Name:							
PID∙							

Question	Points	Score		
1	8			
2	7			
3	7			
4	6			
5	6			
6	6			
7	10			
Total:	50			

- 1. Write your name on the front page of your exam.
- $2. \;$ Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem in the proof of a later part, even you do not complete the earlier part.

1.	(8 points) Provorder $3 \cdot 5 \cdot 13$.	re that, 1	up to	isomorphism,	there	exist	exactly	two	groups of	

- 2. Suppose G is a finite group. Let $\operatorname{Syl}_p(G)$ be the set of all Sylow p-subgroups of G. Suppose $P_1, P_2 \in \operatorname{Syl}_p(G)$ are distinct and $P_1 \cap P_2$ is minimal among all the subgroups that are the intersection of two distinct Sylow p-subgroups. Suppose N is a subgroup of $P_1 \cap P_2$ and $N \leq P_i$ for i=1,2, and let $H:=N_G(N)$.
 - (a) (2 points) Prove that for every $P \in \mathrm{Syl}_p(G)$, there exists $h \in H$ such that $hPh^{-1} \cap H \subseteq P_1$.

(b) (1 point) Prove that for every $P\in \mathrm{Syl}_p(G)$, there exists $h\in H$ such that $hPh^{-1}\cap P_2=P_1\cap P_2.$

(c) (2 points) Prove that for every $P \in \operatorname{Syl}_p(G), N \subseteq P$.

(d) (2 points) Suppose P_1 is abelian. Prove that $P_1 \cap P_2 = \bigcap_{P \in \operatorname{Syl}_p(G)} P$.

- 3. A subgroup L of \mathbb{Q}^n is called a *lattice* if it is finitely generated and its \mathbb{Q} -span is \mathbb{Q}^n .
 - (a) (3 points) Prove that for every lattice L of \mathbb{Q}^n , there exists $x \in \mathrm{GL}_n(\mathbb{Q})$ such that $L = x\mathbb{Z}^n$.

(b) (1 point) Suppose L_1, \ldots, L_m are lattices in \mathbb{Q}^n . Prove that $L_1 + \cdots + L_m$ is also a lattice in \mathbb{Q}^n .

(c) (3 points) Prove that for every finite subgroup G of $GL_n(\mathbb{Q})$, there exists $x \in GL_n(\mathbb{Q})$ such that $xGx^{-1} \subseteq GL_n(\mathbb{Z})$.

(**Hint.** Think about a lattice which is *G*-invariant.)

4. (6 points) Prove that if M is a projective A-module, then it is flat.

- 5. Let A be a unital commutative ring, $\operatorname{Spec}(A)$ denote the set of its prime ideals, and let M be an A-module.
 - (a) (3 points) Suppose N_1 and N_2 are two submodules of M such that

$$N_1 \simeq A/P_1$$
 and $N_2 \simeq A/P_2$

as A-modules for some $P_1, P_2 \in \text{Spec}(A)$. Prove that if $P_1 \neq P_2$, then $N_1 \cap N_2 = \{0\}$.

(**Hint.** Consider ann(x) for $x \in N_i$.)

(b) (3 points) Suppose A is Noetherian. Prove that there exist a submodule N of M and $P \in \operatorname{Spec}(A)$ such that $N \simeq A/P$.

(Hint. Consider $\Sigma := \{\operatorname{ann}(x) \mid x \in M \setminus \{0\}\}.$)

6. (6 points) Let E/F be a finite Galois extension with Galois group $G = \operatorname{Gal}(E/F)$, and let [G,G] denote the derived subgroup of G. Define the subfield

$$F^{\mathrm{ab}} := \{e \in E \mid \theta(e) = e \text{ for all } \theta \in [G,G]\}.$$

That is, F^{ab} is the fixed field of [G, G].

Prove that an element $e \in E$ lies in F^{ab} if and only if the field extension F[e]/F is Galois and its Galois group $\mathrm{Gal}(F[e]/F)$ is abelian.

- 7. Let n be a positive integer, p a prime, $p \nmid n$, and $\Phi_n(x)$ the n-th cyclotomic polynomial. Let $E_{n,p}$ denote the splitting field of $\Phi_n(x)$ over \mathbb{F}_p .
 - (a) (2 points) Prove that if $\zeta \in E_{n,p}$ is a zero of $\Phi_n(x)$, then the multiplicative order of ζ is n.

(b) (3 points) Prove that $\operatorname{Gal}(E_{n,p}/\mathbb{F}_p)$ can be embedded into the group of automorphisms of $\langle \zeta \rangle$, where ζ is the element given in Part (a).

(c) (2 points) Prove that $\operatorname{Gal}(E_{n,p}/\mathbb{F}_p) \simeq \langle p + n\mathbb{Z} \rangle \subseteq (\mathbb{Z}/n\mathbb{Z})^{\times}$.

(d) (3 points) Prove that if n has two distinct odd prime factors, then $\Phi_n(x)$ is reducible over \mathbb{F}_ℓ for every prime ℓ .

Good Luck!

(Empty page)

(Empty page)

(Empty page)