Qualifying Exam: Mathematical Statistics 281AB

Fall 2025

Instructions: Provide rigorous and detailed mathematical arguments. Each statement should be supported by formal definitions, theorems, and proofs.

Total time allowed: **3 hours**. Total points: **36**.

Sufficiency and Rao-Blackwell improvement. A statistic T = T(X) is sufficient for θ if there exists a factorization

$$f(x;\theta) = g_{\theta}(T(x)) h(x)$$
 (Neyman–Fisher factorization).

If U = U(X) is any estimator with $\mathbb{E}_{\theta}|U| < \infty$ and T is sufficient, the Rao-Blackwell estimator

$$\delta^{\mathrm{RB}}(X) := \mathbb{E}_{\theta}[U \mid T]$$

is measurable in T and has risk no larger than U under every convex loss; in particular, for unbiased U, $\operatorname{Var}_{\theta}(\delta^{\operatorname{RB}}) \leq \operatorname{Var}_{\theta}(U)$.

Problems

- 1. Rao-Blackwell Improvement and UMP Testing (no completeness) [14 pts]
 - (i) **Rao–Blackwell theorem.** Prove that if T is sufficient for θ and U has finite mean, then for any convex loss L,

$$\mathbb{E}_{\theta} \big[L \big(\delta^{\mathrm{RB}}(X) - \tau(\theta) \big) \big] \leq \mathbb{E}_{\theta} \big[L \big(U(X) - \tau(\theta) \big) \big],$$

where $\delta^{RB}(X) = \mathbb{E}_{\theta}[U \mid T]$. Conclude that among unbiased estimators the variance cannot increase under Rao–Blackwellization. (Your proof should use sufficiency, conditional expectation, and Jensen's inequality.) [8 pts]

- (ii) Poisson example: unbiased estimation of $e^{-2\theta}$ and RB improvement. Let $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \text{Poisson}(\theta), \theta > 0.$
 - (a) Show that $U = \mathbf{1}\{X_1 = 0, X_2 = 0\}$ is unbiased for $e^{-2\theta}$. [2 pts]
 - (b) Let $T = \sum_{i=1}^n X_i$. Compute $\delta^{RB}(T) := \mathbb{E}[U \mid T]$ explicitly and show it equals

$$\delta^{\mathrm{RB}}(T) = \left(1 - \frac{2}{n}\right)^{T}.$$

Verify unbiasedness using the pgf of $T \sim \text{Poisson}(n\theta)$. [3 pts]

- (c) Using the law of total variance, show that $\operatorname{Var}_{\theta}(\delta^{\operatorname{RB}}(T)) \leq \operatorname{Var}_{\theta}(U)$ with strict inequality for $\theta > 0$ and $n \geq 2$. (Optionally: derive the closed forms $\operatorname{Var}(\delta^{\operatorname{RB}}) = e^{n\theta((1-2/n)^2-1)} e^{-4\theta}$ and $\operatorname{Var}(U) = e^{-2\theta}(1-e^{-2\theta})$.) [2 pts]
- 2. Nonregular Asymptotics for a Truncated Normal Cutoff [22 pts]

Let ϕ and Φ denote the standard normal pdf and cdf. For an unknown cutoff $\theta \in \mathbb{R}$, observe i.i.d. data

$$X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} f(x; \theta) = \frac{\phi(x)}{1 - \Phi(\theta)} \mathbf{1}\{x \ge \theta\},$$
 (one-sided truncation of $N(0, 1)$ at θ).

Let θ_0 be the true cutoff and let

$$\hat{\theta}_n = \arg \max_{\theta \in \mathbb{R}} \sum_{i=1}^n \log f(X_i; \theta)$$

be the MLE.

(i) Form of the MLE. Show that the likelihood is $L_n(\theta) \propto (1 - \Phi(\theta))^{-n} \mathbf{1}\{\theta \leq X_{(1)}\}$ and conclude that

$$\hat{\theta}_n = X_{(1)} := \min_{1 \le i \le n} X_i.$$

(Argue that $\theta \mapsto (1 - \Phi(\theta))^{-n}$ is strictly increasing and the constraint $\theta \leq X_{(1)}$ binds.) [6 pts]

(ii) Consistency. Prove $\hat{\theta}_n \xrightarrow{P} \theta_0$. Compute the survival function under θ_0 :

$$\mathbb{P}_{\theta_0}(X \ge x) = \frac{1 - \Phi(x)}{1 - \Phi(\theta_0)}, \qquad x \ge \theta_0,$$

and deduce $\mathbb{P}_{\theta_0}(\hat{\theta}_n > \theta_0 + \varepsilon) = \left[\frac{1 - \Phi(\theta_0 + \varepsilon)}{1 - \Phi(\theta_0)}\right]^n \to 0$ for any $\varepsilon > 0$, while $\mathbb{P}_{\theta_0}(\hat{\theta}_n < \theta_0) = 0$. [8 pts]

(iii) Correct scaling and non-Gaussian limit. Let

$$c_0 := f_{\theta_0}(\theta_0^+) = \frac{\phi(\theta_0)}{1 - \Phi(\theta_0)} \in (0, \infty),$$

the (right) density at the cutoff. Prove that

$$n c_0 (\hat{\theta}_n - \theta_0) \stackrel{d}{\to} \operatorname{Exp}(1).$$

(Hints: (a) for small
$$\delta > 0$$
, $\frac{1-\Phi(\theta_0+\delta)}{1-\Phi(\theta_0)} = 1 - c_0 \delta + o(\delta)$; (b) use $\mathbb{P}_{\theta_0}(\hat{\theta}_n - \theta_0 > \delta) = [1 - c_0 \delta + o(\delta)]^n$ with $\delta = t/n$.) [8 pts]

Math 281C Qualifying Exam – Fall 2025

Name:	

Total points: 20.

Let X and Y be independently distributed random variables with $X \sim \text{Poisson}(\lambda)$ and $Y \sim \text{Poisson}(\mu)$. We aim to test $H_0: \lambda \geq \mu$ versus $H_1: \lambda < \mu$.

- (a) [10 pts] Derive the uniformly most powerful unbiased (UMPU) test of size α given X + Y = k. Is it a randomized test or non-randomized test?
- (b) [4 pts] Compute the power of the UMPU test in part (a) if $\lambda = 2, \mu = 4$, given X + Y = k.
- (c) [6 pts] Justify how to derive the UMPU test of size α for testing $H_0: \mu \leq \lambda$ versus $H_1: \mu > \lambda$, where the independent samples are $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$ and $Y_1, \ldots, Y_m \sim \text{Poisson}(\mu)$.