Name:	S.I.D.:	

Qualifier Exam in Applied Algebra

September 10, 2025

	Full	Real
# 1	10	
# 2	10	
# 3	10	
# 4	10	
# 5	10	
# 6	10	
# 7	10	
# 8	10	
# 9	10	
# 10	10	
Total	100	

Notes: 1) For computational questions, no credit will be given for unsupported answers 2) For proof questions, no credit will be given for no reasons or wrong reasons.

1. (10 points) Given $n \geq 3$, fix $A \in M_n(\mathbb{C}) = \mathbb{C}^{n \times n}$ satisfying that there exist two eigenvalues α, β of A with $\alpha \neq \beta$. Prove there exists unitary $Q \in M_n(\mathbb{C})$ such that

$$Q^H A Q = \begin{bmatrix} \alpha & \delta & v^H \\ 0 & \beta & 0 \\ 0 & w & B \end{bmatrix},$$

for some $\delta \in \mathbb{C}$, $v, w \in \mathbb{C}^{n-2}$, and $B \in M_{n-2}(\mathbb{C})$.

(Notationally: for all $m, n \geq 1$, $z^H = \bar{z}^T$ for all $z \in M_{m,n}(\mathbb{C}) = \mathbb{C}^{m \times n}$)

2. (10 points) Given $n \ge 1$, let $A \in M_n(\mathbb{C}) = \mathbb{C}^{n \times n}$. Prove if $x^H A x = 0$, for all $x \in \mathbb{C}^n$, then A = 0. (Notationally: for all $m, n \ge 1$, $z^H = \bar{z}^T$ for all $z \in M_{m,n}(\mathbb{C}) = \mathbb{C}^{m \times n}$)

- 3. (10 points) Consider complex-valued square matrices A satisfying:
 - A has exactly two distinct eigenvalues of -2 and -3, with algebraic multiplicities of 6 and 1, respectively;
 - $rank((A+2I)^3) = 2;$

Now considering all possible Jordan canonical forms similar to A, determine and write down one, and only one, of these from each similarity class.

- 4. (10 points) Given $n \geq 1$ and $\|\cdot\|$ a matrix norm of $M_n(\mathbb{C}) = \mathbb{C}^{n \times n}$ that is consistent (meaning $\|AB\| \leq \|A\| \|B\|$), let $A \in M_n(\mathbb{C})$.
 - (a) Find a vector norm $\|\cdot\|'$ of \mathbb{C}^n that is compatible with $\|\cdot\|$ (meaning $\|Ax\|' \leq \|A\| \|x\|'$).
 - (b) Prove, for all eigenvalues λ of A, that $|\lambda| \leq ||A||$.

5. (10 points) Let \mathcal{A} be a unital associative algebra over \mathbb{C} equipped with an antilinear and antimult-plicative involution $A\mapsto A^*$. We say that $A\in\mathcal{A}$ is normal if A and A^* commute (example: normal matrices are normal elements of $\mathbb{C}^{N\times N}$). Prove that A is normal if and only if A=X+iY with $X,Y\in\mathcal{A}$ commuting (XY=YX) and selfadjoint $(X^*=X,Y^*=Y)$.

6. (10 points) Let (V, φ) be a finite-dimensional complex representation of a finite group G, and let $\chi(g) = \text{Tr } \varphi(g)$ be its character. Prove that $|\chi(g)| \leq \dim V$ for all $g \in G$, and that the bound is sharp.

7. (10 points) Let (V, φ) be a finite-dimensional irreducible complex representation of a finite group G, and let χ be its character. Show that for any $g_1, g_2 \in G$ we have $\frac{1}{|G|} \sum_{h \in G} \chi(g_1 h g_2 h^{-1}) = \frac{\chi(g_1) \chi(g_2)}{\dim V}$.

8. (10 points) Let (V, φ) be a complex representation of the symmetric group S_n , and let χ be its character. Prove that $\chi(g) \in \mathbb{R}$ for all $g \in S_n$.	

- 9. (10 points) Let k be an algebraically closed field and let $I \subseteq k[x,y]$ be an ideal. Suppose that the variety of I is $\mathbf{V}(I) = \{(1,0),(0,1)\} \subseteq k^2$.
 - (a) Prove that k[x,y]/I is a finite-dimensional k-vector space.
 - (b) Do we necessarily have $\dim_k(k[x,y]/I)<100?$

- 10. (10 points) Find two finite matrix groups $G, H \subseteq GL_2(\mathbb{C})$ such that ...
 - ullet G and H are isomorphic as abstract groups, but
 - \bullet the Hilbert series of the graded rings $\mathbb{C}[x,y]^G$ and $\mathbb{C}[x,y]^H$ are different.