidean nearest-neighbors based algorithm can incorporate any information gained
from the Nyström part. This seems at odds with the idea of CNV approximations,
where the column Nyström pivots and sparsity pattern should ideally complement
each other to improve approximation quality. Is there any way our sparsity pattern
chooser can be made to take into account column Nyström information?

4.2.1. GCS for FSAI Sparsity Pattern Selection. [11]’s Greedy Conditional
Selection (GCS) is one possible idea, which we first develop in a purely-sparse-Vecchia
context.

Let K be a the covariance matrix induced on some {x(i)}ni=1 ⊆ Rd by some
kernel function κ. In subsubsection 4.1.3, we motivated an algorithm which uses
sparse approximation to estimate the change in KL loss function (4.5) from adding a
pivot to the column Nyström approximation of K, which is then greedily minimized
to choose pivots.

One might similarly hope to greedily minimize (4.5) to choose the sparsity pat-
terns {Si}ni=1 of individual columns. Conveniently, (4.8)

2DKL

(
N (0,K),N (0, (CC∗)−1

)
=
∑n

i=1

[
log
(
(K/Si \ {i})ii

)
− log

(
(K/{i+ 1 : n})ii

)]
has the form of a sum in which terms correspond to individual columns’ sparsity
patterns and are constant in changes to the sparsity patterns of other columns. In
particular, the change in objective function from adding index k to the sparsity pattern
in the ith column Si is given by

(4.17) log
(
(K/Si ∪ {k} \ {i})i,i

)
− log

(
(K/Si \ {i})ii

)
= log

(
(K/Si \ i)ii −

(K/Si \ {i})2ik
(K/Si \ {i})kk

)
− log

(
(K/Si \ {i})ii

)
= log

(
1− (K/Si \ {i})2ik

(K/Si \ i)ii(K/Si \ {i})kk

)
which is minimized by maximizing

(4.18)
(K/Si \ {i})2ik

(K/Si \ i)ii(K/Si \ {i})kk
= Corr(yi,yk | ySi\{i}) for y ∼ N (0,K)

over k. Since (K/Si \ i)ii does not depend on k, we may omit division by it from the
optimization if we wish.

Unfortunately, computing (4.18) for the order n points per column satisfying
lower triangularity, for each of the n columns, even once would give such an algorithm
a Ω(n2) computational complexity. To make an algorithm based on (4.18) tractable,
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we must only maximize (4.18) over a candidate set Ci ⊆ {i + 1 . . . n} for each ith
column, with maxi |Ci| = c much less than n. In other words, we must constrain our
optimization space by enforcing Si ⊆ Ci. Motivated by Theorem 4.1, [11] recommends
choosing each Ci to correspond to nearest neighbors of x(i), especially in the case of
Matérn kernels. We note that c is taken to be greater than s, or else this simply
recovers the s-nearest-neighbors-based sparsity pattern of subsection 4.1.1.

When restricted to optimizing over Ci instead of [n] for each i, [11] gives two
different algorithms to iteratively construct Si by computing and greedily maximizing
(4.18). One is based on Sherman-Morrison updates to (KSi\{i},Si\{i})

−1, while the
other updates select entries of a column Nyström residual based on Si by maintaining
a Cholesky factor. They are just as fast as each other; we give pseudocode for and
analyze computational complexity of the latter in Appendix A.1, and the former is
Algorithm C.1 in [11]. Both require O(ncd+ ncs2) operations.

4.2.2. GCS for Adaptive Factorized Nyström Approximations. Now,
we’ll adapt GCS to tractably select the sparsity pattern when computing the sparse
Vecchia approximation of the residual during CNV approximations.

Like any method for choosing a sparsity pattern, GCS will work off-the-shelf
when applied directly to the Nyström residual. However, this näıve implementation
requires explicitly computing the entire column Nyström residual, which takes order
n2r operations for explicit computation of the Nyström approximation plus n2 times
the operations needed for a kernel evaluation to compute K explicitly (which could
be even larger than r).

Fortunately, the interpretation discussed in section 3 that CNV approximations
are sparse Vecchia approximations with the bottom r rows filled in allows us to avoid
this issue. In particular, as each successive pivot kj is added to the pivot set R,
we can update (KR\{i},R\{i})

−1 as required in [11]’s Algorithm C.1 or the pivoted
Cholesky matrix required in Algorithm A.1 by treating kj as if it were the index that
GCS had chosen to add to Si at that step. This is necessary for each i ∈ [n] \ R,
but (KR\{i},R\{i})

−1 does not even depend on i for i ̸∈ R, and the pivoted Cholesky
matrices required in Algorithm A.1 for each i at the step where Si = R are all
submatrices of a common matrix which only needs to be computed once. After that,
we can simply continue GCS as normal on a column-by-column basis. We provide
pseudocode for such a modified version of the latter in A.1. The CNV version requires
O(nr2 + ns(c + r)(r + s) + n(c + r)d) = O(nr2 + ns2c + nscr + ncd) operations, as
shown in Appendix A.1 (note that we always have c ≥ s).

5. Experiments and analysis. In this section, we compare the performance of
algorithms discussed in subsection 4.1 and subsection 4.2 on Matérn kernel matrices.
Specifically, we examine the various methods’ recovery in the Frobenius norm

(5.1) ∥L∗KL− I∥FRO,

and how well they control the condition number

(5.2) K(LKLT ) =
λmax(LKLT )

λmin(LKLT )
.

The Frobenius error is indicative of recovery of individual entries in the matrix; we use
∥LKLT − I∥FRO rather than ∥K − (LL∗)∥FRO due to the Vecchia approximation’s
optimality in the former ([23]) and the latter depending significantly on λmin(K)
which could cause higher variance when testing multiple samplings of synthetic data.
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The condition number gives a worst-case bound on the number of iterations of pre-
conditioned conjugate gradient (see subsection 2.1). We also measure the actual
performance of CNV preconditioners on PCG by running PCG with these precon-
ditioners on a set of withheld data points and averaging the number of iterations
required before the vector 2-norm error is below a threshold (10−4 times the error at
initialization).

5.1. Setup. We implemented various methods for both the column Nyström
pivot choosing and sparsity pattern choosing steps of the CNV approximation frame-
work in the Julia programming language. Specifically, for the Nyström part, we
implemented [24]’s Farthest Point Sampling (FPS), [4]’s Randomly Pivoted Cholesky
(RPC), and our own approximate greedy KL minimization (GKL). We distinguish
algorithms Algorithm 4.3 and Algorithm 4.4 by referring to the first as GKLR and
the second as GKLC. For the sparsity pattern choosing part, we implemented [18]’s
Nearest Neighbors (kNN) and [11]’s Greedy Conditional Selection (GCS). GCS re-
quires us to specify a number of candidate points c to consider; in this section, we
generally set this to a scalar multiple of s (nonzeros per column in the sparse part)
and refer to GCS with a specific scalar by appending the scalar (e.g. GCS10 refers to
GCS with candidate set size c = 10s). We specifically note that GCS with c = s is
equivalent to kNN, though we always write kNN rather than GCS1.

For data, we always take n = 5000. We work with synthetic data, namely points
uniformly sampled from d-dimensional hypercubes. Working with synthetic data in
this manner allows us to isolate the effects of changes in specific parameters through
experimentation, and we can also sample many synthetic datasets and appropriately
average performance metrics across these samples for robustness. In particular, all
quantities reported are arithmetic means (Frobenius error, PCG iterations) or geo-
metric means (condition numbers, max/min eigenvalues) over 3 different synthetic
datasets sampled in the same manner. We work only with Matérn kernels in this
section, and take ν = 2.5 unless otherwise specified. Finally, we set bandwidths of
our Matérn kernels to equal the trace of the d × d sample covariance matrix of the
5000 data points ([1]). This is useful, among other reasons, to compare performance
data apples-to-apples as d is varied.

5.2. Results. We first attempt to determine the best value of c, which because
kNN is the special case of GCS with c = s has choosing between kNN and GCS as a
subproblem. We plot, for two choices r = 20 and r = 60 of r the rank in the column
Nyström step, the performance of the resulting preconditioners for several values of c
and s in Figure 1.

Unsurprisingly, c = 10s universally performs the best. Recalling from sub-
section 4.2.2 that the runtime of GCS is at most linear in c, and that all of our
preconditioner-finding algorithms were designed to be o(n2), we believe the few PCG
iterations saved by GCS10 over GCS5 is worth the increased complexity of the GCS
step. Moreover, in cases where d is higher, GCS performs even better. In Figure 2,
GCS10 improves PCG convergence rate by an order of magnitude compared to kNN
or GCS2 for d = 5 and d = 10. For d even larger than this, taking c > 10 may even
be advisable.

We also observe that in Figure 2, the condition number and mean PCG iterations
behave counterintuitively in that they initially increase with increasing s. Note that
this does not contradict the optimality properties of CNV approximations in section 3,
as the condition number is not one of the objectives which Vecchia approximations
are optimal in, and the Frobenius error, which was such an objective, did still decrease
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Fig. 1. Performance comparison of GCS for different values of c as r and s vary. Pivots are
chosen by FPS.

Fig. 2. Performance comparison of GCS for different values of c as d and s vary. r = 60 is
fixed. Pivots are chosen by GKLR.

monotonically. We lack a complete explanation for this, but empirical observations
indicate this behavior is due more to the largest eigenvalue increasing than the smallest
eigenvalue decreasing as s increases.

Now that we have suitably chosen c, we turn our attention to comparing algo-
rithms for the column Nyström step. We first compare GKLR and GKLC, which
we plot in Figure 3 alongside the (completely intractable) algorithm which directly
inverts the kernel matrix to recover (4.14) exactly. We refer to the latter as GKLE
(as it is ”exact”). Remarkably, the performance of each of these three algorithms is
nearly indistinguishable, implying GKLR and GKLC both approximate (4.14) well
even for single-digit values of s. We choose GKLR to represent GKL going forward,
more or less arbitrarily.

Now, we compare [24]’s FPS, [4]’s RPC, and our GKLR, in Figure 4. We observe
that GKLR is usually best, especially for large r and small s. GKLR takes as long
as kNN, which takes Ω(ns3), while GCS10 takes Ω(ns2c) which for c = 10s means
approximately 10 times as long. This means that if we’re using GCS to choose the
sparsity pattern, using GKLR as opposed to FPS or RPC requires only about 10%
more operations for the creation of the preconditioner altogether.

As the preconditioning methods in this paper generally take order n2 or less
operations, which is less than one iteration of PCG, this is well worth saving even a
few PCG iterations as it usually does for s relatively small. However, for relatively
large s, the choice of column Nyström pivot chooser matters much less in terms
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Fig. 3. Performance comparison of GKLR, GKLC, and GKLE for different values of r and s.

Fig. 4. Comparison of methods for column Nyström step for different values of r and s. r = 20
in the top row and r = 60 in the bottom row.

of iterations for PCG convergence while GKLR (and preconditioner construction in
general) takes comparatively longer, meaning using FPS or RPC instead and slightly
increasing s might be a more efficient use of computational resources.

However, we remark that as ν increases, the gap between GKLR and FPS, and to
a lesser extent RPC, widens. In Figure 5, we fix s = 15 and compare the algorithms
for different values of ν and r. For ν = 7

2 , one notices a significant gap between FPS
and the other methods, though RPC seems to keep pace with GKLR relatively well.

Finally, we fix s = 15 and examine the effects of varying r in Figure 6, in attempt
to answer how much of a performance improvement the low-rank component of CNV
really contributes. As can be seen, increasing r results in rapid improvements while
r is still small, though the marginal benefit decreases substantially for r > 5 or so.
Thus, CNV results in dramatic improvement over purely sparse Vecchia, here a three
to four times improvement for the condition number and number of CG iterations,
even for small r. Nevertheless, given that (in the case of GCS) the complexity of
the preconditioning step is order nr2 + ns2c, and given that the improvement from
increasing r past 5 or so is still significant, it seems that taking r somewhere between
s and s

√
c is worthwhile.
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Fig. 5. Performance comparison of methods for column Nyström step for different values of ν
and r. s = 15 is fixed.

Fig. 6. Plotting objective functions as r increases from 0, to determine the impact of the column
Nyström part in CNV approximations.
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Appendix A. Postponed Pseudocode and Complexity Analysis.

A.1. Greedy Conditional Selection. In this section, we provide pseudocode
for and examine the computational complexity of the two algorithms for GCS (one
for purely sparse Vecchia and one for CNV) proposed in subsection 4.2.

First, we discuss Algorithm A.1. We write ker(x(·), x(·)) as opposed to K·,· to
emphasize that the entire kernel matrix need not be explicitly computed. Examining
the pseudocode, we require order ncs kernel evaluations which takes order ncd oper-
ations for most commonly-used kernels, plus ns instances of up to c × s matrix by
s×1 vector multiplication which takes order ncs2 operations, plus nsc scalar updates
in the innermost loop, for a complexity of O(ncd+ ncs2). Correctness of the updates
to the diagonal and respective column is more rigorously proven in [11].

We now discuss our modification to work with CNV, given in Algorithm A.1.
Compared to Algorithm A.1, it adds O(nr2) operations up front (which would have
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Algorithm A.1 GCS via Truncated Cholesky

for i ∈ [n] do
{kl}cl=1 ← Ci ▷ Order arbitrary
kc+1 ← i
d← κ(x({kl}c

l=1),x({kl}c
l=1)) (= 1 for kernels) ▷ Nyström residual diagonal

b← κ(x({kl}c
l=1),x(i)) ▷ Nyström residual ith column

L = 0 ∈ Rc+1×c+1

for j ∈ [s] do

m = argmaxl∈k[c]

b2
l

dl

Si ← Si ∪ {m}
L:,j ← κ(x({kl}c

l=1),x(m))
L:,j ← L:,j −L:,1:j−1(Lm,1:j−1)

∗

L:,j ← L:,j√
Lm,j

for l ∈ [c] do
dl ← dl −L2

kl,j

bl ← bl −Lkl,jLc+1,j

end for
end for

end for

been needed for truncated Cholesky-based column Nyström anyway), then addsO(ncr)
operations across all columns for updating Nyström residuals’ diagonals and corre-
sponding columns (this can be optimized to O(nr) by computing them all at once,
but is not a bottleneck). It also increases the complexity of the matrix-vector multi-
plication in the second block of loops to order (c+ r)(r+ s) operations, which happen
order ns times for a bound of O(ns(c + r)(r + s)) overall, as well as requiring order
rn more kernel evaluations which usually takes O(rnd) more operations. So the CNV
version requires O(nr2 + ns(c+ r)(r + s) + n(c+ r)d) = O(nr2 + ns2c+ nscr + ncd)
operations (note that we always have c ≥ s).



EVERYTHING IS VECCHIA 25

Algorithm A.2 CNV using GCS via Truncated Cholesky

L̄← 0 ∈ Rn×r+s

for j ∈ [r] do
L̄:,j ← κ(x([n]),x(kj)) ▷ {kj}rj=1 should be the Nyström pivots

L̄:,j ← L:,j −L:,1:j−1(Lkj ,1:j−1)
∗

L:,j ← L:,j√
Lkj,j

end for
for i ∈ [n] do
{kj}c+r

j=r+1 ← Ci ▷ Order arbitrary
kc+r+1 ← i

d← κ(x({kl}c+r
l=r+1),x({kl}c+r

l=r+1)) (= 1 for kernels) ▷ Nyström residual diagonal

b← κ(x({kl}c+r
l=r+1),x(i)) ▷ Nyström residual ith column

for j ∈ [r] do
for l ∈ [c] do

dl ← dl −L2
l,j

bl ← bl −Ll,jLc+1,j

end for
end for
L = L̄R∪C,:

for j ∈ [s] + r do

m = argmaxl∈k[c]+r

b2
l

dl

Si ← Si ∪ {m}
L:,j ← κ(x({kl}c

l=1),x(m))
L:,j ← L:,j −L:,1:j−1(Lm,1:j−1)

∗

L:,j ← L:,j√
Lm,j

for l ∈ [c] + r do
dl ← dl −L2

l,j

bl ← bl −Ll,jLc+1,j

end for
end for

end for
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