Numerical Analysis Qualifying Examination Instructors: Ioana Dumitriu, Melvin Leok Fall 2025

NAME: _		

Part I: Math 270A

Problem	Points Possible	Points Earned
1	25	
2	25	
3	25	
Total	75	

- 1. (25 points) Let A be a nonsingular real $n \times n$ matrix that has an LU decomposition A = LU, where L is a unit lower triangular matrix and U is an upper triangular one.
 - a) Show that this decomposition is unique.
 - b) Suppose now that we are given **only** A^TA (not A!), and we are aiming to find the upper triangular factor R with R(i,i) > 0 in the QR decomposition of A. Explain how we can do it by describing an algorithm for it (you don't have to write pseudocode).
 - c) Suppose now we are given **only** A. Consider now the alternate way of computing R from A, by first **efficiently** obtaining A^TA and then applying the method you devised in b).
 - What is the complexity of this new algorithm? Compare it with the complexity of computing R through the QR decomposition of A (most efficiently).

- **2.** (25 points) Let A be a $n \times n$ Hermitian matrix.
 - a) Describe an algorithm to reduce A to tridiagonal form via a sequence of unitary similarity transformations. (You don't have to write pseudocode.) Explain why the result is **tridiagonal**, **real**, and **symmetric**.
 - b) Let v be an $n \times 1$ vector. Prove that the eigenvalues of A interlace with those of $A + vv^*$, as follows:
 - (i) Assume first A is positive definite, so that $A^{1/2}$ exists and is well-defined. Write $A + vv^* = CC^*$, where C is an explicit $n \times (n+1)$ matrix involving $A^{1/2}$ and v.
 - (ii) Under the same conditions, use the Cauchy Interlacing Theorem for a Hermitian matrix and one of its principal $(n-1) \times (n-1)$ submatrices to argue that the eigenvalues of A and those of $A + vv^*$ interlace.
 - (iii) Now extend the result to A Hermitian (not necessarily positive definite).

3. (25 points)

- a) Recall the convergence of the Conjugate Gradient (CG) method. Suppose that we applied it to a positive definite matrix A and vector b, and suppose that the error at step 0 were $||e_0||_A = 1$ and the error at step 20 was $||e_{20}||_A = 2 \cdot 4^{-10}$. Here, $||x||_A = \sqrt{x^T A x}$.
 - Provide a bound for the condition number $\kappa(A)$ (corresponding to the 2-norm).
- b) Although the CG method is only applicable to positive definite matrices, one can use it on general, full-rank matrices in conjunction with the normal equations (CGN): instead of solving Ax = b, solve $A^*Ax = A^*b$.
 - Explain why this may be undesirable.

Numerical Analysis Qualifying Examination Instructors: Ioana Dumitriu, Melvin Leok Fall 2025

NAME:

Part II: Math 270BC

Problem	Points Possible	Points Earned
4	25	
5	25	
6	25	
7	25	
8	25	
Total	125	

- **4.** (25 points) Prove that if D is a compact set in \mathbb{R}^d , then the set of all the polynomials in D is dense in C(D). You may use the Stone–Weierstrass theorem, which states that if $D \subset \mathbb{R}^d$ is a compact set and S is a subspace of C(D) with the following properties:
 - (a) S contains all constant functions.
 - (b) $u, v \in S$ implies $uv \in S$.
 - (c) For each pair of points $x, y \in D$, $x \neq y$, there exists $v \in S$ such that $v(x) \neq v(y)$.

Then S is dense in C(D), i.e., for any $v \in C(D)$, there is a sequence $\{v_n\} \subset S$ such that

$$||v - v_n||_{C(D)} \to 0$$
, as $n \to \infty$.

5. (25 points) Recall that $B_i^k = V_i^k B_i^{k-1} + (1 - V_{i+1}^k) B_{i+1}^{k-1}$, where $V_i^k(x) = \frac{x - t_i}{t_{i+k} - t_i}$, and

$$B_i^0(x) = \begin{cases} 1 & \text{if } t_i \le x < t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Let $U_i^k(s) = (t_{i+1} - s)(t_{i+2} - s) \cdots (t_{i+k} - s)$, where $U_i^0(s) = 1$. Prove that

$$U_i^k(s)V_i^k(x) + U_{i-1}^k(s)[1 - V_i^k(x)] = (x - s)U_i^{k-1}(s).$$

Hint: Fix s and observe that both sides are linear functions of x.

Then prove that,

$$\sum_{i=-\infty}^{\infty} U_i^k(s) B_i^k(x) = (x-s) \sum_{i=-\infty}^{\infty} U_i^{k-1}(s) B_i^{k-1}(x).$$

Finally, use this to show that,

$$\sum_{i=-\infty}^{\infty} U_i^k(s) B_i^k(x) = (x-s)^k.$$

6. (25 points) Suppose that we wish to approximate an even function by a polynomial of degree $\leq n$ using the norm $||f|| = (\int_{-1}^{1} |f(x)|^2 dx)^{1/2}$. Prove that the best approximation is also even.

7. (25 points) Determine the order of the two-step method

$$y_{n+2} - y_n = \frac{2}{3}h[f(t_{n+2}, y_{n+2}) + f(t_{n+1}, y_{n+1}) + f(t_n, y_n)], \quad n = 0, 1, \dots$$

Is it A-stable?

Date: Wednesday, September 3, 2025

- 8. (a) (15 points) Construct the three-stage collocation Runge-Kutta method for collocation points, 0, 1/2, and 1, and express it in the form of a Butcher tableau. (Show all work, including the integrals, no credit will be awarded for simply writing down the coefficients)
 - (b) (10 points) Prove that the resulting Lobatto IIIA Runge–Kutta method is fourth-order accurate. (You may use the theorem relating the order of collocation methods and the orthogonality properties of the polynomial with the collocation points as its roots)