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Abstract

This honors thesis arose from an undertaking to determine the critical
threshold of 3XOR game (if it exists). A game amounts to a special system
of m equations with 3n unknowns over binaries. We fix m,n and randomly
generate games (game equations). For large m,n, one suspects there is a
critical threshold c? so that:

if m
n < c?, then the equations have a solution with high probability.

if m
n > c?, then the equations have no solution with high probability.

The thesis progresses towards finding c? if it exists. It is a work in progress
and has many different types of mathematical parts. The thesis describes sev-
eral of them, selected to some extent because of their mathematical character
and completeness. Other components of this investigation, some complete,
are being written as a preprint [HH24], and one part of the work is still in
progress. In this thesis we carefully distinguish between these three stages of
development: what is proved in the thesis, what is proved and currently being
written into a preprint, and what is work progressing hopefully toward a proof.

The thesis has two parts. One part is the problem of determining when a
particular one-parameter family of functions is non-positive over a particular
region and determining its global maximizers. The other addresses a long ar-
gument taking a discrete combinatorics setup to the continuous maximization
problem. The combinatorics part is proven, as are some Stirling-type asymp-
totics included in detail. The other analytical part, “the Discrete Laplace
Asymptotic Method” is just sketched. This omitted part follows a path used
in some areas of applied math which often is not fully rigorous. For our par-
ticular problem, we are making good progress at making it rigorous, and this
is the subject of future work. The current stage of work gives strong evidence
that a sharp threshold of exactly 3 exists for “nondegenerate” 3-XOR-games.
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1 Introduction

This paper concerns the critical threshold for a 3XOR game, effectively a linear
algebra problem over the binaries (integers modulo 2). A similar-looking structure
is found in the classical 3XORSAT problem. There has been heavy study of the
critical threshold for the 3XORSAT problem, with the celebrated paper of Dubois-
Mandler [DM02a] and subsequent results for k-XORSAT in [PS14] showing that
a critical threshold exists and giving its exact value as the solution to an explicit
transcendental equation. This thesis will give serious evidence for the conjecture
that the critical threshold for a non-degenerate 3XOR game equals that for non-
degenerate 3XORSAT, corresponding to the system being square.

It is culturally interesting that XOR games seem to be studied little in the com-
puter science community, while XORSAT is a paradigm in the field of classical com-
putational complexity. History sheds light on this; XOR games arose in quantum
physics rather than from computer science. The first XOR game to be studied is
now called the CHSH game and with associated experiments (in 1972), it underlays
the 2022 Nobel Prize [Nob22] for establishing that “quantum entanglement” exists.
CHSH is a 2-player cooperative game.

Subsequently, people studied 3XOR games. Some of these have “perfect strate-
gies” and some do not. It was not known if determining which is the case for a given
3XOR game is decidable. In 2023 an explicit polynomial time construction settled
this, see [BH23] and computer experiments in [WHZ22] motivated this thesis.

The introduction starts with a statement of the key linear-algebra-type problem
over binaries, which comes about in studying 3XOR games. Ironically, we shall not
actually state exactly what 3XOR games are, since the linear algebra is simpler and
contains the full mathematical issue. One can find a description of cooperative games
elsewhere, in particular k-XOR GAMES c.f. [Wat+18].

The introduction then continues with definitions we need, our main conjecture,
the main outline of a potential proof based on [DM02a], and finally a guide to the
reader.

1.1 Set up: critical thresholds for 3XOR SAT and 3XOR
games and their critical thresholds

1.1.1 Definition of 3-XOR-game matrices and two-cores.

A 3-XOR-game matrix is a matrix Γ = (A B C) ∈ Zm×3n
2 , where A,B,C ∈ Zm×n

2

are blocks with 1 one in each row (the rest of the entries being zero). The key
problem is solving linear equations over the binaries:

Given Γ ∈ Zm×3n
2 and b a vector in Zm

2 solve

Γx = b (1.1.1)

over x ∈ Z3n
2 .

An example of a 3-XOR-GAME system with m = 4 and n = 2 is (Γ, b) as defined
in the following display. In this case, there are several solutions, one being x =
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1.1 Set up: critical thresholds for 3XOR SAT and 3XOR games and their critical
thresholds

(0 1 1 0 0 1)⊤:

Γ =


0 1 0 1 1 0
1 0 0 1 1 0
1 0 1 0 1 0
0 1 1 0 0 1

 , b =


1
0
1
1

 . (1.1.2)

As motivation, we state loosely that a game matrix vector pair (Γ, b) defines a
‘3XOR game’. It has a ‘perfect strategy’ iff there exists a solution x to the linear
equations.

The classical 3XORSAT problems have a similar form. Call Γ ∈ Zm×3n
2 a 3XOR-

SAT matrix provided each row has exactly 3 ones on it; informally stated, there is
no A,B,C partitioning.

Next we consider degenerate cases of this linear algebra problem:

1. If a column of Γ is identically zero, then that column does not influence whether
or not a solution of the equation exists; so the column could be deleted.

2. If a column has a single one, then that column corresponds to an unknown xj

on which there is only one constraint; hence xj could be chosen to eliminate
that constraint. Thus we eliminate the column and row to get a new system
which is solvable if and only if the original linear equations are solvable.

This leads us to define a class of matrices, which yield a non-degenerate solvability
problem.

Define a two-core matrix (non-degenerate matrix) to be a matrix where each
column has at least 2 ones. In particular, a two-core 3-XOR-game matrix Γ is a
matrix in Zm×3n

2 satisfying the block structure Γ = (A B C), such that each column
has at least 2 ones. Denote by Ψm,3n the set of two-core 3-XOR-games, i.e. the
set of pairs (Γ, s) such that Γ is a two-core 3-XOR-game matrix and s ∈ Zm

2 . Note
we assume m > 2n to ensure Ψm,3n is nonempty (see Section 7.3).

The following 3-XOR-game matrix is not a two-core because a column has fewer
than two 1s (in fact, two columns are problematic).

Γ =


0 1 1 0 1 0
1 0 1 0 1 0
0 1 0 1 1 0
1 0 1 0 1 0
0 1 1 0 1 0

 .

The following is its 2-core reduction, obtained after removing the 4th and 6th
columns, and the 3rd row.

Γ′ =


0 1 1 1
1 0 1 1
1 0 1 1
0 1 1 1

 .
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1.2 Conjecture: critical threshold for 3XOR-game two-cores is c = 3

1.1.2 Randomly-generated linear equations

Fix a sizem,n, and generate a 3-XOR-game matrix Γ ∈ Rm×3n uniformly on the set of
3-XOR-game matrices. Also, generate b ∈ Zm

2 uniformly from the set of such vectors,
to get a randomly-generated set of binary equations Γx = b. A goal is to understand
the probability that there is a solution to these equations. This probability is heavily
dependent on the ratio m

3n
of constraints to unknowns.

Indeed, a dramatic piece of structure, which one sees in similar situations ([DM02a]
[BFU93]) is there exists some “sharp threshold” constant cZ2 such that

• If m
n
> cZ2 , then with high probability, m× 3n 3-XOR-game problems have a

solution in Z mod 2, and

• If m
n
< cZ2 , then with high probability, m× 3n 3-XOR-game have no solution

in Z mod 2.

In this thesis, an event that occurs with high probability (w.h.p.) is one
whose probability depends on c,m, n and goes to 1 as n goes to infinity with c fixed
and m = n(c+ o(1)), i.e. the probability of the event occurring can be made as close
to 1 as desired by making n big enough with m ∼ cn. Recall little-o notation:
y(n) = o(1) means limn→∞ y(n) = 0. Hence m = n(c+ o(1)) is equivalent to stating
limn→∞

m
n
= c.

1.2 Conjecture: critical threshold for 3XOR-game two-cores
is c = 3

The goal of this thesis and work-in-progress is to support (or refute) the following
conjecture.

Conjecture 1.2.1. As n → ∞ with m = n(c+o(1)), random (uniformly distributed)
3-XOR-game two-core problems:

1. have at least one solution in Z2 w.h.p. provided c < 3.

2. have no solution in Z2 w.h.p. provided c > 3.

Argument: The following brief argument provides an overview of the strategy for
proving this conjecture. The strategy is the same overall approach as [DM02a].

Let N be a random variable denoting the number of solutions to a random 3-
XOR-game problem on 3n unknowns with m equations.

A simple counting argument (Lemma 7.1.1) states the behavior for c > 3. As a
quick summary: If c > 3, then E(N) = 23n−m ∼ 2(3−c)n → 0 as n → ∞ and proves
Item 2 since N ≥ 0 is an integer.

The reverse direction is a long march. It begins with a counting argument in

Section 7.4 to write the ratio E(N2)
E(N)2

exactly as a single large summation of the form

E(N2)

E(N)2
=

∑
x∈U01

m,n

˘Sm,n(x) (1.2.1)

where Uc ⊆ (0, 1)6 is a certain 6 dimensional polytope (defined later), and U01
m,n

(which has on the order of n6 points) is the intersection of Uc with a certain discrete
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1.3 Reader’s guide

lattice Lm,n. Section 8 provides a formula which asymptotically approximates the
summand:

˘Sm,n(x) ∼
1

n3
gce

nhc (1.2.2)

where the functions gc and hc are first introduced in Section 3.3. If the function hc is
non-positive on Uc, then the Laplace Asymptotic Method from Section 9 1 suggests

E(N2)

E(N)2
∼ c3

2
(2π)3

gc(x0)√
det(−H{hc}(x0))

(1.2.3)

where H{hc} denotes the Hessian of hc, and x0 is the maximizer of hc. Much
of this thesis and a companion paper [HH24] in preparation (devoted to interval
arithmetic arguments) rigorously calculate that the unique global maximizer of hc is
at x0 =

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
provided c < 3. Subject to x0 =

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
being the

unique global maximizer of hc, then we rigorously show in Proposition 4.3.3 that the

right-hand-side of Equation (1.2.3) equals 1, so E(N2)
E(N)2

∼ 1. At this point we have

Pr(N ≥ 1) ≥ E(N)2

E(N2)
(1.2.4)

tends to 1, so systems with c < 3 have at least one solution in Z2 with high proba-
bility.

The proof above relied on Equation (1.2.4). Though it is well-known, its impor-
tance here leads us to put in the proof.

Lemma 1.2.2 (Second Moment Inequality). The inequality Pr(N ≥ 1) ≥ E(N)2

E(N2)
holds

for any non-negative integer random variable N .

Proof. Follows from the Cauchy-Schwarz inequality

E(N) =
∞∑
n=1

nPr(N = n) ≤

(
∞∑
n=1

n2 Pr(N = n)

) 1
2
(

∞∑
n=1

Pr(N = n)

) 1
2

= E(N2)
1
2 Pr(N ≥ 1)

1
2 , so

E(N)2

E(N2)
≤ Pr(N ≥ 1).

1.3 Reader’s guide

The asymptotic techniques mentioned briefly before Equation (1.2.3) depend on
showing hc has a global maximum at

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
, so that enhc is concentrated

near
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
. Proving this is the main thrust of the thesis (together with

[HH24]), so we now give a guide to how this is presented.
The key hc is defined in Section 3.3. We shall prove that hc

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
= 0

regardless of c. As we saw in the outline above, proving that this is indeed the global
maximum of hc is one major part of proving Conjecture 1.2.1.

1This section currently relies on some heuristic traditional applied mathematics. Formalizing
this is work we have in progress.

Table of Contents 7 Index



This requires an argument long enough that some arguments (which require in-
terval arithmetic) are split into the in-preparation [HH24]. Interval arithmetic is a
computer approach used to prove behavior of functions rigorously without needing
too much analysis. However, implementing the algorithms requires care to give useful
results with manageable amounts of computation.

Since hc is a function of six variables, proving the global maximum property di-
rectly by using interval arithmetic is not practical, so we reduce the dimensionality of
the problem. In Section 5.2, we reduce the problem of maximizing the 6-dimensional
function hc to maximizing the 3-dimensional function ĥc, obtained by maximizing
over de-coupled variables α1, α2, α3. In Section 2, we reduce the 3-dimensional maxi-
mization problem on a tetrahedron T to 1-dimensional problems on a few individual
line segments. These 1-dimensional problems are discussed in Section 5.3.

Key properties of hc are proved in Section 4 that allow for maximizing over αi and
enable computation of gc(x0) and hc(x0) as required for computing Equation (1.2.3).

Prerequisite to Section 4 are standard properties of continuity and differentiability
for the function ĥc. Since this has a different flavor (implicit function theorem) from
most of the thesis, we collect these proofs in Section 6.

The treatment of the 1-dimensional problems in Section 5.3 and one small piece of
the analysis in Section 6 is illustrated by graphical plots which support their claims.
These claims will be validated by interval arithmetic in the forthcoming work [HH24].

The argument outlined after Conjecture 1.2.1 gives a guide to parts of the thesis
which do not focus on analysing global maximizers of hc. Section 10 states a weaker
version of Conjecture 1.2.1 that the theorems here, in combination with work well-
underway, are likely to prove.

2 A special class of functions on a tetrahedron,

and its properties

The proof of our main critical threshold theorem depends on proving that a certain
class of functions on the unit tetrahedron in R3 is nonpositive. While special, this
class possibly arises in some other context, and it has an elegant form, so we present
it early in the thesis.

2.1 Definition of tetrahedron and barycentric-decoupled func-
tions

Start by defining T to be the closed tetrahedron in R3 of points (r1, r2, r3) satis-
fying the system of linear inequalities

t0(r⃗) := (−1 + r1 + r2 + r3)/2 ≥ 0

t1(r⃗) := (1 + r1 − r2 − r3)/2 ≥ 0

t2(r⃗) := (1− r1 + r2 − r3)/2 ≥ 0

t3(r⃗) := (1− r1 − r2 + r3)/2 ≥ 0

(2.1.1)

This definition in Equation (2.1.1) implies t0 + t1 + t2 + t3 = 1 and

r1 = t0 + t1, r2 = t0 + t2, r3 = t0 + t3

1− r1 = t2 + t3, 1− r2 = t1 + t3, 1− r3 = t1 + t2.
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2.1 Definition of tetrahedron and barycentric-decoupled functions

Hence these are Normalized Barycentric Coordinates, with r⃗ ∈ T represented by

r⃗ = (r1, r2, r3) = t0 (1, 1, 1) + t1 (1, 0, 0) + t2 (0, 1, 0) + t3 (0, 0, 1).

Note the four points (1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1) are the vertices of the regular
tetrahedron T , which is plotted in Figure 2.1.

Figure 2.1: The tetrahedron T as defined in Equation (2.1.1)

We state a function D : T → R is barycentric-decoupled if it is of the following
form, for some pair of functions w,E : [0, 1] → R satisfying w(r) = w(1− r):

D(r⃗) = w(r1) + w(r2) + w(r3) + E(t0) + E(t1) + E(t2) + E(t3). (2.1.2)

Note this implies D is a symmetric function of (t0, t1, t2, t3) since

w(r1) + w(r2) + w(r3) (2.1.3)

=
1

2
(w(r1) + w(1− r1) + w(r2) + w(1− r2) + w(r3) + w(1− r3)) (2.1.4)

=
1

2
(w(t0 + t1) + w(t2 + t3) + w(t0 + t2) + w(t1 + t3) + w(t0 + t3) + w(t1 + t2)).

(2.1.5)

Lemma 2.1.1. Fix a constant τ0 ∈ [0, 1] and barycentric-decoupled D.
Then on the planar subset of T where t0 = τ0 (i.e. r1 + r2 + r3 = 1 + 2τ0), the

function D can be written in an r-decoupled form

D(r1, r2, r3) = Gτ0(r1) +Gτ0(r2) +Gτ0(r3),

where we define

Gτ0(r) := w(r) + E (r − τ0) +
1

3
E(τ0).

Note Gτ0(ri) is a function of ri only.

Proof. For i = 1, 2, 3, then ri = t0 + ti, so ti = ri − t0.
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2.2 Four-lines Theorem

2.2 Four-lines Theorem

Theorem 2.2.1 (Four-lines theorem). Suppose D is a barycenteric-decoupled func-
tion as in Equation (2.1.2) with w and E continuously differentiable. Recall w(r) =

w(1 − r). Let Gτ0 be as in Lemma 2.1.1, and suppose dGτ0 (r)
dr

= y has at most two
solutions in r for each y.

If r⃗ in the interior of T is a critical point of D, then r⃗ is either on:

1. a diagonal of T (segment through
(
1
2
, 1
2
, 1
2

)
and a vertex of T ):

(r, r, r) , or (r, 1− r, 1− r) , or (1− r, r, 1− r) , or (1− r, 1− r, r) ; (r ∈ (0, 1)).

2. a central vertical segment of T :(
1

2
,
1

2
, r

)
, or

(
1

2
, r,

1

2

)
, or

(
r,
1

2
,
1

2

)
; (r ∈ (0, 1)).

These are segments between the midpoint of two opposite edges (a pair of edges
that have no vertices in common).

If r⃗ in the interior of a face of T is a local maximum for D, then r⃗ is on

3. the centerline of a face, e.g.,

(r, r, 1− 2r);

(
r ∈

(
0,

1

2

))
.

Hence a local maximizer r⃗ for D on T must lie on one of the three sets of lines above,
or

4. an edge of the tetrahedron, e.g.

(r, r, 1); (r ∈ [0, 1]).

Figure 2.2: Left: the four segments from Corollary 2.2.2. Right: orbits of the
segments under the tetrahedron symmetries.

Due to the symmetries of D discussed in Lemma 2.2.4, it suffices to check the
maximum of D on one segment of each type above. This is practical for computation.
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2.2 Four-lines Theorem

Corollary 2.2.2. Suppose D is a barycenteric-decoupled function as in Equation (2.1.2)
with w and E continuously differentiable. Recall w(r) = w(1− r).

0. Let Gτ0 be as in Lemma 2.1.1, and suppose dGτ0 (r)
dr

= y has at most two solutions
in r for each y.

Then, up to the symmetries described in Lemma 2.2.4, any local maximizer for D on
T must lie on one of these four segments:

1. Diagonal: (r, r, r) for r ∈
(
1
3
, 1
)
.

2. Central vertical segment:
(
1
2
, 1
2
, r
)
for r ∈

(
0, 1

2

)
.

3. Centerline of face: (r, r, 1− 2r) for r ∈
(
0, 1

2

)
.

4. Edge of tetrahedron: (r, r, 1) for r ∈
[
0, 1

2

]
.

Reference Figure 2.2 for plots of these segments.

To prove Theorem 2.2.1, we begin by proving several lemmas.

Lemma 2.2.3. Suppose G(r) is any continuously-differentiable function G : (0, 1) →
R. Fix Λ ∈ (0, 3). Let PΛ be the plane

PΛ = {(r1, r2, r3) ∈ (0, 1)3 | r1 + r2 + r3 = Λ}}.

Suppose T Λ ⊆ PΛ is open in PΛ. Define F : T Λ → R by

F (r1, r2, r3) = G(r1) +G(r2) +G(r3).

Suppose r⃗∗ = (r∗1, r
∗
2, r

∗
3) ∈ T Λ is a local maximizer of F in T Λ. Then

G′(r∗1) = G′(r∗2) = G′(r∗3). (2.2.1)

If furthermore G′(r) = y has at most two solutions in r for each y, then either

r∗1 = r∗2, or r∗1 = r∗3, or r∗2 = r∗3.

Proof. Suppose r⃗∗ = (r∗1, r
∗
2, r

∗
3) ∈ T Λ.

Let D(1,−1,0)F (r⃗∗) be the directional derivative in the (1,−1, 0) direction, so

D(1,−1,0)F (r⃗∗) = ∇F (r⃗∗) · (1,−1, 0) = G′(r∗1)−G′(r∗2) = 0.

Thus G′(r∗1) = G′(r∗2). Likewise, taking the directional derivative in the (0, 1,−1)
direction shows G′(r∗3) = G′(r∗2). Hence

G′(r∗1) = G′(r∗2) = G′(r∗3). (2.2.2)

The hypothesis on G′ means it maps at most two inputs to each output. Thus

|{r∗1, r∗2, r∗3}| ≤ 2.

The pigeonhole principle implies some pair must be equal, so either

r∗1 = r∗2, or r∗1 = r∗3, or r∗2 = r∗3.
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2.2 Four-lines Theorem

Lemma 2.2.4. Suppose D is a barycentric-decoupled function on T as in Equa-
tion (2.1.2). Then D is invariant under permuting its arguments:

D(r1, r2, r3) = D(r2, r1, r3) = D(r1, r3, r2) = · · · . (2.2.3)

In addition, D is invariant under double-reflections:

D(r1, r2, r3) = D(1− r1, 1− r2, r3) = D(1− r1, r2, 1− r3) = D(r1, 1− r2, 1− r3).
(2.2.4)

Proof. By definition of the ti in Equation (2.1.1), the double-reflection

(r1, r2, r3) 7→ (1− r1, 1− r2, r3)

corresponds to permuting the (t0, t1, t2, t3) tuple as

(t0, t1, t2, t3) 7→ (t3, t1, t2, t0).

Similarly, the permutation of ri

(r1, r2, r3) 7→ (r2, r1, r3)

corresponds to permuting (t0, t1, t2, t3) as

(t0, t1, t2, t3) 7→ (t0, t2, t1, t3).

In similar ways, all of the claimed symmetries correspond to permuting the
(t0, t1, t2, t3) tuple. Since D is barycentric-decoupled, it is a symmetric function
of (t0, t1, t2, t3) (see Equation (2.1.5)), so permuting the tuple (t0, t1, t2, t3) does not
affect its value.

Proof of Theorem 2.2.1. Suppose r⃗∗ = (r∗1, r
∗
2, r

∗
3) is a local maximizer of D.

Interior case:
Suppose r⃗∗ is on the interior of T . Let Λ = r∗1 + r∗2 + r∗3. Then (r∗1, r

∗
2, r

∗
3) is a

local maximizer of D on the interior of the plane r1 + r2 + r3 = Λ. The function
D decouples on that plane as in Lemma 2.1.1, so by Lemma 2.2.3, one pair of r∗i
must be equal. Without loss of generality, assume r∗1 = r∗2 (otherwise permute ri,
which would take one central vertical segment to another central vertical segment,
or a diagonal to another diagonal).

Since r∗1 = r∗2, we note (r
∗
1, r

∗
1, r

∗
3) is a local maxmimizer of D. By the symmetries

in Lemma 2.2.4, then (1 − r∗1, r
∗
1, 1 − r∗3) is also a local maximizer of D. Let Λ̃ =

(1− r∗1)+ r∗1 +(1− r∗3), so we have (1− r∗1, r
∗
1, 1− r∗3) is a local maximizer of D on the

interior of the plane r1 + r2 + r3 = Λ̃. By Lemma 2.2.3, at least one of the following
must hold:

1. r∗1 = 1− r∗1. Then r∗1 = r∗2 =
1
2
, and r∗3 ∈ (0, 1).

2. 1− r∗1 = 1− r∗3. Then r∗1 = r∗2 = r∗3 ∈ (0, 1).

3. r∗1 = 1− r∗3. Then r∗1 = r∗2 = 1− r∗3 ∈ (0, 1).
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2.3 More general decoupling understanding

Case 1 implies r⃗∗ is on a central vertical segment, and Cases 2 and 3 imply r⃗∗ is on
a diagonal of the tetrahedron. Hence all critical points of D in the interior of T are
on either a diagonal or vertical segment of T .

Face interior case:
Suppose r⃗∗ is on a face of T . Without loss of generality, assume this is the

face {r⃗ | t0(r⃗) = 0} (otherwise perform a double-reflection to map to this face; the
double-reflection maps centerlines to centerlines).

Then r⃗ is a local maximizer of D on the interior of the plane r1+ r2+ r3 = 1. By
Lemma 2.2.3, one pair of r∗i must be equal, so r⃗ is on a centerline of the face F0.

Edge case:
The above two cases narrow down the set of points that could possibly be local

maxima on the interior of T and the interior of faces of T . The only points left
remaining in T are its edges (including its 4 vertices).

2.3 More general decoupling understanding

While these are not essential to the later proofs, we note three remarks that show
this barycentric-decoupling is natural in some sense.

Remark 2.3.1. We now give a more-general class of functions which must be barycentric-
decoupled. Suppose D is a sum of identical functions of sums of distinct ti, so it can
be written as:

D(r⃗) = f0 +
∑

i∈{0,1,2,3}

f1(ti) +
∑

i,j∈{0,1,2,3}
i ̸=j

f2(ti + tj)

+
∑

distinct i,j,k∈{0,1,2,3}

f3(ti + tj + tk) + f4(t0 + t1 + t2 + t3)

. (2.3.1)

Note the constraint t0 + t1 + t2 + t3 = 1 implies (by way of example) t0 + t1 + t2 =
1 − t3, so each sum of three ti is a function of the remaining ti. Also, the f0 and
f4(t0 + t1 + t2 + t3) are constants, so they can folded into f1. Hence that definition
is equivalent to requiring the form

D(r⃗) =
∑

i∈{0,1,2,3}

f1(ti) +
∑

i,j∈{0,1,2,3}
i ̸=j

f2(ti + tj). (2.3.2)

Note t0 + ti = ri, so this is equivalent to requiring

D(r⃗) =
∑

i∈{0,1,2,3}

f1(ti) +
3∑

i=1

(f2(ri) + f2(1− ri)). (2.3.3)

Letting E(t) = f1(t) and w(r) = f2(r)+f2(1−r) reaches the form in Equation (2.1.2).

Remark 2.3.2. There are r-decouplings similar to Lemma 2.1.1 with respect to other
barycentric planes, e.g.

D(r1, r2, r3) = Gτ1(r1) +Gτ1(1− r2) +Gτ1(1− r3),

where we define

Gτ1(r) := w(r) + E (r − τ1) +
1

3
E(τ1).
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Remark 2.3.3. Lemma 2.1.1 emphasizes the r-decoupling, but we could equivalently
create a t-decoupling, which holds on the plane t0 = τ0 (i.e. t1 + t2 + t3 = 1− τ0), by

D(r⃗) = Hτ0(t1) +Hτ0(t2) +Hτ0(t3),

where we define

Hτ0(t) := w(τ0 + t) + E (t) +
1

3
E(τ0).

Then the form for planes other than t0 is a simple permutation, while Remark 2.3.2
had to perform a double-reflection of the arguments to Gτ1 . For example,

D(r⃗) = Hτ1(t0) +Hτ1(t2) +Hτ1(t3),

where we define

Hτ1(t) := w(τ1 + t) + E (t) +
1

3
E(τ1).

3 Definition of hc. Treatment of ν. Claim hc is

real analytic.

3.1 Preparation for defining hc; the functions z(ν) and ν(z)

Define

ν(z) :=


ez − 1− z

z(ez − 1)
, z ̸= 0

1

2
, z = 0

.

Note ν(z) = 1
z
− 1

ez−1
for z ̸= 0.

The function ν(z) is plotted in Figure 3.1, and its inverse function z(v) (which
we will show to be well-defined in the following lemma) is plotted in Figure 3.2.

-100 -50 50 100

z

0.2

0.4

0.6

0.8

1.0

ν(z)

Figure 3.1: ν(z)

Table of Contents 14 Index



3.1 Preparation for defining hc; the functions z(ν) and ν(z)

0.2 0.4 0.6 0.8 1.0

v

-100

-50

50

100

z(v)

Figure 3.2: z(v)

Lemma 3.1.1. We discuss some properties of ν and its inverse z(v):

(a) ν is analytic on a strip containing the entire real axis. It has the symmetry
ν(−z) + ν(z) = 1 for all z. Also, ν has specific values

lim
z→0

ν(z) = ν(0) =
1

2
, ν ′(0) = − 1

12
, lim

z→+∞
ν(z) = 0, lim

z→−∞
ν(z) = 1

(b) ν is strictly decreasing for all z ∈ R. Consequently, it has an inverse function
z : (0, 1) → R with analytic extension in some neighborhood of (0, 1).

(c) z(v) is a decreasing function z : (0, 1) → R with z
(
1
2

)
= 0.

z(v) is an odd function about v = 1
2
, i.e. z(v) = −z(1− v) for all v ∈ (0, 1).

Proof (a). The numerator and denominator of ν are analytic on the entire complex
plane. The denominator of ν has a zero of order 2 at z = 0. However, the numerator
has power series 1

2
z2 + 1

3!
z3 + 1

4!
z4 + . . . around z = 0, hence it has a zero of order 2

at z = 0, verifying that ν is analytic near 0.
The only other possible locations for poles are when the denominator is zero, but

these are all pure imaginary, lying at z = 2πik for k ∈ Z. This proves the strip
analyticity claim.

Simple algebra yields the limit evaluations and symmetry ν(−z) + ν(z) = 1.

Proof (b). ν(z) is strictly monotonic decreasing for z ∈ R.
For z ̸= 0, calculate

ν ′(z) =
ez

(ez − 1)2
− 1

z2
=

1

4 sinh(z/2)2
− 1

z2
(3.1.1)

4ν ′(2x) =
1

sinh(x)2
− 1

x2
. (3.1.2)

For x > 0, we have sinh(x) > x. Hence ν ′(z) < 0 for z > 0. The reflection formula
ν(z) + ν(−z) = 1 implies ν ′(−z) = ν ′(z), so ν ′(z) < 0 for z < 0. Using ν ′(0) = − 1

12
,

we conclude ν ′(z) < 0 for all z ∈ R. Thus ν(z) is strictly decreasing for all z ∈ R.
Since ν is analytic in a strip containing the real axis and ν ′(z) ̸= 0 for all real

z ∈ R, the Analytic Inverse Function Theorem (Chapter 1.7 of [FG02]) implies
there is an open neighborhood of (0, 1) in which an analytic function z exists with
ν(z(v)) = v for all v ∈ (0, 1).
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3.2 Definition of parallelogram Pc and polytope Uc

Proof (c).
The properties of z(v) claimed in the lemma follow immediately from the properties
of ν established in part (a) since the function z(v) is the inverse of ν(z).

3.2 Definition of parallelogram Pc and polytope Uc

For c > 2, define the open parallelogram Pc ⊆ R2 and polytope Uc ⊆ R6 by

Pc :=
{
(r, α) ∈ (0, 1)2 | α <

c

2
r, 1− α <

c

2
(1− r)

}
(3.2.1)

Uc := {(r1, r2, r3, α1, α2, α3) | (r1, r2, r3) ∈ T , (r1, α1) ∈ Pc, (r2, α2) ∈ Pc, (r3, α3) ∈ Pc}.
(3.2.2)

Note Pc is open in R2, while the tetrahedron T is closed in R3. Hence Uc is neither
open nor closed in R6. We impose c > 2 since Pc is empty for c ≤ 2.

Figure 3.3: Pc at c = 2.9

3.3 Definition of hc and gc

Define the entropy function H for one and four arguments as follows:

H(x) := −x ln(x)− (1− x) ln(1− x)

H(t0, t1, t2, t3) := −t0 ln(t0)− t1 ln(t1)− t2 ln(t2)− t3 ln(t3),

where we let −0 ln(0) = 0 by continuity.
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For c > 2, define hc : Uc → R via auxiliary functions κ̆c, w̃c : Pc → R by

hc(r⃗, α⃗) := cH(t0, t1, t2, t3) + (c− 3) ln(2) + w̃c(r1, α1) + w̃c(r2, α2) + w̃c(r3, α3)

(3.3.1)

w̃c(r, α) := H(α)− cH(r) + κ̆c(r, α) + κ̆c(1− r, 1− α)− κ̆c(1, 1) (3.3.2)

κ̆c(r, α) := α ln(ez − 1− z)− cr ln(z), with z := z(α/(cr)) (3.3.3)

z(v) := ν−1(v) = inverse of ν(z) :=
ez − 1− z

(ez − 1)z
, (3.3.4)

For c > 2, define gc : Uc → R via auxiliary function g̃c : Pc → R by

gc(r⃗, α⃗) = g̃c(r1, α1)g̃c(r2, α2)g̃c(r3, α3)
1√

t0t1t2t3(2πc)3
(3.3.5)

g̃c(r, α) :=

√
−z0ν ′(z0)

z1ν ′(z1)z2ν ′(z2)

√
1

2cπr(1− r)
, (3.3.6)

where for (r, α) ∈ Pc, we define z0, z1, z2 by

z0 := z

(
1

c

)
z1 := z

( α

cr

)
z2 := z

(
1− α

c(1− r)

)
. (3.3.7)

For the definitions of both hc and gc above, t0, t1, t2, t3 are given by Equation (2.1.1).

Remark 3.3.1. For c > 2 and (r, α) ∈ Pc, these (z0, z1, z2) are well-defined, and

z0, z1, z2 > 0. (3.3.8)

Proof. The definition of Pc (Section 3.2) implies α
cr

< 1
2
and 1−α

c(1−r)
< 1

2
for all

(r, α) ∈ Pc. By Lemma 3.1.1, z(v) > 0 if v < 1
2
.

4 Computing derivatives, values, the Hessian, and

RHS = 1

The section does calculations needed in the rest of this thesis. Our list of derivatives
etc. contain a bit more than is currently essential, so as to serve as a reference useful
to future work.

4.1 Derivatives of w̃c and hc

Next we shall give a list of first and second derivatives of w̃c and hc, and after that
prove the listed formulas.

4.1.1 List of derivatives

For (r, α) ∈ Pc, define

q̃(r, α) :=
z1(r, α)(1− r)

z2(r, α)r
. (4.1.1)
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4.1 Derivatives of w̃c and hc

The first partial derivatives of w̃c are:

∂

∂r
w̃c(r, α) = −c ln

(
(1− r)z1

rz2

)
= −c ln(q̃(r, α)) (4.1.2)

∂

∂α
w̃c(r, α) = ln

(
(1− r)(ez1 − 1)z1

r(ez2 − 1)z2

)
= ln

(
q̃(r, α)

ez1 − 1

ez2 − 1

)
(4.1.3)

∂

∂c
w̃c(r, α) = ln(z0)− r ln(z1)− (1− r) ln(z2)−H(r). (4.1.4)

There is a symmetry between the first partials of z1 and of z2 because z1(r, α) =
z2(1− r, 1− α):

∂

∂r
z1(r, α) = − α

cr2ν ′(z1)

∂

∂r
z2(r, α) =

1− α

c(1− r)2ν ′(z2)
(4.1.5)

∂

∂r
z1(r, α) = − ν(z1)

rν ′(z1)

∂

∂r
z2(r, α) =

ν(z2)

(1− r)ν ′(z2)
(4.1.6)

∂

∂α
z1(r, α) =

1

crν ′(z1)

∂

∂α
z2(r, α) = − 1

c(1− r)ν ′(z2)
(4.1.7)

∂

∂c
z1(r, α) = − α

c2rν ′(z1(r, α))

∂

∂c
z2(r, α) = − 1− α

c2(1− r)ν ′(z2(r, α))
(4.1.8)

∂

∂c
z1(r, α) = − ν(z1)

cν ′(z1)

∂

∂c
z2(r, α) = − ν(z2)

cν ′(z2)
. (4.1.9)

Substituting r = α = 1
2
into either z1 or z2 yields the first derivative of z0:

∂

∂c
z0 = − ν(z0)

cν ′(z0)
. (4.1.10)

The second derivatives of w̃c follow directly from differentiating the first deriva-
tives of w̃c, and then substituting the first derivatives of z1 and z2. Here, we drop
the c in the subscript for readability, so the subscripts represent partial derivatives:

w̃rr(r, α) :=
∂2

∂r2
w̃c(r, α) =

c

r
+

α

r2z1ν ′(z1)
+

c

1− r
+

1− α

(1− r)2z2ν ′(z2)
(4.1.11)

w̃rr(r, α) :=
∂2

∂r2
w̃c(r, α) = c

(
1

r
+

ν(z1)

rz1ν ′(z1)
+

1

1− r
+

ν(z2)

(1− r)z2ν ′(z2)

)
(4.1.12)

w̃rα(r, α) :=
∂2

∂rα
w̃c(r, α) = − 1

rz1ν ′(z1)
− 1

(1− r)z2ν ′(z2)
(4.1.13)

w̃αα(r, α) :=
∂2

∂α2
w̃c(r, α) =

1

c

(
1

ez1−1
+ 1

z1
+ 1

rν ′(z1)
+

1
ez2−1

+ 1
z2
+ 1

(1− r)ν ′(z2)

)
. (4.1.14)

First derivatives of hc are

∂

∂r1
hc(r1, r2, r3) = −1

2
c (ln(t0) + ln(t1)− ln(t2)− ln(t3))

∂

∂r2
hc(r1, r2, r3) = −1

2
c (ln(t0)− ln(t1) + ln(t2)− ln(t3))

∂

∂r3
hc(r1, r2, r3) = −1

2
c (ln(t0)− ln(t1)− ln(t2) + ln(t3)) .
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4.1 Derivatives of w̃c and hc

These formulas will be proved in the next few subsections. To prepare we recall
from Section 3.3.

w̃c(r, α) = H(α)− cH(r) + κ̆c(r, α) + κ̆c(1− r, 1− α)− κ̆c(1, 1) (4.1.15)

κ̆c(r, α) = α ln(ez − 1− z)− cr ln(z), z := z(α/(cr)) (4.1.16)

z(v) := ν−1(v) = inverse of ν(z) :=
ez − 1− z

(ez − 1)z
. (4.1.17)

4.1.2 Proof: First derivatives of z1, z2 with respect to c, r, α

Recall z(v) := ν−1(z). Note ν is monotone and continuously-differentiable (Lemma 3.1.1),
so z′(v) = 1

ν′(z(v))
. Since z1(r, α) = z

(
α
cr

)
, it follows for (r, α) ∈ Pc that

∂

∂c
z1(r, α) = − α

c2r
z′
( α

cr

)
= − α

c2rν ′(z1(r, α))
. (4.1.18)

A similar approach works for the derivative of z1 and z2 with respect to α and r.

4.1.3 Proof: First derivatives of w̃c

Since w̃c is constructed from κ̆c, we start by considering the derivatives of κ̆c:

∂

∂r
κ̆c(r, α) = −c ln(z1) +

∂z1
∂r

(
α

ez1 − 1

ez1 − 1− z1
− cr

z1

)
(4.1.19)

∂

∂α
κ̆c(r, α) = ln(ez1 − 1− z1) +

∂z1
∂α

(
α

ez1 − 1

ez1 − 1− z1
− cr

z1

)
(4.1.20)

∂

∂c
κ̆c(r, α) = −r ln(z1) +

∂z1
∂c

(
α

ez1 − 1

ez1 − 1− z1
− cr

1

z1

)
(4.1.21)

By definition of z1, we see ν(z1) =
α
cr
, so

ez1 − 1

ez1 − 1− z1
=

1

z1ν(z1)
=

cr

αz1
. (4.1.22)

This simplifies all the above derivatives:

∂

∂r
κ̆c(r, α) = −c ln(z1) (4.1.23)

∂

∂α
κ̆c(r, α) = ln(ez1 − 1− z1) (4.1.24)

∂

∂c
κ̆c(r, α) = −r ln(z1) (4.1.25)

Using H ′(r) = ln(1− r)− ln(r) finishes the derivatives by definition of w̃c:

∂

∂r
w̃c(r, α) = −c(ln(1− r)− ln(r))− c ln(z1) + c ln(z2) (4.1.26)

= −c(ln(1− r)− ln(r) + ln(z1)− ln(z2)) (4.1.27)

= −c ln

(
z1(1− r)

rz2

)
(4.1.28)
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4.2 Symmetry of w̃c and existence of maximizer α̂(r)

∂

∂α
w̃c(r, α) = ln(ez1 − 1− z1)− ln(ez2 − 1− z2) + ln(1− α)− ln(α) (4.1.29)

= ln

(
(1− α)(ez1 − 1− z1)

α(ez2 − 1− z2)

)
(4.1.30)

= ln

(
(1− r)(ez1 − 1)z1

r(ez2 − 1)z2

)
(4.1.31)

∂

∂c
w̃c(r, α) = ln(z0)− r ln(z1)− (1− r) ln(z2)−H(r). (4.1.32)

The final simplification for ∂
∂α
w̃c(r, α) is by the definition of z1, z2.

4.2 Symmetry of w̃c and existence of maximizer α̂(r)

Define α̂(r) as follows, well-defined by the following theorem.

α̂(r) := argmax
{α | (r,α)∈Pc}

w̃c(r, α). (4.2.1)

Theorem 4.2.1. Take 2 < c < 3 and fix 0 < r < 1. Then w̃c, defined on the
parallelogram Pc in Section 3.3, satisfies:

1. w̃c(r, α) = w̃c(1− r, 1− α).

2. w̃c is strictly concave in α.

3. For each r, w̃c attains its maximum at a unique α̂(r) in Pc.

4. ∂w̃c

∂α
(r, α̂(r)) = 0.

In other words,

{(r, α̂(r)) | 0 < r < 1} = {(r, α) ∈ Pc |
∂w̃c

∂α
(r, α) = 0}.

For each 0 < r < 1, we have

{α̂(r)} = {α ∈ Pc |
∂w̃c

∂α
(r, α) = 0}.

The next few subsubsections prove this.

4.2.1 w̃c(1− r, 1− α) = w̃c(r, α)

Item 1 of Theorem 4.2.1 follows directly from the definition of w̃c,

w̃c(r, α) := H(α)− cH(r) + κ̆c(r, α) + κ̆c(1− r, 1− α) + κ̆c(1, 1).

Remark 4.2.2. This symmetry of w̃c implies the following symmetries of hc (defined
in Section 3.3). Note these symmetries are analogous to the tetrahedral symmetries
of barycentric-decoupled functions as described in Lemma 2.2.4, except these apply
in six dimensions instead of three.

1. hc is invariant under permutation i ↔ j of pairs of (rj, αj).

hc(r1, r2, r3, α1, α2, α3) = hc(r1, r3, r2, α1, α3, α2) = hc(r2, r1, r3, α2, α1, α3)
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4.2 Symmetry of w̃c and existence of maximizer α̂(r)

2. hc is invariant under reflections across two axes at a time:

hc(r1, 1− r2, 1− r3, α1, 1− α2, 1− α3) = hc(r1, r2, r3, α1, α2, α3)

hc(1− r1, r2, 1− r3, 1− α1, α2, 1− α3) = hc(r1, r2, r3, α1, α2, α3)

hc(1− r1, 1− r2, r3, 1− α1, 1− α2, α3) = hc(r1, r2, r3, α1, α2, α3).

Proof. These permutations permute (t0, t1, t2, t3), so H(t0, t1, t2, t3) is constant under
the symmetry.

For Item 1, the rest of the terms in the definition of hc are merely permuted.
For Item 2, the rest of the terms are invariant because w̃c(r, α) = w̃c(1− r, 1−α)

(see Item 1 of Theorem 4.2.1).

4.2.2 w̃c is strictly concave in α

From Section 4.1.1:

w̃αα(r, α) =
∂2

∂α2
w̃c(r, α) =

1

c

(
1

ez1−1
+ 1

z1
+ 1

rν ′(z1)
+

1
ez2−1

+ 1
z2
+ 1

(1− r)ν ′(z2)

)
.

From Lemma 3.1.1 we have ν ′(z) < 0 for all z > 0, and we have z1, z2 > 0. Together
with 0 < r < 1, this implies w̃αα(r, α) < 0 for all (r, α) ∈ Pc. Thus strict concavity
of w̃c in α is established, proving Item 2 of Theorem 4.2.1. For fixed r, then w̃c(r, α)
has at most critical point in α since ∂

∂α
w̃c is decreasing in α.

r=0.71

r=0.31

r=0.41

r=0.51

r=0.61

0.2 0.4 0.6 0.8 1.0
α

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

wtilde(r,α)

Figure 4.1: w̃c is strictly concave as α varies with c, r fixed. Here depicted for c = 3
and varying r. Note the plot is not defined everywhere due to the constraints on α
imposed by Pc.

4.2.3 w̃c attains its maximum for each r ∈ (0, 1); ∂w̃c

∂α
(r, α) has a zero

This subsection proves Item 3 of Theorem 4.2.1 (existence of the critical point α̂(r)),
which by strict concavity must be the maximizer. Using z1, z2 from Equation (3.3.7),
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4.2 Symmetry of w̃c and existence of maximizer α̂(r)

define

d(r, α) := (1− r)(ez1 − 1)z1 − r(ez2 − 1)z2. (4.2.2)

From Section 4.1.1, recall

∂w̃c

∂α
= ln

(
(1− r)(ez1 − 1)z1

r(ez2 − 1)z2

)
,

so ∂w̃c

∂α
(r, α) = 0 if and only if d(r, α) = 0.

Fix c > 2 and any 0 < r < 1. By the forthcoming Lemma 4.2.3, there exists
α1 with (r, α1) ∈ Pc and d(r, α1) < 0. By Lemma 4.2.3 again, there exists α̃2

with (1 − r, α̃2) ∈ Pc and d(1 − r, α̃2) < 0. Reflecting by the symmetry d(r, α) =
−d(1− r, 1− α) gives α2 = 1− α̃2 such that (r, α2) ∈ Pc and d(r, α2) > 0.

By continuity of d, there exists some α̂ between α1 and α2 such that d(r, α̂) = 0.
Note (r, α̂) ∈ Pc since Pc is convex. This proves Item 3 of Theorem 4.2.1.

Lemma 4.2.3. For c > 2 and any 0 < r < 1, there exists some α1 such that
(r, α1) ∈ Pc and d(r, α1) < 0.

Proof. Fix r ∈ (0, 1). All limits in this proof are of sequences of α keeping (r, α) ∈ Pc.
The top boundary of Pc is given by α = c

2
r for 0 < r ≤ 2

c
and α = 1 for 2

c
≤ r < 1.

By casework below, we show d is negative as α converges to the top boundary of Pc.
Hence there exists α1 with (r, α1) ∈ Pc and d(r, α1) < 0.

• Case 1: Suppose 0 < r < 2
c
.

By definition of z1 and continuity of z = ν−1,

lim
α→ c

2
r
z1 = lim

α→ c
2
r
z
( α

cr

)
= z

(
1

2

)
= 0. (4.2.3)

By definition of z2,

lim
α→ c

2
r
ν(z2) = lim

α→ c
2
r

1− α

c(1− r)
=

1− c
2
r

c(1− r)
<

1

c
. (4.2.4)

Thus since z = ν−1 is decreasing,

lim
α→ c

2
r
z2 = ν−1

(
1− c

2
r

c(1− r)

)
≥ ν−1

(
1

c

)
= z0 > 0. (4.2.5)

Since d is continuous and d(r, α) < 0 when z1 = 0 and z2 > 0, we see

lim
α→ c

2
r
d(r, α) < 0. (4.2.6)

• Case 2: Suppose 2
c
≤ r < 1.

As α → 1, we have z2 → z(0) → +∞ and z1 → z( 1
cr
), so z1 converges to some

finite number, and z2 diverges to positive infinity. Hence d(r, α) → −∞ as
α → 1.
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)

4.3 Preparation for applying Laplace Method: local behav-
ior at (12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2)

Recall from Section 3.3,

hc(r⃗, α⃗) := cH(t0, t1, t2, t3) + (c− 3) ln(2) + w̃c(r1, α1) + w̃c(r2, α2) + w̃c(r3, α3)

Define hc as the terms other than w̃c, so

hc(r⃗) = cH(t0, t1, t2, t3) + (c− 3) ln(2) (4.3.1)

hc(r⃗, α⃗) = hc(r⃗) + w̃c(r1, α1) + w̃c(r2, α2) + w̃c(r3, α3) (4.3.2)

Then hc accounts for the interaction between ri and rj for i ̸= j, and the w̃c terms
account for the interaction between ri and αi.

4.3.1 hc

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
= 0 is a critical point of hc

Lemma 4.3.1. For 0 < c < ∞, a critical point for hc is

(r1, r2, r3, α1, α2, α3) =

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
(4.3.3)

with the corresponding value of hc being hc

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
= 0.

Proof. We begin by analyzing w̃c.
Recall z2(r, α) = z1(1−r, 1−α), so z2(

1
2
, 1
2
) = z1(

1
2
, 1
2
). Substituting these values,

along with α = 1
2
and r = 1

2
into derivative formulas from Section 4.1.1 yields

∂w̃c

∂r
(1
2
, 1
2
) = 0 and ∂w̃c

∂α
(1
2
, 1
2
) = 0. Substitution gives w̃c(

1
2
, 1
2
) = −(c− 1) ln(2).

By substitution again,

∂hc
∂r1

(
1

2
,
1

2
,
1

2

)
=

∂hc
∂r2

(
1

2
,
1

2
,
1

2

)
=

∂hc
∂r3

(
1

2
,
1

2
,
1

2

)
= 0.

Substitution yields hc
(
1
2
, 1
2
, 1
2

)
= 3(c− 1) ln(2). Addition via Equation (4.3.2) yields

the result of the lemma.

4.3.2 Hessian hc(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
) is negative definite

Lemma 4.3.2. The Hessian of hc at
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
is negative definite for c > 2.

Additionally, the determinant of the Hessian is

det

(
H{hc}

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

))
=

(
−16

z0ν ′(z0)

)3

. (4.3.4)

Proof. Recall H{f} denotes the Hessian matrix of the function f with respect to
variables r1, r2, r3, α1, α2, α3. Then

H{hc − hc} =


w̃rr(r1, α1) 0 0 w̃rα(r1, α1) 0 0

0 w̃rr(r2, α2) 0 0 w̃rα(r2, α2) 0
0 0 w̃rr(r3, α3) 0 0 w̃rα(r3, α3)

w̃rα(r1, α1) 0 0 w̃αα(r1, α1) 0 0
0 w̃rα(r2, α2) 0 0 w̃αα(r2, α2) 0
0 0 w̃rα(r3, α3) 0 0 w̃αα(r3, α3)

 .
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H{hc} has the form H{hc} =

[
Hr⃗(hc) 0

0 03×3

]
.

Letting ⊗ denote the Kronecker product, the Hessian of hc at (
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
) is[

−4c 0
0 0

]
⊗ I3,3.

The formulas for w̃c in Section 4.1.1 give the Hessian of hc evaluated at
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
:

H{hc}
(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
=

[H{hc}+H{hc − hc}]
(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
=−4c+ 4

(
c+ 1

z0ν′(z0)

)
− 4

z0ν′(z0)

− 4
z0ν′(z0)

4
cν′(z0)

(
1 + 1

z0
+ 1

ez0−1

)⊗ I3,3,

The key 2× 2 matrix is

M =

[
4

z0ν′(z0)
− 4

z0ν′(z0)

− 4
z0ν′(z0)

4
cν′(z0)

(
1 + 1

z0
+ 1

ez0−1

)]

=
4

z0ν ′(z0)

[
1 −1

−1 z0
c

(
1 + 1

z0
+ 1

ez0−1

)]
,

which has trace

tr(M) =
4

ν ′(z0)

(
1

z0
+

1

c
+

1

cz0
+

1

c(ez0 − 1)

)
.

Note ν ′(z0) is negative (Lemma 3.1.1), and the rest of the terms are positive, so
tr(M) < 0 for c, z0 > 0. Next we will show the determinant of M is positive for
c > 2. We directly compute det(M) to be

det(M) =

(
4

z0ν ′(z0)

)2(
−1 +

z0
c

(
1 +

1

z0
+

1

ez0 − 1

))
.

The equation ν(z0) =
1
z0
− 1

ez0−1
= 1

c
defines z0 and allows simplification:

det(M) =

(
4

z0ν ′(z0)

)2(
−1 + z0ν(z0)

(
1 +

1

z0
+

1

ez0 − 1

))
=

(
4

z0ν ′(z0)

)2(
−1 + z0

(
1

z0
− 1

ez0 − 1

)(
1 +

1

z0
+

1

ez0 − 1

))
=

(
4

z0ν ′(z0)

)2(
−1 + z0

(
1

z20
− 1

(ez0 − 1)2
+

1

z0
− 1

ez0 − 1

))
=

(
4

z0ν ′(z0)

)2(
z0

(
1

z20
− 1

(ez0 − 1)2
− 1

ez0 − 1

))
=

(
4

z0ν ′(z0)

)2(
z0

(
1

z20
− ez0

(ez0 − 1)2

))
.
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4.3 Preparation for applying Laplace Method: local behavior at (1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
)

The derivative ν ′(z) = ez

(ez−1)2
− 1

z2
allows cancellation, concluding

det(M) =
−16

z0ν ′(z0)
. (4.3.5)

Hence, for z0 > 0, we have tr(M) < 0 and det(M) > 0, so the eigenvalues of M
must both be negative. Since H{hc}

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
= M ⊗ I3, all six eigenvalues

of the Hessian of hc must be negative at
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
provided z0 > 0. Recall

ν(z0) =
1
c
, and ν(x) ≥ 1

2
for x ≤ 0 (Lemma 3.1.1). Hence for c > 2, we have z0 > 0

and can conclude H{hc}
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
is negative definite as desired.

Since H{hc}
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
= M ⊗ I3, we also have

det

(
H{hc}

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

))
= (detM)3 =

(
−16

z0ν ′(z0)

)3

.

thus proving the determinant part of the lemma.

4.3.3 Evaluating the Laplace Method formula

When the Discrete Laplace Method is applied in Equation (1.2.3), it gives a formula
for the asymptotic value we seek. This formula is rigorously evaluated in the following
proposition.

Proposition 4.3.3. Let x0 =
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
. For all n and c > 2, then

c3

2
(2π)3

gc(x0)√
det(−H{hc}(x0))

= 1. (4.3.6)

Proof. From Section 3.3, gc is defined as

gc(r⃗, α⃗) = g̃c(r1, α1)g̃c(r2, α2)g̃c(r3, α3)
1√

t0t1t2t3(2πc)3

g̃c(r, α) :=

√
−z0ν ′(z0)

z1ν ′(z1)z2ν ′(z2)

√
1

2cπr(1− r)
.

Note z0 = z1 = z2 = ν−1
(
1
c

)
when r = α = 1

2
, so at x0 =

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
, we have

gc(x0) = g̃c

(
1

2
,
1

2

)3
1√

(1/4)4(2πc)3
= g̃c

(
1

2
,
1

2

)3
√

25

(cπ)3

g̃c

(
1

2
,
1

2

)
=

√
−1

z0ν ′(z0)

√
1

2cπ(1/2)2
=

√
−2

z0ν ′(z0)cπ

gc(x0) =

√
−28

(z0ν ′(z0))3(cπ)6
.

From Section 4.3.2, we have

det(H{hc}(x0)) =

(
−16

z0ν ′(z0)

)3
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Note hc(x0) = 0 by Lemma 4.3.1, so

c3

2
(2π)3

gc(x0)√
det(−H{hc}(x0))

= 4(cπ)3gc(x0)

√
det(H{hc}(x0))

−1

= 4(cπ)3

√
−28

(z0ν ′(z0))3(cπ)6

√(
−16

z0ν ′(z0)

)−3

= 1.

5 Proving hc < 0 on Uc \
(
1
2,

1
2,

1
2,

1
2,

1
2,

1
2

)
for 2 < c < 3:

reducing the 6-variable problem to maximizing

a 3-variable function ĥc.

The goal in this section is to present strong evidence that
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
is the

global maximum of hc on Uc whenever 2.5 ≤ c < 3. The derivations here, plus
interval arithmetic, are used in [HH24] to prove this for all c ∈ [2.5, 3).

5.1 An overview from coarse numerical evidence

Define

ĥc(r1, r2, r3) = max
{(α1,α2,α3) | (ri,αi)∈Pc, i∈{1,2,3}}

hc(r1, r2, r3, α1, α2, α3). (5.1.1)

We saw that ĥc

(
1
2
, 1
2
, 1
2

)
= 0 is a local maximum in Lemma 4.3.1 and need to see for

which values of c it is a global maximum over the tetrahedron T .
The plot in Figure 5.1 illustrates the situation. It suggests that if other admissible

maximizers exist, then the maximizers must be in a region around (1
2
, 1
2
, 1
2
) or at one

of 4 corners of the cube.
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5.1 An overview from coarse numerical evidence

Figure 5.1: c = 3. All points (r1, r2, r3) where ĥc(r1, r2, r3) > −0.08, on a 1003-point
grid. Note that besides the blob near (1

2
, 1
2
, 1
2
), the only points are near the corners

of the tetrahedron T .

5.1.1 No more maxima near
(
1
2
, 1
2
, 1
2

)
The plot Figure 5.2 illustrates that the Hessian of ĥc is negative definite on a region
centered at

(
1
2
, 1
2
, 1
2

)
.

The plot shows that this region contains the cube [1
2
− 0.125, 1

2
+ 0.125]3 Since(

1
2
, 1
2
, 1
2

)
is a local maximum of ĥc with ĥc

(
1
2
, 1
2
, 1
2

)
= 0, this implies ĥc < 0 in

[1
2
−0.125, 1

2
+0.125]3 \{

(
1
2
, 1
2
, 1
2

)
}. Hence ĥc has no global maxima in that cube near(

1
2
, 1
2
, 1
2

)
.
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5.2 Defining α̂(r), w(r) and preparing ĥc

Figure 5.2: Plot for c = 3 where the Hessian of ĥc is negative definite, on a

503-point grid. The orange cube, provided for scale, is
[
1
2
− 0.125, 1

2
+ 0.125

]3
.

Thus ĥc is unimodal on this cube.

Next, we give a much more detailed argument which leads us in this thesis to con-
vincing plots. The argument involves a fair amount of tricky calculation to produce
formulas upon which interval arithmetic can apply to yield a proof. The interval
arithmetic itself is a matter for a paper in preparation, [HH24].

5.2 Defining α̂(r), w(r) and preparing ĥc

Recall Pc ⊆ (0, 1)2 is a parallelogram defined in Equation (3.2.1), and w̃c(r, α) is
defined for (r, α) ∈ Pc in Section 3.3, relying on the tricky functions z1(r, α) and
z2(r, α). Recall from Theorem 4.2.1 that for each r ∈ (0, 1),

α̂(r) := argmax
{α | (r,α)∈Pc}

w̃c(r, α) (5.2.1)

exists and is unique. Set w(r) := w̃c(r, α̂(r)). Then

w(r) = max
{α | (r,α)∈Pc}

w̃c(r, α). (5.2.2)

For c > 2, this maximum is well defined due to Theorem 4.2.1. In Section 6, we will
show that w can be extended to be continuous for r ∈ [0, 1] and real-analytic over
r ∈ (0, 1).

5.2.1 Reflection of w

Lemma 5.2.1. w(r) = w(1− r) and α̂(1− r) = 1− α̂(r)

Proof. By definition, w̃c(r, α̂(r)) > w̃c(r, α) for all α ̸= α̂(r).
By the symmetry w̃c(r, α) = w̃c(1− r, 1− α) from Item 1,

w̃c(1− r, 1− α̂(r)) = w̃c(r, α̂(r)) > w̃c(r, α) = w̃c(1− r, 1− α).
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5.3 Applying the 4 lines theorem to ĥc

Hence w̃c(1− r, 1− α̂(r)) > w̃c(1− r, 1−α) for all 1−α ̸= 1− α̂(r), so w̃c(1− r, 1−
α̂(r)) > w̃c(1− r, α) for all α ̸= 1− α̂(r). Hence α̂(1− r) = 1− α̂(r), so

w(1− r) = w̃c(1− r, α̂(1− r)) = w̃c(1− r, 1− α̂(r)) = w̃c(r, α̂(r)) = w(r).

5.2.2 ĥc in barycentic-decoupled form

By definition of ĥc earlier,

ĥc(r1, r2, r3) = max
{(α1,α2,α3) | (ri,αi)∈Pc, i∈{1,2,3}}

hc(r1, r2, r3, α1, α2, α3). (5.2.3)

The only terms depending on the αi are the w̃c(ri, αi), which are maximized at
αi = α̂(ri) by w(ri) = maxαi

w̃c(ri, αi). Thus by definition of hc in Section 3.3,

ĥc(r1, r2, r3) = hc(r1, r2, r3) + w(r1) + w(r2) + w(r3) (5.2.4)

hc(r1, r2, r3) = cH(t0, t1, t2, t3) + (c− 3) ln(2). (5.2.5)

Let E(x) = −cx ln(x). Then ĥc can be written in barycentric-decoupled form as

ĥc(r1, r2, r3) = E(t0) + E(t1) + E(t2) + E(t3) + w(r1) + w(r2) + w(r3) + (c− 3) ln(2).
(5.2.6)

Note w(r) = w(1 − r) by Lemma 5.2.1. Define w(0) = w(1) = 0 by continuity (see
the forthcoming Proposition 6.6.2). Likewise, define E(0) = E(1) = 0 by continuity.

5.3 Applying the 4 lines theorem to ĥc

Now we reduce the global max problem for ĥc (for fixed c) from maximization over
a 3-dimensional volume T to five 1-dimensional problems.

As in Lemma 2.1.1, define

Gτ0(r) := w(r) + E (r − τ0) +
1

3
E(τ0).

so that
ĥc(r1, r2, r3) = Gτ0(r1) +Gτ0(r2) +Gτ0(r3).

We wish to apply Corollary 2.2.2. To invoke it, we must check that dGτ0 (r)
dr

= y has
at most two solutions for each y.

If this succeeds, then the corollary says we can check ĥc restricted to each of the
4 line segments:

1. Diagonal: (r, r, r) for r ∈
(
1
3
, 1
)
.

2. Central vertical segment:
(
1
2
, 1
2
, r
)
for r ∈

(
0, 1

2

)
.

3. Centerline of face: (r, r, 1− 2r) for r ∈
(
0, 1

2

)
.

4. Edge of tetrahedron: (r, r, 1) for r ∈
[
0, 1

2

]
.
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5.3 Applying the 4 lines theorem to ĥc

If we show ĥc < 0 on all of those segments except for at
(
1
2
, 1
2
, 1
2

)
, then that would

imply ĥc < 0 on T \ {
(
1
2
, 1
2
, 1
2

)
}. Equivalently, hc < 0 on Uc \ {

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
} as

follows:

• If r⃗ ̸=
(
1
2
, 1
2
, 1
2

)
, then hc(r⃗, α⃗) ≤ ĥc(r⃗) < 0

• If r⃗ =
(
1
2
, 1
2
, 1
2

)
and α⃗ ̸=

(
1
2
, 1
2
, 1
2

)
, then hc(r⃗, α⃗) < ĥc(r⃗) = 0.

We shall not prove this rigorously in this thesis, since our proof involves a heavy
use of interval arithmetic, to appear in [HH24]. However, we next show convincing
plots for three values of c including c = 3.

5.3.1 Derivative calculations: derivative of Gτ0 wrt r.

To apply Corollary 2.2.2, recall we need to verify that dGτ0 (r)
dr

= y has at most two
solutions for each y.

Recall Gτ0(r) := w(r) + E (r − τ0) +
1
3
E(τ0), where E(x) = −cx ln(x). Note

E ′(x) = −c(1 + ln(x)). Then since w(r) = w̃c(r, α̂(r)),

dGτ0

dr
=

∂w̃c

∂r
(r, α̂(r)) +

∂w̃c

∂α
(r, α̂(r))

dα̂(r)

dr
+ cE ′(r − τ0).

Note ∂w̃c

∂α
(r, α̂(r)) = 0 by definition of α̂ as the maximizer of w̃c for fixed r, so by

Section 4.1.1 we find

dGτ0

dr
=

∂w̃c

∂r
(r, α̂(r)) + cE ′(r − τ0)

= −c ln(q̃(r, α̂(r)))− c(1 + ln(r − τ0)).

5.3.2 Plot suggesting dGτ0 (r)
dr

is at-most 2-to-1

To show dGτ0 (r)
dr

= y has at most two solutions for each y, it will suffice to show
dGτ0 (r)

dr
is convex (resp. concave) or even a weaker concept which we nickname “bi-

monotone.” A function f is bi-monotone if there exists x0 where f(x) is strictly
decreasing (resp.increasing) for x < x0 and strictly increasing (resp. decreasing) for
x > x0. If f is concave on [a, b] ⊂ (0, 1), increasing on (0, a], and decreasing on
[b, 1), then f is bi-monotone on (0, 1). This will have the advantage of only requiring
first-derivative checks near the boundary r ≈ 0 and r ≈ 1, where the function may
have an asymptote.
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5.3 Applying the 4 lines theorem to ĥc

Out[ ]=

0.2 0.4 0.6 0.8 1.0
r

2

4

6

(d/dr) G^τ₀ at c=3

τ₀=0.2

τ₀=0.1

τ₀=0

Figure 5.3: Plot of dGτ0 (r)
dr

for c = 3 and three values of τ0

Out[ ]=

0.2 0.4 0.6 0.8 1.0
r

1

2

3

4

5

(d/dr) G^τ₀ at τ₀=0.1

c=3.2

c=3.0

c=2.8

Figure 5.4: Plot of dGτ0 (r)
dr

for τ0 = 0.1 and three values of c.

5.3.3 Plots suggesting ĥc < 0 along the four segments, except ĥc

(
1
2
, 1
2
, 1
2

)
=

0.

Out[ ]=

0.4 0.5 0.6 0.7 0.8 0.9 1.0
r

-0.3

-0.2

-0.1

0.1

ĥ(r,r,r)

c=3.2

c=3.0

c=2.8

Figure 5.5: Diagonal: Plot of ĥc(r, r, r) for three values of c.
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5.4 The 1-D results using interval arithmetic

Out[ ]=

0.2 0.4 0.6 0.8 1.0
r

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

ĥ(0.5,0.5,r)

c=3.2

c=3.0

c=2.8

Figure 5.6: Vertical: Plot of ĥc

(
1
2
, 1
2
, r
)
for three values of c.

Out[ ]=

0.1 0.2 0.3 0.4 0.5
r

-0.6

-0.4

-0.2

ĥ(r,r,1-2r)

c=3.2

c=3.0

c=2.8

Figure 5.7: Centerline of face: Plot of ĥc (r, r, 1− 2r) for three values of c.

Out[ ]=

0.2 0.4 0.6 0.8 1.0
r

-0.6

-0.4

-0.2

ĥ(r,r,1)

c=3.2

c=3.0

c=2.8

Figure 5.8: Edge: Plot of ĥc (r, r, 1) for three values of c.

5.4 The 1-D results using interval arithmetic

Computing with interval arithmetic allows many types of bounds to be obtained rig-
orously with a computer. We have successfully applied this to the 5 one-dimensional
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calculations required for the application of Corollary 2.2.2 for all c in the interval
[2.5, 3) and plan to put this in an article [HH24], now in preparation. This discussion
is involved, so we do not attempt to include it here since it takes much exposition
and Mathematica code to perform the calculation.

6 Analytic behavior of w

6.1 Definitions: γ1, γ2, η, FS,T

For 0 < r < 1, define γ1(r) and γ2(r) based on α̂ (Equation (4.2.1)) and ν (Sec-
tion 3.1) as follows, plotted in Figure 6.1, Figure 6.2, and Figure 6.3:

γ1(r) =
1√
r
ν−1

(
α̂(r)

cr

)
, γ2(r) =

1√
1− r

ν−1

(
1− α̂(r)

c(1− r)

)
. (6.1.1)

In Lemma 6.3.1, we will show (for j = 1 and j = 2), γj has a finite limit as r → 0
and r → 1, then define γj(0) and γj(1) as this limit.

γ₁

γ₂

0.0 0.2 0.4 0.6 0.8 1.0
r

2.5

3.0

3.5

4.0

y

Figure 6.1: γ1(r) and γ2(r) plotted for c = 3.

γ₁

γ₂

0.0 0.5 1.0 1.5
θ

2.5

3.0

3.5

4.0

y

Figure 6.2: γ1(r) and γ2(r) plotted for c = 3 under the change of variables
r = sin2 θ, so (S, T ) = (sin θ, cos θ) uniformly parameterizes the arc a defined in the
forthcoming Equation (6.1.2).
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6.2 (γ1, γ2) are the unique solutions to FS,T = 0

Out[ ]=

0.2 0.4 0.6 0.8 1.0
S

2.0

2.5

3.0

3.5

4.0

4.5

5.0

γ₁

γ₁(r) with r=S²

c=3.2

c=3.0

c=2.8

Figure 6.3: γ1(r) plotted for different values of c under the change of variables
r = S2.

Define the entire function η by

η(z) :=


ez − 1

z
, z ̸= 0

1, z = 0
.

Let a be the quarter-circle arc

a := {(S, T ) ∈ R2 | S2 + T 2 = 1, S ≥ 0, T ≥ 0} ⊆ R2 ⊆ C2. (6.1.2)

Define FS,T for (S, T ) ∈ a and (y1, y2) ∈ R2 as

FS,T (y1, y2) :=

(
y22η(Ty2)− y21η(Sy1)

T 2ν(Ty2) + S2ν(Sy1)− 1/c

)
. (6.1.3)

6.2 (γ1, γ2) are the unique solutions to FS,T = 0

Lemma 6.2.1. Take 0 < r < 1 given, and let S =
√
r, T =

√
1− r. Then for

y1, y2 > 0,

FS,T (y1, y2) = 0⃗ ⇐⇒ (y1, y2) = (γ1(r), γ2(r)). (6.2.1)

Proof. Take 0 < r < 1 given.
Backwards direction: Assume y1 = γ1(r) and y2 = γ2(r), so by definition (Equa-
tion (6.1.1)),

y1 = γ1(r) =
1

S
ν−1

(
α̂(r)

cr

)
, y2 = γ2(r) =

1

T
ν−1

(
1− α̂(r)

c(1− r)

)
. (6.2.2)

By Theorem 4.2.1, ∂w̃c

∂α
(r, α̂(r)) = 0, so Equation (4.1.2) applies:

0 =
∂w̃c

∂α
(r, α̂(r)) = ln

(
(1− r) (ez1 − 1) z1

r (ez2 − 1) z2

)
where z1 = ν−1

(
α̂(r)
cr

)
= Sy1 > 0 and z2 = ν−1

(
1−α̂(r)
c(1−r)

)
= Ty2 > 0. Hence

(1− r) (ez1 − 1) z1 − r (ez2 − 1) z2 = 0 (6.2.3)

T 2z21η(z1)− S2z22η(z2) = 0 (6.2.4)

y21η(Sy1)− y22η(Ty2) = 0. (6.2.5)
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6.3 γj is continuous on [0, 1]

Since ν is the inverse of z = ν−1, we also have:

ν(Sy1) =
α̂(r)

cr
, ν(Ty2) =

1− α̂(r)

c(1− r)
.

By algebra,

rν(Sy1) + (1− r)ν(Ty2) =
α̂(r)

c
+

1− α̂(r)

c
=

1

c
.

Hence, as desired:

0⃗ = FS,T (y1, y2) =

(
y22η(Ty2)− y21η(Sy1)

T 2ν(Ty2) + S2ν(Sy1)− 1/c

)
.

Forwards direction: Assume y1, y2 > 0, and FS,T (y1, y2) = 0⃗, so

y22η(Ty2) = y21η(Sy1) (6.2.6)

c(1− r)ν(Ty2) + crν(Sy1) = 1. (6.2.7)

Let α = crν(Sy1). Then Equation (6.2.7) implies 1 − α = c(1 − r)ν(Ty2). By
rearranging, this gives

y1 =
1

T
ν−1

( α

cr

)
, y2 =

1

T
ν−1

(
1− α

c(1− r)

)
. (6.2.8)

It remains to show α = α̂(r). Since S, y1 > 0, we have 0 < ν(Sy1) <
1
2
. Then

0 < α < 1
2
cr. Likewise, T, y2 > 0 implies 0 < 1 − α < 1

2
c(1 − r). Thus (r, α) ∈ Pc.

Equation (4.1.2) together with Equation (6.2.6) implies ∂w̃c

∂α
(r, α) = 0. For fixed r,

by Theorem 4.2.1, α̂(r) is the unique solution to ∂w̃c

∂α
(r, α) = 0, so indeed α = α̂(r).

Hence by comparing Equation (6.2.8) and the definition of γ1, γ2 in Equation (6.1.1),
we see y1 = γ1(r) and y2 = γ2(r).

6.3 γj is continuous on [0, 1]

Lemma 6.3.1. The following limits exist

γ2(0) = lim
r→0

γ2(r) = ν−1

(
1

c

)
> 0, γ1(0) = lim

r→0
γ1(r) = γ2(0)

√
γ2(0) > 0.

(6.3.1)

Henceforth use these values to define γj(0). Since γ1(r) = γ2(1− r), the limits hold
likewise to define γj(1):

γ1(1) = γ2(0), γ2(1) = γ1(0) (6.3.2)

Hence γ1, γ2 are continuous functions on r ∈ [0, 1] with γ1(r), γ2(r) > 0 for all r.

Corollary 6.3.2. Fix c > 2. Then there exists constants 0 < a < b such that

γ1(r), γ2(r) ∈ [a, b]

for all r ∈ [0, 1]. Existence of these bounds follows from γj being continuous on the
compact set [0, 1]. The lower bound is positive because γ1(r), γ2(r) are positive for all
r ∈ [0, 1]. Henceforth we will define the closed square Qc to be

Qc := {(y1, y2) | y1, y2 ∈ [a, b]}, (6.3.3)

so Qc includes all possible pairs (γ1(r), γ2(r)).
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6.4 FS,T is real-analytic

Proof. By Lemma 6.2.1, for all 0 < r < 1,

T 2ν(Tγ2(r)) + S2ν(Sγ1(r)) =
1

c

where S =
√
r and T =

√
1− r. Since 0 < ν < 1 (from Lemma 3.1.1), we have

S2ν(Sγ2(r)) → 0 as S2 = r → 0. Hence

lim
r→0

T 2ν(Tγ2(r)) =
1

c
.

By continuity, since T =
√
1− r → 1 as r → 0,

lim
r→0

γ2(r) = ν−1

(
1

c

)
.

This proves the first limit formula.
To prove the second formula, we shall begin by showing that γ1 is bounded. By

Lemma 6.2.1, for all 0 < r < 1,

γ1(r)
2η(Sγ1(r)) = γ2(r)

2η(Tγ2(r)).

Note η(x) ≥ 1 for all x ≥ 0, so

γ1(r)
2 ≤ γ1(r)

2η(Sγ1(r)),

hence
γ1(r)

2 ≤ γ2(r)
2η(Tγ2(r)).

The right-hand-side limits to a positive finite constant as r → 0, so γ1(r)
2 is bounded

as r → 0. Hence Sγ1(r) → 0 as S2 = r → 0. Note η is continuous with η(0) = 1, so

lim
r→0

γ1(r)
2 = lim

r→0
γ1(r)

2η(0) = lim
r→0

γ2(r)
2η(Tγ2(r)) = γ2(0)

2η(γ2(0)).

Finally, rearrangement concludes:

lim
r→0

γ1(r) = γ2(0)
√

η(γ2(0)).

6.4 FS,T is real-analytic

Lemma 6.4.1. FS,T is real analytic on a × R2. Equivalently: There exists a neigh-
borhood N with a ⊆ N ⊆ C2, and a neighborhood Y with R2 ⊆ Y ⊆ C2, such that
FS,T is analytic for (S, T, y1, y2) ∈ N × Y.

Proof. Note η(x) = ex−1
x

with η(0) = 1 is entire. Additionally, ν(x) is real-analytic on
R by Lemma 3.1.1. FS,T is a sum/difference/product of a composition of real-analytic
functions, so it is real-analytic.
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6.5 γ1(S, T ), γ2(S, T ) are real-analytic on a

6.5 γ1(S, T ), γ2(S, T ) are real-analytic on a

For (S, T ) ∈ a and j = 1, 2, define γj(S, T ) in terms of γj(r) by

γj(S, T ) := γj(S
2) = γj(1− T 2),

where γj(r) with one-argument is defined as in Equation (6.1.1) for r ∈ [0, 1].
We make this change of variables because γj(r) on its own behaves poorly towards

the endpoints. For example, γ′
1(r) looks like

1√
r
times a bounded function, so γ′

1(r)

blows up as r → 0. On the other hand, γj(S, T ) is well-behaved for all (S, T ) ∈ a,
as we shall show in this section.

To prepare for this proof, we must prove invertability of the Jacobian of FS,T in
order to apply the Implicit Function Theorem.

6.5.1 Jacobian of FS,T

Lemma 6.5.1. Denote the Jacobian of FS,T (with respect to y1, y2) by:

JF,S,T,y1,y2 := J(y1,y2){FS,T}(y1, y2)

and let Qc ⊆ R2
>0 be the compact region as defined in Corollary 6.3.2.

Then the Jacobian of FS,T and its inverse are real analytic on a×Qc. In addition,
for all (S, T, y1, y2) ∈ a×Qc,

det(JF,S,T,y1,y2) > 0.

Let β(x) = (ex − 1)x, so β′(x) = ex(x+ 1)− 1. The Jacobian is explicitly given by

JF,S,T,y1,y2 =

[
−β′(Sy1)

S
β′(Ty2)

T

S3ν ′(Sy1) T 3ν ′(Ty2)

]
.

Its inverse is

J−1
F,S,T,y1,y2

=
1

det(JF,S,T,y1,y2)

[
T 3ν ′(Ty2) −β′(Ty2)

T

−S3ν ′(Sy1) −β′(Sy1)
S

]
.

Proof. Computing the derivatives of FS,T for use in the Jacobian JF,S,T,y1,y2 is straight-
forward by differentiation rules. Since FS,T is real analytic on a×Qc, its Jacobian is
as well. Next we analyse its determinant:

det(JF,S,T,y1,y2) = −T 3y1
β′(Sy1)

Sy1
ν ′(Ty2)− S3y2

β′(Ty2)

Ty2
ν ′(Sy1).

Case: 0 < S and 0 < T :
Note β′(x)

x
≥ 2 for all x > 0, and ν ′(x) < 0 for all x ∈ R. All the other quantities

are clearly positive for y1, y2 > 0, so for 0 < S and 0 < T :

det(JF,S,T,y1,y2) > 0.

Case: (S, T ) = (1, 0) or (S, T ) = (0, 1):
The above conclusion det(JF,S,T,y1,y2) > 0 applies to the quarter circle a without

its endpoints. Now we extend it to the endpoints (0, 1) and (1, 0). Since Qc is

Table of Contents 37 Index



6.5 γ1(S, T ), γ2(S, T ) are real-analytic on a

compact, y1 and y2 are bounded, so as (S, T ) → (0, 1), we have Sy1 → 0 and Ty2 →
y2 > 0. Also, note β′(x)

x
→ 2 as x → 0, so β′(Sy1)

Sy1
→ 2. Hence as (S, T ) → (0, 1):

det(JF,S,T,y1,y2) ∼ −2T 3y1ν
′(Ty2) → −2y1ν

′(y2) > 0. (6.5.1)

Similarly, as (S, T ) → (1, 0):

det(JF,S,T,y1,y2) ∼ −2S3y2ν
′(Sy1) → −2y2ν

′(y1) > 0. (6.5.2)

These last two displays imply det(JF,S,T,y1,y2) > 0 at the endpoints of a, namely at
the points (S, T ) = (1, 0) and (S, T ) = (0, 1). Thus for (S, T ) ∈ a and (y1, y2) ∈ Qc,
we have

det(JF,S,T,y1,y2) > 0.

6.5.2 Proof that γ1(S, T ), γ2(S, T ) are real-analytic

Lemma 6.5.2. Consider γ1 and γ2 from Section 6.1. Then γ1(S, T ), γ2(S, T ) are
real analytic on a and 2 < c < 4. Note a includes its endpoints (S, T ) = (1, 0) and
(S, T ) = (0, 1)),

Proof. Let Qc ⊆ R2
>0 be the compact region as defined in Corollary 6.3.2.

From Lemma 6.4.1, FS,T is real analytic in a×Qc. Hence there exists some open
sets a ⊆ N1 ⊆ C2, Qc ⊆ Y1 ⊆ C2 such that FS,T is analytic in N1 × Y1.

From Lemma 6.5.1, det(JF,S,T,y1,y2) > 0 on a×Qc. By continuity, there exist open
sets a ⊆ N2 ⊆ C2, Qc ⊆ Y2 ⊆ C2 such that det(JF,S,T,y1,y2) > 0 on N2 × Y2.

Let N = N1 ∩N2 and Y = Y1 ∩ Y2. Then

1. a×Qc ⊆ N × Y

2. FS,T is analytic in N × Y

3. det(JF,S,T,y1,y2) > 0 in N × Y .

Consider some (S0, T0) ∈ a. By Corollary 6.3.2, (γ1(S0, T0), γ2(S0, T0)) ∈ Qc ⊆ Y .
Hence (S0, T0, γ1(S0, T0), γ2(S0, T0)) ∈ N × Y , so

det(JF,S,T,y1,y2(S0, T0, γ1(S0, T0), γ2(S0, T0))) > 0.

Then Theorem 7.6 of [FG02], the Analytic Implicit Function Theorem, implies
γ1(S, T ), γ2(S, T ) (the solutions (y1, y2) to FS,T (S, T, y1, y2) = 0⃗) are analytic func-
tions in a neighborhood of (S0, T0). Since (S0, T0) ∈ a is arbitrary, we thus have
γ1, γ2 are real analytic on a.

Note we have treated c as constant in the above discussion, but (γ1, γ2) being
real analytic in c follows similarly since FS,T is real analytic in c. Apply the Ana-
lytic Implicit Function Theorem by introducing c ∈ (2, 4) analogous to the way we
considered (S, T ) ∈ a.
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6.6 w in terms of γ and r

6.6 w in terms of γ and r

For later use, we write a formula for w in terms of γ1, γ2, so it does not involve func-
tions such as α̂(r) which are defined by maximizing another function. Hence w can
be evaluated directly by solving FS,T = 0 for (γ1, γ2) without needing a maximization
routine.

In Proposition 6.6.2, we will also use this to show w(r) is real-analytic on (0, 1).

Lemma 6.6.1. Suppose r ∈ (0, 1). Let S =
√
r and T =

√
1− r, and γ1, γ2 be as in

Equation (6.1.1). Then w can be expressed in the equivalent forms:

w(r) = −1

2
cH(r) + r ln

(
η(Sγ1)γ

2
1

)
+ (1− r) ln

(
η(Tγ2)γ

2
2

)
− ln(c)− cr ln(γ1)− c(1− r) ln(γ2)− κ̆c(1, 1)

= −1

2
cH(r) + ln

(
η(Sγ1)γ

2
1

)
− ln(c)− cr ln(γ1)− c(1− r) ln(γ2)− κ̆c(1, 1)

= −1

2
cH(r) + ln

(
η(Tγ2)γ

2
2

)
− ln(c)− cr ln(γ1)− c(1− r) ln(γ2)− κ̆c(1, 1),

where we note κ̆c(1, 1) is a constant (function of c only) and recall:

H(r) := −r ln(r)− (1− r) ln(1− r), η(z) :=
ez − 1

z
.

Proof. By definitions from Section 3.3,

w̃c(r, α) = H(α)− cH(r) + κ̆c(r, α) + κ̆c(1− r, 1− α)− κ̆c(1, 1) (6.6.1)

κ̆c(r, α) = α ln(ez − 1− z)− cr ln(z), with z := z(α/(cr)) (6.6.2)

z(v) := ν−1(v) = inverse of ν(z) :=
ez − 1− z

(ez − 1)z
. (6.6.3)

By definition, wc(r) = w̃c(r, α̂(r)), so by defining κ̂c(r) = κ̆c(r, α̂(r)), we see

wc(r) = H(α̂(r))− cH(r) + κ̂c(r) + κ̂c(1− r)− κ̆c(1, 1) (6.6.4)

κ̂c(r) = α̂(r) ln(ez − 1− z)− cr ln(z), with z := z(α̂(r)/(cr)). (6.6.5)

For further simplification, we define κ̂∗
c

κ̂∗
c(r) := α̂(r) ln

(
ez − 1− z

α̂(r)

)
− cr ln

(
z√
r

)
, with z := z(α̂(r)/(cr)). (6.6.6)

This allows writing wc in terms of κ̂∗
c(r), and κ̂∗

c(r) can be simplified by using α̂(r) =
crν(z) with ν(z) = ez−1−z

(ez−1)z
, so

wc(r) = −1

2
cH(r) + κ̂∗

c(r) + κ̂∗
c(1− r)− κ̆c(1, 1) (6.6.7)

κ̂∗
c(r) = α̂(r) ln

(
(ez − 1)z

cr

)
− cr ln

(
z√
r

)
, with z := z(α̂(r)/(cr)) (6.6.8)

κ̂∗
c(r) = α̂(r) ln

(
η(z)

z2

cr

)
− cr ln

(
z√
r

)
, with z := z(α̂(r)/(cr)). (6.6.9)
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Passing to γ1, γ2 by their definitions, we see

κ̂∗
c(r) = crν(Sγ1) ln

(
η(Sγ1)

γ2
1

c

)
− cr ln(γ1) (6.6.10)

κ̂∗
c(1− r) = c(1− r)ν(Tγ2) ln

(
η(Tγ2)

γ2
2

c

)
− c(1− r) ln(γ2). (6.6.11)

By Lemma 6.2.1,

γ2
2η(Tγ2) = γ2

1η(Sγ1) (6.6.12)

(1− r)ν(Tγ2) + rν(Sγ1) =
1

c
. (6.6.13)

Hence

crν(Sγ1) ln

(
η(Sγ1)

γ2
1

c

)
+ c(1− r)ν(Tγ2)) ln

(
η(Tγ2)

γ2
2

c

)
= c(rν(Sγ1) + (1− r)ν(Tγ2)) ln

(
η(Sγ1)

γ2
1

c

)
= ln

(
η(Sγ1)

γ2
1

c

)
.

That is a nice simplification which yields

wc(r) = −1

2
cH(r) + ln

(
η(Sγ1)γ

2
1

)
− ln(c)− cr ln(γ1)− c(1− r) ln(γ2)− κ̆c(1, 1).

(6.6.14)

Due to the H(r) = −r ln(r) − (1 − r) ln(1− r) term, w is not real-analytic for
r ∈ [0, 1]. However, we can show it is real-analytic for r ∈ (0, 1).

Proposition 6.6.2. The function w is a real-analytic function of r ∈ (0, 1) and
extends continuously on [0, 1] with w(0) = w(1) = 0.

Proof. Since γ1, γ2 are real-analytic functions under the change of variables with
(S, T ) ∈ a, we see γ1, γ2 are real-analytic functions of r ∈ (0, 1). Also, γ1, γ2 are
continuous on [0, 1]. Likewise,

√
r,

√
1− r, and H(r) are real-analytic functions of

r ∈ (0, 1) and continuous for r ∈ [0, 1].
Hence the formula in Lemma 6.6.1 writes w as a sum and product of compositions

of real-analytic functions over appropriate domains. Hence w is real-analytic for
r ∈ (0, 1).

7 Combinatorics (bounds on c for two-cores): The

big sum

We are now finished discussing the behavior of hc and gc, so we proceed to proving
the combinatorics and asymptotics that lead to hc and gc appearing in the first palce.
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7.1 First moment: E(N) and proof that 2 < c ≤ 3

We begin by proving the main result of this thesis (Conjecture 1.2.1) along the
lines indicated. The approach is based on analyzing the moment ratio

E(N2)

E(N)2
.

and its asymptotics. This section devoted to deriving formulas for this ratio. Then
later sections give asymptotic bounds.

In the first subsection, we derive a simple formula for E(N) which holds for general
distributions of matrices. Formulas for the variance E(N2) are harder to derive and
much more complicated. We do this for the uniform distribution over the set Ψm,3n

of two-core 3-XOR-games as defined in Section 1.1.1, and we devote most of the
section to these formulas and their properties.

7.1 First moment: E(N) and proof that 2 < c ≤ 3

Let #S = |S| denote the size of the set S. We will use |S| usually except for the size
of a set comprehension like

#{(Γ, z) ∈ Ψm,3n × Z3n
2 | Γz = 0},

where the |{· · · }| is less readable.

Lemma 7.1.1. Let Gm,3n ⊆ Zm×3n
2 be a set of m×3n binary matrices, and Θm,3n :=

Gm,3n × Zm
2 .

Suppose a random equation Γx = s is constructed by picking a pair (Γ, s) uni-
formly from Θm,3n. Let the random variable N = N(Γ, s) denote the number of
binary solutions x to this equation. Then

E(N) = 23n−m.

Proof.

E(N) = |Θm,3n|−1
∑

(Γ,s)∈Θm,3n

N(Γ, s) (7.1.1)

=

∑
(Γ,s)∈Θm,3n

#{x ∈ Z3n
2 | Γx = s}

|Θm,3n|
(7.1.2)

=
#{(Γ, s, x) ∈ Θm,3n × Z3n

2 | Γx = s}
|Θm,3n|

(7.1.3)

=
#{(Γ, s, x) ∈ Gm,3n × Zm

2 × Z3n
2 | Γx = s}

|Gm,3n × Zm
2 |

(7.1.4)

=
#{(Γ, x) ∈ Gm,3n × Z3n

2 }
|Gm,3n × Zm

2 |
(7.1.5)

=
|Gm,3n × Z3n

2 |
|Gm,3n × Zm

2 |
=

|Gm,3n| · |Z3n
2 |

|Gm,3n| · |Zm
2 |

(7.1.6)

=
23n

2m
= 23n−m. (7.1.7)

This argument is effectively the same as a standard argument, see e.g. Remark
3 of Pittel-Sorkin ([PS16],[PS14]).
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7.2 Second moment of the probability of a solution existing in terms of counting
Γz = 0

7.1.1 Unsatisfiability with high probability when c > 3

Corollary 7.1.2. Suppose c > 3. With the setup as in Lemma 7.1.1 the probability
of there being a solution, Pr(N ≥ 1), goes to 0 as n → ∞ with m = n(c + o(1)).
Hence any critical threshold must be at most 3.

Proof. The first moment inequality says

Pr(N ≥ 1) ≤ E(N) = 23n−m = 2(3−c−o(1))n.

If c > 3, then as n → ∞, this yields E(N) → 0 and hence Pr(N ≥ 1) → 0, i.e. there
are no solutions.

Note the above lemma and corollary does not require a 2–core structure or even
a 3-XOR-game structure, but it does require the assignment vector (s in (Γ, s)) to
be uniformly-distributed on Zm

2 .

7.2 Second moment of the probability of a solution existing
in terms of counting Γz = 0

Lemma 7.2.1. We assume the same setup as Lemma 7.1.1. Then

E(N2) = 23n|Θm,3n|−1 #{(Γ, z) ∈ Gm,3n × Z3n
2 | Γz = 0}.

Proof.

E(N2) = |Θm,3n|−1
∑

(Γ,s)∈Θm,3n

(N(Γ, s))2

= |Θm,3n|−1
∑

(Γ,s)∈Θm,3n

(
#{x ∈ Z3n

2 | Γx = s}
)2

= |Θm,3n|−1
∑

(Γ,s)∈Θm,3n

#
(
{x ∈ Z3n

2 | Γx = s} × {y ∈ Z3n
2 | Γy = s}

)
= |Θm,3n|−1

∑
(Γ,s)∈Θm,3n

#{(x, y) ∈ Z3n
2 × Z3n

2 | Γx = s and Γy = s}

= |Θm,3n|−1 #{(Γ, s, x, y) ∈ Θm,3n × Z3n
2 × Z3n

2 | Γx = s and Γy = s}
= |Θm,3n|−1 #{(Γ, x, y) ∈ Gm,3n × Z3n

2 × Z3n
2 | Γx = Γy}

= |Θm,3n|−1 #{(Γ, x, y) ∈ Gm,3n × Z3n
2 × Z3n

2 | Γ(x− y) = 0}
= |Θm,3n|−1 #{(Γ, z, y) ∈ Gm,3n × Z3n

2 × Z3n
2 | Γ(x− y) = 0, x = y + z}

= 23n|Θm,3n|−1 #{(Γ, z) ∈ Gm,3n × Z3n
2 | Γz = 0}

where we remind the addition and subtraction in Z3n
2 is modulo 2.

Note the above lemma does not require a 2–core structure or even a 3-XOR-game
structure.
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7.3 Definition of 3-XOR-game and two-cores (most of this repeats intro)

7.3 Definition of 3-XOR-game and two-cores (most of this
repeats intro)

Since we are now getting back to our game equations we recall basic definitions from
the introduction, Section 1.1.1.

A 3-XOR-game matrix is a matrix Γ = (A B C) ∈ Zm×3n
2 , where A,B,C ∈

Zm×n
2 are blocks with 1 one in each row (the rest of the entries being zero). Define

a two-core matrix to be a matrix where each column has at least 2 ones. In
particular, a two-core 3-XOR-game matrix Γ is a matrix in Zm×3n

2 satisfying the
block structure Γ = (A B C), such that each column has at least 2 ones.

Recall Ψm,3n is the set of two-core 3-XOR-games, i.e. the set of pairs (Γ, s)
such that Γ is a two-core 3-XOR-game matrix and s ∈ Zm

2 . To ensure Ψm,3n is
nonempty, m ≥ 2n must hold by the following argument. The matrix Γ has m rows
each with 3 ones, so it has exactly 3m ones total in the matrix. At the same time,
each of the n columns must have at least 2 ones, so it must have at least 6n ones
total. Hence 3m ≥ 6n, so m ≥ 2n. Elsewhere in the thesis, this is realized as c > 2,
which ensures Pc is nonempty.

7.4 Big nested sum for E(N 2) for a 2-core

Now we take up counting. Let S2(p, q) be the 2-associated Stirling numbers of the
second kind (the Ward numbers), the number of ways to partition a set of size p
into q subsets of size at least 2. For m,n ∈ Z≥1 and u0, u1, u2, u3 ∈ Z≥1 satisfying
m = u0 + u1 + u2 + u3, and a, b, c ∈ {0, 1, 2, . . . , n}, define:

Ŝm,n(u0, u1, u2, u3, a, b, c) :=
m!

u0!u1!u2!u3!
×

S2(u0 + u1, a)S2(u2 + u3, n− a)×
S2(u0 + u2, b)S2(u1 + u3, n− b)×
S2(u0 + u3, c)S2(u2 + u3, n− c).

Proposition 7.4.1. If N is a random variable denoting the number of solutions to
a random 3-XOR-game problem in Ψm,3n (2-cores), then

E(N2)

E(N)2
= S2(m,n)−32m−3n

∑
u0+u1+u2+u3=m

u0,u1,u2,u3≥0

n∑
a=0

n∑
b=0

n∑
c=0

Ŝm,n(u0, u1, u2, u3, a, b, c).

Proof. Use Lemma 7.2.1 applied to Θm,3n = Ψm,3n to get:

E(N2) = 23n|Ψm,3n|−1 #{(Γ, z) ∈ Ψm,3n × Z3n
2 | Γz = 0}.

Then Lemma 7.4.2 and Lemma 7.4.3 finish the calculation of E(N2).

Lemma 7.1.1 states E(N) = 23n−m, finishing the calculation of E(N2)
E(N)2

.

Lemma 7.4.2. |Ψm,3n| = S2(m,n)3n!32m

Proof. In this proposition, Γ has the two-core 3-XOR-game structure Γ = (A B C).
For the A block:

1. Partition the m rows into n subsets of size at least 2: S2(m,n) ways
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7.4 Big nested sum for E(N2) for a 2-core

2. Order the subsets to get an assignment of 1s to columns: n! ways

Hence there are S2(m,n)n! for the A block. The B and C blocks have the same
choices independently, so there are S2(m,n)3n!3 choices for the two-core Γ matrix.
Independent of the rest of the choices, there are 2m possible s vectors, completing
the count.

Lemma 7.4.3.

#{(Γ, z) ∈ Ψm,3n × Z3n
2 | Γz = 0} =

n!3
∑

u0+u1+u2+u3=m
u0,u1,u2,u3≥0

n∑
a=0

n∑
b=0

n∑
c=0

Ŝm,n(u0, u1, u2, u3, a, b, c).

Proof. Given a vector z ∈ Z3n
2 , let I(z) denote the set of indices i where zi = 1, so

|I(z)| is the number of ones in z. For any vector z ∈ Z3n
2 , split it into three blocks

of size n, denoted by z = (zA zB zC) corresponding to the game structure of Γ. Let
a = |I(zA)|, b = |I(zB)|, and c = |I(zC)|, so a, b, c ∈ {0, 1, 2, . . . , n} are the number
of ones in each block of the vector z.

Define Γz to be the submatrix of Γ obtained by selecting its columns given by I(z)
(so Γz are precisely those columns multiplied by 1 when computing Γz, while the rest
of the columns are multiplied by 0). Partition Γz into blocks as Γz =: (Az Bz Cz)
based on which block in Γ = (A B C) each column came from. Then Az has a
columns, Bz has b columns, and Cz has c columns.

Let Γj
z be the jth row of the matrix Γz. Suppose (Γ, z) ∈ Ψm,3n ×Z3n

2 is a 3XOR
game matrix. Then Γz = 0 iff each row of Γz has one of the following four forms
(with respect to the Γz := (Az Bz Cz) block partitioning):

(I) Γj
z = (0 0 0).

(II) Γj
z = (0 e1 e1).

(III) Γj
z = (e1 0 e1).

(IV) Γj
z = (e1 e1 0).

where each e1 stands for a block row vector with exactly one 1 (with potentially
different sizes depending on a, b, c), and the 0 is a zero block row vector.

Let u0, u1, u2, u3 respectively count the number of rows Γj where the sum is
satisfied in each of these four forms. Since Γjz = 0 holds for each of the m rows of
Γ, and the four forms ((I), (II), (III), (IV)) are mutually exclusive, we have

u0 + u1 + u2 + u3 = m.

Hence every (Γ, z) pair with Γz = 0 has corresponding a, b, c ∈ {0, 1, 2, . . . , n} and
u0, u1, u2, u3 ≥ 0 with u0 + u1 + u2 + u3 = m.

We count the number of possible pairs (Γ, z) with Γz = 0 given (a, b, c) and
(u0, u1, u2, u3) satisfying these constraints by a procedure constructing all such (Γ, z).
Here is an overview of the construction:

1. Pick z ∈ Z3n
2 .
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7.4 Big nested sum for E(N2) for a 2-core

2. Pick which rows of Γz are of each form (I), (II), (III), (IV). For each row of
each block A,B,C, this fixes whether the 1 is in the submatrix Γz (the columns
corresponding to the 1s of z), or the 1 is the in the submatrix Γz (the columns
corresponding to the 0s of z).

3. Based on z and the row selection, now we build the matrix Γ = (A B C)
satisfying all necessary constraints.

The number of ways to pick such (Γ, z) is then the product of the number of choices
in each step, since the counts in the steps only depend on (a, b, c) and (u0, u1, u2, u3),
not the particular choices in the earlier steps.

The detailed procedure follows:

1. Pick z ∈ Z3n
2 by picking which entries of z are 1 (the rest being 0):

(a) choose a entries of zA to be 1:
(
n
a

)
ways,

(b) choose b entries of zB to be 1:
(
n
b

)
ways,

(c) choose c entries of zC to be 1:
(
n
c

)
ways.

Hence there are a total of
(
n
a

)(
n
b

)(
n
c

)
ways to pick z.

2. We will build the two-core 3-XOR-Game matrix Γ ∈ Zm×3n
2 by building two

submatrices

Γz = (Az, Bz, Cz) ∈ Zm×(a+b+c)
2 , Γz = (Az, Bz, Cz) ∈ Zm×((n−a)+(n−b)+(n−c))

2 ,

and threading them back together. The submatrix Γz consists of the columns of
Γ corresponding to 0 entries of z, and the submatrix Γz consists of the columns
of Γ corresponding to 1 entries of z.

3. Pick which rows of Γz are going to be of each form (I), (II), (III), (IV) subject
to the constraint that u0 rows are of form (I), u1 rows are of form (II), u2 rows

are of form (III), and u3 rows are of form (IV). There are
m!

u0!u1!u2!u3!
ways to

do this.

4. Consider the jth row of A. It has exactly one 1 by virtue of being a block of a
3-XOR-game matrix. If the 1 is in a column contained in Az, then row j of Γz

must be of the form (e1 0 e1) (III) or (e1 e1 0) (IV). Otherwise, the 1 is in a
column contained in Az, and row j of Γz is of the form (0 0 0) (I) or (0 e1 e1)
(II).

There are u0 + u1 rows of the form (I) or (II), and n− a columns in Az. Each
column needs at least 2 ones, so there are S2(u0 + u1, n − a) (n − a)! ways to
place the 1s into Az.

There are u2 + u3 rows of the form (III) or (IV), and a columns in Az. Thus
there are S2(u2 + u3, a) a! ways to place the 1s into Az

Since these counts are independent, there are

S2(u0 + u1, n− a) (n− a)!S2(u2 + u3, a) a!

ways to pick the block A.
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7.5 Reparameterizing the Big Sum

5. By the same logic, there are S2(u0 + u2, n− b) (n− b)!S2(u1 + u3, b) b! ways to
pick the block B.

6. By the same logic, there are S2(u0 + u3, n− c) (n− c)!S2(u1 + u2, c) c! ways to
pick the block C.

All of these counts are independent, so they can be multiplied to give the total count
for each (a, b, c) and (u0, u1, u2, u3). Then summing over the possible (a, b, c) and
(u0, u1, u2, u3) gives the total number of pairs (Γ, z) with Γz = 0:

#{(Γ, z) ∈ Ψm,3n × Z3n
2 | Γz = 0} =∑

u0+u1+u2+u3=m
u0,u1,u2,u3≥0

n∑
a=0

n∑
b=0

n∑
c=0

(
n

a

)(
n

b

)(
n

b

)
m!

u0!u1!u2!u3!
×

S2(u0 + u1, n− a) (n− a)!S2(u2 + u3, a) a!×
S2(u0 + u2, n− b) (n− b)!S2(u1 + u3, b) b!×
S2(u0 + u3, n− c) (n− c)!S2(u2 + u3, c) c!.

To align with convention from [DM02a], we interchange the roles of a and n− a
(respectively b and n− b, resp. c and n− c).

#{(Γ, z) ∈ Ψm,3n × Z3n
2 | Γz = 0} =∑

u0+u1+u2+u3=m
u0,u1,u2,u3≥0

n∑
a=0

n∑
b=0

n∑
c=0

(
n

a

)(
n

b

)(
n

b

)
m!

u0!u1!u2!u3!
×

S2(u0 + u1, a) a!S2(u2 + u3, n− a) (n− a)!×
S2(u0 + u2, b) b!S2(u1 + u3, n− b) (n− b)!×
S2(u0 + u3, c) c!S2(u2 + u3, n− c) (n− c)!.

Simplifying
(
n
a

)
a!(n−a)! = n! (and likewise for b, c) yields the result (Lemma 7.4.3).

7.5 Reparameterizing the Big Sum

Define Im = {0, 1
m
, 2
m
, . . . , 1} and In = {0, 1

n
, 2
n
, . . . , 1}. In notation that will be

motivated in the proof of Proposition 7.5.1, we define the summand Sm,n on vectors
of rational numbers r⃗ := (r1, r2, r3) ∈ I3

m ∩ T and α⃗ := (α1, α2, α3) ∈ I3
n as:

Sm,n(r⃗, α⃗) := Sm,n(r1, r2, r3, α1, α2, α3) := mc(r1, r2, r3)×
S2(mr1, nα1)S2(m(1− r1), n(1− α1))×
S2(mr2, nα2)S2(m(1− r2), n(1− α2))×
S2(mr3, nα3)S2(m(1− r3), n(1− α3))

where

mc(r1, r2, r3) :=
m!

u0!u1!u2!u3!
with

u0 = mt0 = m(r1 + r2 + r3 − 1)/2 u1 = mt1 = m(r1 − r2 − r3 + 1)/2

u2 = mt2 = m(−r1 + r2 − r3 + 1)/2 u3 = mt3 = m(−r1 − r2 + r3 + 1)/2.
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7.5 Reparameterizing the Big Sum

Define the matrix Ac as follows:

Ac :=


1/c 1/c 0
1/c 0 1/c
0 −1/c −1/c

1
1

1

 . (7.5.1)

Define the lattice Lm,n by the following, where c = m/n,

Lm,n :=
1

n
AcZ

6 +
[
0, 0, 1, 0, 0, 0

]⊤
. (7.5.2)

As a remark, Lm,n is a subset of an axis-aligned lattice:

Lm,n =

{
(r⃗, α⃗) ∈ 1

m
Z3 × 1

n
Z3 | m(r1 + r2 + r3) even

}
. (7.5.3)

Proposition 7.5.1. If N is a random variable denoting the number of solutions to
a random problem (Γ, s) ∈ Ψm,3n (two-core 3-XOR-games), then

E(N2)

E(N)2
= S2(m,n)−32m−3n

∑
(r⃗,α⃗)∈Lm,n∩(T ×[0,1]3)

Sm,n(r⃗, α⃗). (7.5.4)

Proof. Start from Proposition 7.4.1:

E(N2)

E(N)2
= S2(m,n)−32m−3n

∑
u0+u1+u2+u3=m

u0,u1,u2,u3≥0

n∑
a=0

n∑
b=0

n∑
c=0

Ŝm,n(u0, u1, u2, u3, a, b, c).

Using integers (a, b, c) made the combinatorics clear, but it is more convenient to
normalize the values to [0, 1]. Define α1, α2, α3 as

α⃗ := (α1, α2, α3) := (a, b, c)/n.

Applying this substitution yields

E(N2)

E(N)2
= S2(m,n)−32m−3n

∑
u0+u1+u2+u3=m

u0,u1,u2,u3≥0

∑
(α1,α2,α3)∈I3

n

Ŝm,n(u0, u1, u2, u3, nα1, nα2, nα3).

The S2 terms in Ŝm,n involve arguments such as u0 + u1 and u0 + u2, so we will
reparameterize to ri ∈ [0, 1] given by:

r1 =
1

m
(u0 + u1)

r2 =
1

m
(u0 + u2)

r3 =
1

m
(u0 + u3) = 1− 1

m
(u1 + u2).
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Hence we have the relationshipr1r2
r3

 =

1/m 1/m 0
1/m 0 1/m
0 −1/m −1/m

u0

u1

u2

+

00
1

 .

The overall change of variables is the following, where c = m/n,
r0
r1
r2
α1

α2

α3

 =
1

n
Ac


u0

u1

u2

a
b
c

+


0
0
1
0
0
0

 .

Since 0 ≤ u0 + u1 + u2 ≤ m = cn and 0 ≤ a, b, c ≤ n, we have (r0, r1, r2) ∈
T and (α1, α2, α3) ∈ [0, 1]3. Hence the summation terms are given by precisely
Lm,n ∩ (T × [0, 1]3), yielding

E(N2)

E(N)2
= S2(m,n)−32m−3n

∑
(r⃗,α⃗)∈Lm,n∩(T ×[0,1]3)

Sm,n(r⃗, α⃗). (7.5.5)

7.6 Introducing parallelogram P0,1
c and polytope U01

c

Proposition 7.5.1 introduced the parameters r⃗ and α⃗ by a change of variables. Recall
r⃗ must lie within the tetrahedron T defined in Equation (2.1.1), and α⃗ lies arbitrarily

within the cube [0, 1]3. However, we will see that the summand ˘Sm,n is identically
zero except on a certain region. For approximation purposes, it will be useful to
constrain α⃗ to lie in the region in which ˘Sm,n can be nonzero.

We begin this topic by defining an essential parallelogram. For each real c > 2,
define the parallelogram P0,1

c , depicted in Figure 7.1 as

P0,1
c := {(r, α) ∈ (0, 1)2 | α ≤ c

2
r, 1− α ≤ c

2
(1− r)} ∪ {(0, 0), (1, 1)}. (7.6.1)

Note the parallelogram Pc from Section 3.2 is the interior of P0,1
c .
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7.6 Introducing parallelogram P0,1
c and polytope U01

c

Figure 7.1: P0,1
c at c = 2.9

Lemma 7.6.1. If (r, α) /∈ P0,1
c and c = m/n, then S2(mr, nα)S2(m(1 − r), n(1 −

α)) = 0.

Corollary 7.6.2. Suppose (r1, r2, r3, α1, α2, α3) ∈ [0, 1]6. If (rj, αj) /∈ P0,1
c for some

j ∈ {1, 2, 3}, then ˘Sm,n(r1, r2, r3, α1, α2, α3) = 0.

Proof. For p, q ≥ 0 integers, if p < 2q, then S2(p, q) = 0 since a set with less than
2q elements cannot be partitioned into q parts of size at least 2. If α > c

2
r or

1 − α > c
2
(1 − r), then cross-multiplying gives mr < 2nα or m(1 − r) < 2n(1 − α).

Thus in these cases,

S2(mr, nα)S2(m(1− r), n(1− α)) = 0.

For p, q ≥ 0 integers, if q = 0 and p > 0, then S2(p, q) = 0 by definition since
a set with p > 0 elements cannot be partitioned into 0 parts. Hence, if (α = 0 and
r > 0) or (α = 1 and r < 1), then

S2(mr, nα)S2(m(1− r), n(1− α)) = 0.

This finishes the proof, since P0,1
c as defined above is also given by

P0,1
c := ([0, 1]× [0, 1]) \ Qc, where

Qc := {(r, α) | α >
c

2
r} ∪ {(r, α) | 1− αj >

c

2
(1− rj)}

∪ {(r, 0) | r > 0} ∪ {(r, 1) | r < 1}

where we just showed that if (r, α) ∈ Qc, then

S2(mr, nα)S2(m(1− r), n(1− α)) = 0.

The corollary follows from ˘Sm,n(r⃗, α⃗) being a product of terms including

S2(mrj, nαj)S2(m(1− rj), n(1− αj)) = 0.
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If any term is zero, then the product is zero, so if (rj, αj) ∈ Qc for some j ∈ {1, 2, 3},
then ˘Sm,n(r⃗, α⃗) = 0.

Define the convex 6-polytope U01
c :

U01
c = {(r1, r2, r3, α1, α2, α3) ∈ T × [0, 1]3 | (r1, α1) ∈ P0,1

c , (r2, α2) ∈ P0,1
c , (r3, α3) ∈ P0,1

c }..
(7.6.2)

When working with the discrete grid, we will use

U01
m,n := U01

c ∩ Lm,n (7.6.3)

where Lm,n is defined in Equation (7.5.2).

Lemma 7.6.3.

E(N2)

E(N)2
= S2(m,n)−32m−3n

∑
(r⃗,α⃗)∈U01

m,n

Sm,n(r⃗, α⃗).

Proof. Start from Proposition 7.5.1, which states

E(N2)

E(N)2
= S2(m,n)−32m−3n

∑
(r⃗,α⃗)∈Lm,n∩(T ×[0,1]3)

Sm,n(r⃗, α⃗). (7.6.4)

Then Lemma 7.6.1 states Sm,n(r⃗, α⃗) = 0 if (rj, αj) /∈ P0,1
c for some j = 1, 2, 3.

This finishes the proof by definition of U01
c since both sums add the same nonzero

terms.

Corollary 7.6.4. To simplify notation for later, we introduce the full summand:

˘Sm,n(r⃗, α⃗) := S2(m,n)−32m−3nSm,n(r⃗, α⃗).

Hence

E(N2)

E(N)2
=

∑
(r⃗,α⃗)∈U01

m,n

˘Sm,n(r⃗, α⃗).

8 Stirling/Binomial approximations approximations

to the summand ( ˘Sm,n)

In this section, we give ultimately give asymptotic approximations to the summand
˘Sm,n from Corollary 7.6.4, as n → ∞ with m = cn for fixed c > 2. En route, we

describe the asymptotics of various functions which are factors of ˘Sm,n, namely, the
multichoose function, S2, and products of these.

The discussion is complicated by issues of uniformity of convergence of the asymp-
totic expansion of S2 which we use from the literature. We issue a warning that while
pointwise convergence is proved (we checked the proof) and uniform convergence is
asserted we did not extract a careful proof from the literature. Next, we give a
description of these convergence issues.

Suppose a positive-valued function f(n, α) is defined for all positive integers n
and α in some set. There are many ways in which another function g(n, α) can be

an approximation to f(n, α), and we consider a few. Let σ(n, α) = g(n,α)
f(n,α)

be the
approximation ratio.
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8.1 Stirling-type approximation to multinomial coefficients

1. Pointwise convergent: For fixed α, then σ → 1 as n → ∞

2. Uniformly bounded error: There exists upper and lower bounds 0 < L <
U < ∞ such that L ≤ σ ≤ U for all n, α.

3. Uniformly convergent in α: There exists upper and lower bounds 0 <
L(n) < U(n) < ∞ such that L(n) ≤ σ ≤ U(n) for all n, α; and L(n) → 1 and
U(n) → 1 as n → ∞.

Note “Uniformly convergent in α” implies the other two, but neither “Pointwise
convergent” nor “Uniformly-bounded error’ implies the others.

This section begins with subsections which provide the asymptotics for basic
factors of ˘Sm,n. Then Proposition 8.3.1 combines these.

8.1 Stirling-type approximation to multinomial coefficients

We give a Stirling asymptotic the multinomial coefficient, together with lower and
upper bounds. This Stirling-type approximation relies on the entropy function H,
recalled from Section 3.3:

H(t0, t1, t2, t3) := −t0 ln(t0)− t1 ln(t1)− t2 ln(t2)− t3 ln(t3) (8.1.1)

H(x) := −x ln(x)− (1− x) ln(1− x) (8.1.2)

where we define (by continuity) −x ln(x) = 0 at x = 0. Define the shrunk tetra-
hedron in barycentric coordinates by

T 1/12
bary := {(t0, t1, t2, t3) | t0 + t1 + t2 + t3 = 1, ti >

1

12
, i ∈ {0, 1, 2, 3}}. (8.1.3)

The motivation of introducing T 1/12
bary is to have a region upon which the asymptotics

are uniformly convergent. It could be replaced with any compact subset of T , for
example, but we stick with T 1/12

bary for concreteness.

For later usage, we define T 1/12 in non-barycentric coordinates by way of the
coordinates introduced in Equation (2.1.1) as

T 1/12 := {r⃗ ∈ T | (t0(r⃗), t1(r⃗), t2(r⃗), t3(r⃗)) ∈ T 1/12
bary }. (8.1.4)

Proposition 8.1.1. Fix positive rationals t0, t1, t2, t3 satisfying t0 + t1 + t2 + t3 = 1.
As m → ∞ such that m, t0m, t1m, t2m, t3m are positive integers, we have(

m

t0m, t1m, t2m, t3m

)
∼ eH(t0,t1,t2,t3)m

√
1

t0t1t2t3(2πm)3
. (8.1.5)

Furthermore, the asymptotic approximation in Equation (8.1.5) is uniformly conver-

gent over T 1/12
bary as m → ∞. The approximation also has uniformly bounded error

for all m, t0, t1, t2, t3 satisfying the hypothesis.

Proof. We omit the proof because it is the same as for the following Lemma 8.1.2,
but with more factorials multiplied.

The shrunk tetrahedron T 1/12
bary comes into play because the error bound comes

from the factorial error bounds. By imposing ti >
1
12
, we get mti >

1
12
m, so the

Stirling approximation for (mti)! is uniformly convergent as m → ∞.
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8.1 Stirling-type approximation to multinomial coefficients

The following lemma gives bounds on the approximation which are a bit looser
than those in Theorem 2.6 [Stă01]. Our proof is simpler, so we include it; also being
self-contained is a convenience.

Lemma 8.1.2. Fix rational t ∈ (0, 1). As m → ∞ such that m,mt,m(1 − t) are
positive integers, we have(

m

tm

)
∼ eH(t)m

√
1

t(1− t)(2πm)
. (8.1.6)

Furthermore, the asymptotic approximation in Equation (8.1.6) is uniformly conver-
gent over t ∈

(
1
12
, 11
12

)
as m → ∞. The approximation also has uniformly bounded

error for all m, t satisfying the hypothesis.

Proof. Define σ!
n as the approximation ratio of the Stirling factorial approximation:

n! =
√
2πn

(n
e

)n
σ!
n. (8.1.7)

Robbins[Rob55] bounds this ratio by

1

12n+ 1
< ln

(
σ!
n

)
<

1

12n
.

For n ≥ 1, we have 1 ≤ e1/(12n+1), so

σ!
n ∈

(
1, e1/(12n)

)
.

Hence (
m

tm

)
=

m!

(tm)!((1− t)m)!

=
σ!
m

σ!
tmσ

!
(1−t)m

√
2πm(m/e)m√

2πtm(tm/e)tm
√
2π(1− t)m((1− t)m/e)(1−t)m

= σt,m
1√

2πmt(1− t)

1

ttm(1− t)(1−t)m

= σt,m
1√

2πmt(1− t)
eH(t)m

where we let

σt,m =
σ!
m

σ!
tmσ

!
(1−t)m

∈
(

1

e1/(12mt)e1/(12m(1−t))
, e1/(12m)

)
.

In particular, for t ∈
(

1
12
, 11
12

)
, we have 12t, 12(1− t) ≥ 1, so

ln(σt,m) ∈
(
− 2

m
,

1

12m

)
.

Hence as m → ∞, then σt,m → 1 uniformly for t ∈
(

1
12
, 11
12

)
.

For all m, t satisfying the hypothesis, m,mt,m(1− t) ≥ 1, so

σ!
m, σ

!
tm, σ

!
(1−t)m ∈

(
1, e1/12

)
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8.1 Stirling-type approximation to multinomial coefficients

which yields a uniform bound given by

σt,m ∈
(
e−1/6, e1/12

)
.

Hence the approximation Equation (8.1.6) has uniformly bounded error for all m, t
satisfying the hypothesis.

The next lemma treats a ratio of binomial coefficients which appears in the big
summand ˘Sm,n. To state it, let P1/12

c ⊆ Pc be the shrunk parallelogram, given by

P1/12
c :=

{
(r, α) ∈ Pc | r, α ∈

(
1

12
,
11

12

)
,
cr − 2α

c− 2
∈
(

1

12
,
11

12

)}
.

As with T 1/12
bary , this is introduced to provide a concrete region upon which convergence

is uniform for upcoming approximations.
In the upcoming proofs, it is useful to factor g̃c as

g̃c(r, α) = g̃main
c (r, α)

ğ
c
(r, α)ğ

c
(1− r, 1− α)

ğ
c
(1, 1)

, where we define (8.1.8)

ğ
c
(r, α) :=

1

cr

√
α(cr − 2α)

−zν ′(z)
with z = z(α/(cr)) (8.1.9)

g̃main
c (r, α) =

1√
2π

√
cr(1− r)√

α(1− α)
√
(cr − 2α)(1− cr−2α

c−2
)
. (8.1.10)

Simplification verifies this as equivalent to the previous definition of g̃c in Equa-
tion (3.3.6):

g̃c(r, α) =
1√
2πn

√
cr(1− r)√

α(1− α)
√

(cr − 2α)(1− cr−2α
c−2

)

ğ
c
(r, α)ğ

c
(1− r, 1− α)

ğ
c
(1, 1)

=
1√
2πn

√
cr(1− r)√

α(1− α)
√

(cr − 2α)(1− cr−2α
c−2

)

1
cr

√
α(cr−2α)
−z1ν′(z1)

1
c(1−r)

√
(1−α)(c(1−r)−2(1−α))

−z2ν′(z2)

1
c

√
c−2

−z0ν′(z0)

=
1√
2πn

1√
(1− cr−2α

c−2
)

1√
cr(1−r)

√
1

−z1ν′(z1)

√
(c(1−r)−2(1−α))

−z2ν′(z2)√
c−2

−z0ν′(z0)

g̃c(r, α) =

√
−z0ν ′(z0)

z1ν ′(z1)z2ν ′(z2)

√
1

2cπnr(1− r)
.

Lemma 8.1.3. Fix rational c > 2 and let (r, α) ∈ Pc. As n → ∞ such that
n, cn, cnr, cn(1− r), cnα, cn(1− α) are positive integers, we have(

cn

cnr

)−1(
n

nα

)(
(c− 2)n

(cr − 2α)n

)
∼

1√
n
g̃main
c (r, α) exp

(
n

(
H(α)− cH(r) + (c− 2)H

(
cr − 2α

c− 2

)))
.

(8.1.11)
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8.2 Approximating S2 asymptotically

Furthermore, this asymptotic approximation in Equation (8.1.11) is uniformly con-

vergent over (r, α) ∈ P1/12
c as n → ∞. The approximation also has uniformly

bounded error for all n, r, α satisfying the hypothesis.

Proof. We apply Lemma 8.1.2 three times:

1. On
(

n
nα

)
, so (t,m) = (α, n). Let σα := σα,n be the approximation ratio here.

2. On
(
cn
cnr

)
, so (t,m) = (r, cn). Let σr := σr,cn.

3. On
(

(c−2)n
(cr−2α)n

)
, so (t,m) =

(
cr−2
c−2

, (c− 2)n
)
. Let σ÷ := σ cr−2

c−2
,(c−2)n.

Then: (
cn

cnr

)−1(
n

nα

)(
(c− 2)n

(cr − 2α)n

)
=

σασ÷

σr

√
2πcnr(1− r)√

2πnα(1− α)
√

2π(c− 2)n
(
cr−2α
c−2

) (
1− cr−2α

c−2

)×
exp

(
n

(
H(α)− cH(r) + (c− 2)H

(
cr − 2α

c− 2

)))
= σ

1√
2πn

√
cr(1− r)√

α(1− α)
√

(cr − 2α)(1− cr−2α
c−2

)
×

exp

(
n

(
H(α)− cH(r) + (c− 2)H

(
cr − 2α

c− 2

)))
= σ

1√
n
g̃main
c (r, α) exp

(
n

(
H(α)− cH(r) + (c− 2)H

(
cr − 2α

c− 2

)))
where we find σ = σασ÷

σr
is the approximation ratio.

For (r, α) ∈ P1/12
c , we have r, α, cr−2α

c−2
∈
(

1
12
, 11
12

)
. Hence the uniform part of

Lemma 8.1.2 applies to imply each binomial approximation is uniformly convergent
for (r, α) ∈ P1/12

c . Since the quantity is a product of such binomials (which are
bounded for each n), the approximation Equation (8.1.11) is uniformly convergent

as n → ∞ over (r, α) ∈ P1/12
c .

Additionally, Lemma 8.1.2 implies the errors σα, σr, σ÷ of each binomial approx-
imation are uniformly bounded, so the asymptotic Equation (8.1.11) has uniformly
bounded error as well.

8.2 Approximating S2 asymptotically

8.2.1 S2 Asymptotics from [Hen94]

Temme [Tem92] (see also Chapter 34 of his book [Tem14]) derived a Stirling-like
asymptotic formula for Stirling numbers of the second kind. Hennecart [Hen94] used
this method on more general problems, in particular associated Stirling numbers of
the second kind. Recall S2(p, q) is the 2-associated Stirling numbers of the second
kind (the Ward numbers), the number of ways to partition a set of size p into q
subsets of size at least 2. For these, he obtained the following lemma.

Table of Contents 54 Index



8.2 Approximating S2 asymptotically

Lemma 8.2.1. For any integers p ≥ 1 and 0 ≤ q ≤ p/2, let

Φ(z) = −p ln(z) + q ln(ez − 1− z)

and let z0 (as a function of p, q) be the unique positive root of Φ′(z0) = 0. Then the
approximation

S2(p, q) ∼
p!

q!(p− 2q)!

(
p− 2q

e

)p−2q
(ez0 − 1− z0)

q

zp+1
0

√
p− 2q

Φ′′(z0)
. (8.2.1)

is uniformly convergent over integers q ∈ [0, p/2] as p → ∞. We shall use the
following algebraically-equivalent form, noting z0 is the unique root of ν(z0) = q/p:

S2(p, q) ∼
(

p!

q!(p− 2q)!

)(
1

p

√
q(p− 2q)

−z0ν ′(z0)

)((
p− 2q

e

)p−2q
(ez0 − 1− z0)

q

zp0

)
.

(8.2.2)

As a cultural note, we mention that this lemma is used and cited in Theorem 3.4 in
[DM02a].

Proof (Lemma 8.2.1). Directly from Equation 4.9 in [Hen94], with Hennecart’s r set
to 2, we find the asymptotic behavior for S2 written in Lemma 8.2.1.

Hennecart’s assertion of uniformity occurs after equation (4.9) [Hen94]. Hen-
necart states “Several computations with different values of n and r was done, and
showed the uniform character of (4.9) with respect to k.” (where Equation 4.9 is the
approximation S2(n, k) ∼ ...).

To obtain the algebraically-equivalent formula, we begin with a preliminary cal-
culation

Φ′(z) = −p

z
+

q(ez − 1)

ez − 1− z
(8.2.3)

zΦ′(z) = −p+
q

ν(z)
(8.2.4)

ν(z0) =
q

p
(8.2.5)

Φ′′(z0) =
q

z0

∂

∂z
(1/ν(z)) = − q

z0

ν ′(z0)

ν(z0)2
= −p2

q

ν ′(z0)

z0
(8.2.6)

and substitute to obtain

S2(p, q) ∼
p!

q!(p− 2q)!

(
p− 2q

e

)p−2q
(ez0 − 1− z0)

q

zp+1
0

√
p− 2q

−p2

q
ν′(z0)
z0

(8.2.7)

S2(p, q) ∼
p!

q!(p− 2q)!

1

p

(
p− 2q

e

)p−2q
(ez0 − 1− z0)

q

zp0

√
q(p− 2q)

−z0ν ′(z0)
(8.2.8)

S2(p, q) ∼
(

p!

q!(p− 2q)!

)(
1

p

√
q(p− 2q)

−z0ν ′(z0)

)((
p− 2q

e

)p−2q
(ez0 − 1− z0)

q

zp0

)
.

(8.2.9)
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8.2 Approximating S2 asymptotically

8.2.2 Asymptotics of the ratio of S2s

Lemma 8.2.2. Fix c > 2 and let (r, α) ∈ Pc. As m,n → ∞ satisfying m/n = c > 2
such that mr,m(1− r), nα, n(1− α) are positive integers, we have

S2(mr, nα)S2(m(1− r), n(1− α))

S2(m,n)
∼ 1√

n
g̃c(r, α) exp(w̃c(r, α)n). (8.2.10)

where we repeat the definitions of g̃c and w̃c from Section 3.3:

g̃c(r, α) :=

√
−z0ν ′(z0)

z1ν ′(z1)z2ν ′(z2)

√
1

2cπr(1− r)

w̃c(r, α) := H(α)− cH(r) + κ̆c(r, α) + κ̆c(1− r, 1− α)− κ̆c(1, 1)

κ̆c(r, α) := α ln(ez − 1− z)− cr ln(z) with z = ν−1(α/(cr)).

Furthermore, the asymptotic approximation in Equation (8.2.10) is uniformly

convergent over (r, α) ∈ P1/12
c as m,n → ∞. The approximation also has uniformly

bounded error for all m,n, r, α satisfying the hypothesis.

Proof. From Lemma 8.2.1, the following asymptotic approximation is uniformly con-
vergent in q as p → ∞:

S2(p, q) ∼
(

p!

q!(p− 2q)!

)(
1

p

√
q(p− 2q)

−z0ν ′(z0)

)((
p− 2q

e

)p−2q
(ez0 − 1− z0)

q

zp0

)
.

We evaluate several S2s of the same form, so we simplify that now by substituting
p = cnr and q = nα, to get an asymptotic approximation that is uniformly convergent
in n, α as mr = cnr → ∞:

S2(cnr, nα) (8.2.11)

∼
(

(cnr)!

(nα)!((cr − 2α)n)!

)(
1

cr

√
α(cr − 2α)

−zν ′(z)

)
× (8.2.12)

n(cr−2α)n

((
cr − 2α

e

)(cr−2α)n
(ez − 1− z)nα

zcnr

)
(8.2.13)

=

(
(cnr)!

(nα)!((cr − 2α)n)!

)
n(cr−2α)n

(
1

cr

√
α(cr − 2α)

−zν ′(z)

)
× (8.2.14)

exp

(
n ln

((
cr − 2α

e

)cr−2α
(ez − 1− z)α

zcr

))
(8.2.15)

=

(
(cnr)!

(nα)!((cr − 2α)n)!

)
n(cr−2α)nğ

c
(r, α) exp(nκ̆new

c (r, α)) (8.2.16)

where ğ
c
(r, α) is defined in Equation (8.1.9), and we define κ̆new

c as:

κ̆new
c (r, α) := α ln(ez − 1− z)− cr ln(z) + (cr − 2α)(ln(cr − 2α)− 1)

= κ̆c(r, α) + (cr − 2α)(ln(cr − 2α)− 1).
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Multiplying and dividing approximations of the form in Equation (8.2.16) yields
the following approximation, which is uniformly convergent in n, α as m,mr,m(1−
r) → ∞ with m = cn for c > 2.

S2(cnr, nα)S2(cn(1− r), n(1− α))

S2(cn, n)
(8.2.17)

=

(
cn

cnr

)−1(
n

nα

)(
(c− 2)n

(cr − 2α)n

)
ğ
c
(r, α)ğ

c
(1− r, 1− α)

ğ
c
(1, 1)

× (8.2.18)

exp (n [κ̆new
c (r, α) + κ̆new

c (1− r, 1− α)− κ̆new
c (1, 1)]) .. (8.2.19)

With m = cn, substituting Lemma 8.1.3 (which is uniformly convergent for (r, α) ∈
P1/12

c ) to approximate the binomial coefficients in Equation (8.2.19) yields

S2(mr, nα)S2(m(1− r), n(1− α))

S2(m,n)

∼ 1√
n
g̃main
c (r, α)

ğ
c
(r, α)ğ

c
(1− r, 1− α)

ğ
c
(1, 1)

×

exp
(
n
[
H(α)− cH(r)+

(c− 2)H

(
cr − 2α

c− 2

)
+ κ̆new

c (r, α) + κ̆new
c (1− r, 1− α)− κ̆new

c (1, 1)
])

.

By algebraic manipulation, we have

(c− 2)H

(
cr − 2α

c− 2

)
+ κ̆new

c (r, α) + κ̆new
c (1− r, 1− α)− κ̆new

c (1, 1)

= κ̆c(r, α) + κ̆c(1− r, 1− α)− κ̆c(1, 1),

The factoring of g̃c in Equation (8.1.8) and definition of w̃c finally yields

S2(mr, nα)S2(m(1− r), n(1− α))

S2(m,n)
∼ 1√

n
g̃c(r, α) exp(nw̃c(r, α))

is uniformly convergent over (r, α) ∈ P1/12
c as m,mr,m(1 − r) → ∞. Note since

r ∈
(

1
12
, 11
12

)
, then mr,m(1− r) → ∞ when m → ∞.

This finishes the derivation of the main formula of Lemma 8.2.2. Since the ap-
proximations applied (Lemma 8.2.1 and Lemma 8.1.3) have uniformly bounded error,
the result has uniformly bounded error as well.

8.3 The asymptotic approximation to the big sum’s sum-
mand

Using the definition of T 1/12 from Equation (8.1.4), define for c = m/n,

U Int
c := IntUc = U01

c ∩ {0 < ri < 1, 0 < αi < 1, 0 < ti} (8.3.1)

U Int
m,n := U Int

c ∩ Lm,n = U01
m,n ∩ {0 < ri < 1, 0 < αi < 1, 0 < ti} (8.3.2)

U∂
m,n := U01

m,n \ U Int
m,n (8.3.3)

U1/12
c := {(r⃗, α⃗) | r⃗ ∈ T 1/12, (ri, αi) ∈ P1/12

c , i = 1, 2, 3} ⊆ U Int
c . (8.3.4)
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As motivation, recall from Corollary 7.6.4 that the big sum we care about is

E(N2)

E(N)2
=

∑
(r⃗,α⃗)∈U01

m,n

˘Sm,n(r⃗, α⃗).

We will approximate ˘Sm,n(r⃗, α⃗) well on U Int
m,n, so U∂

m,n provides the terms of the sum
where the approximation does not hold.

Proposition 8.3.1. Fix c > 2 and let (r⃗, α⃗) ∈ Uc. As m,n → ∞ with m/n = c > 2
such that mri,m(1− ri), nαi, n(1− αi) are positive integers for i = 1, 2, 3, we have

˘Sm,n(r⃗, α⃗) ∼ n−3gc(r⃗, α⃗)e
nhc(r⃗,α⃗) (8.3.5)

where gc and hc are defined in Section 3.3.
Furthermore, the asymptotic approximation in Equation (8.3.5) is uniformly con-

vergent over (r⃗, α⃗) ∈ U1/12
c as m,n → ∞. The approximation also has uniformly

bounded error for all (r⃗, α⃗) ∈ U Int
m,n and m,n ≥ 1 satisfying the hypothesis.

Proof. Expanding definitions, we have

˘Sm,n(r⃗, α⃗) = 2m−3n mc(r1, r2, r3)×
S2(mr1, nα1)S2(m(1− r1), n(1− α1))/S2(m,n)×
S2(mr2, nα2)S2(m(1− r2), n(1− α2))/S2(m,n)×
S2(mr3, nα3)S2(m(1− r3), n(1− α3))/S2(m,n).

This 6 dimensional sum has three groups of terms:

1. 2m−3n = exp(n((c− 3) ln 2))

2. Multichoose mc(r1, r2, r3) =
(

cn
cnt0,cnt1,cnt2,cnt3

)
3. Three copies of S2 ratio.

Since the definition of U Int
m,n implies mt0,mt1,mt2,mt3 are positive integers, then by

Proposition 8.1.1, the multichoose term is asymptotically:

mc(r1, r2, r3) =

(
cn

cnt0, cnt1, cnt2, cnt3

)
∼ 1√

(2πcn)3t0t1t2t3
exp(nH(t0, t1, t2, t3)).

(8.3.6)

Note r⃗ ∈ T 1/12 implies t0, t1, t2, t3 >
1
12
, so the uniform part of Proposition 8.1.1 can

apply. Hence, this asymptotic expansion Equation (8.3.6) is uniformly convergent
for r⃗ ∈ T 1/12 as cn → ∞. Also, the expansion has uniformly bounded error for r⃗ in
the interior of T .

From Lemma 8.2.2, each S2 ratio is asymptotically

S2(mr, nα)S2(m(1− r), n(1− α))

S2(m,n)
∼ 1√

n
g̃c(r, α) exp(n · w̃c(r, α)). (8.3.7)

Equation (8.3.7) holds uniformly over (r, α) ∈ P1/12
c as m,n → ∞ with m/n = c > 2.

Also, Equation (8.3.7) has uniformly bounded error for (r, α) ∈ Pc.

Since ˘Sm,n(r⃗, α⃗) is a product of the above terms, the result follows.
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9 Discrete Laplace method

9.1 Laplace’s Asymptotic Formula, background

The Discrete Laplace Method is used in applied mathematics, though often without
thorough justification, with the classical threshold paper [DM02a] being an example.
To explain the situation we start with the classical continuous Laplace method, which
the discrete Laplace method imitates.

Let W be open and bounded. We say a pair of functions g, h : W → R “satisfies
Laplace assumptions” with maximizer x0 when:

1. g ≥ 0 is continuous and Riemann-integrable on W .

2. h ≤ 0 is twice continuously-differentiable, and h(x0) = 0 is its unique global
maximizer (so h(x0) = 0, and h(x) < 0 for x ̸= x0).

3. H{h}(x0) (the Hessian of h at x0) is negative definite.

4. lim infx→w h(x) < 0 for all w ∈ ∂W .

Lemma 9.1.1 (Laplace’s Method (continuous)). Let W ⊆ Rd be open and bounded,
and suppose g, h satisfies Laplace assumptions with maximizer x0 ∈ W. Then as
n → ∞, ∫

x∈W
g(x)enh(x)dx ∼

(
2π

n

)d/2
g(x0)√

det (−H{h}(x0))
. (9.1.1)

Proof. This is a slight variation of the statement of Theorem 15.2.2 from [Sim15].
For further terms of the expansion, see Theorem 15.2.5, which relies on g, h being
infinitely differentiable.

The basic problem the Discrete Laplace Method addresses is:
Define an invertible square matrix A and vector v to determine a sequence of

lattices Λn := 1
n
AZd + v. Given a domain D ⊆ Rd, suppose Sn : D ∩ Λn → R is

sequence of non-negative functions. We want to see how∑
x∈D∩Λn

Sn(x) (9.1.2)

behaves asymptotically as n → ∞.
If we are in a case where the sum behaves like a Riemann sum and Sn has an

asymptotic approximation Sn(x) ∼ g(x)enh(x), then optimistically∑
x∈D∩Λn

Sn(x) ∼
nd

|det(A)|

∫
D

genhdx. (9.1.3)

If we are in a nice enough situation, this integral succumbs to the Laplace Integral
Method, which would yield∑

x∈D∩Λn

Sn(x) ∼
(2πn)d/2

|det(A)|
g(x0)e

nh(x0)√
det(−H{h}(x0))

. (9.1.4)
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9.2 Critical Threshold Situations

The classic Dubois-Mandler paper [DM02b], when they face this issue in their simpler
situation, assert without much discussion that the Discrete Laplace Method works:
“The proof is broadly similar to the ordinary Laplace approximation ... except that
instead of working directly on the integral, one has to highlight a Riemann sum.”
While situation in [DM02b] is simpler than ours, it still has complications (which
they do not mention) which are similar to the three listed below which are a problem
for us.

We are in the process of trying to rigorously prove this in our situation to obtain
the main formula Equation (1.2.3): If m = cn, then

E(N2)

E(N)2
∼ n−3 c

3

2
(2πn)3

gc(x0)√
det(−H{hc}(x0))

whereH{hc}(x0) denotes the Hessian of hc evaluated at x0, and x0 =
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
is the global maximizer of hc on Uc.

9.2.1 Impediments to Rigor

The main troubles in proving this rigorously come from three sources:

1. gce
nhc is not defined on the boundary U∂

m,n of the summation region (this comes
from expressions like 1

t0
which are ill-defined on the boundary of T where t0 = 0,

as well as (0, 0) ∈ P0,1
c being excluded from Pc).

This can be addressed by combinatorial arguments (not Stirling-type approx-

imations) that carefully handle the growth rate of the summand ˘Sm,n near
the boundary U∂

m,n, and leverage the fact that the boundary U∂
m,n is “lower-

dimensional” (has on order 1/n of the total points) compared to the full U01
m,n.

This claim is formally stated in Conjecture 9.3.1.

2. gce
nh is not uniformly convergent to ˘Sm,n on the entire summation region (this

arises from q! being poorly-approximated by Stirling at q = 1, and such a term
appears regardless of n).

This can be approached by noting the error
˘Sm,n

n−3gce
nh is uniformly bounded on

the whole summation region except the boundary (U01
m,n \ U∂

m,n). Hence the
exponential factor enh takes the summands to 0 faster than the summands can
grow as n → ∞. This argument is carried out in Corollary 9.2.3.

Also needed for this argument is that gc is integrable, which we proved with
algebra and interval arithmetic and are preparing for [HH24].

3. We have a sequence of functions Sn that vary at the same time the grid D∩Λn

varies, so the situation is not a Riemann sum of a single function

The evaluation near x0 =
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
can be addressed by leveraging the

particular behavior of gce
nh. This satisfies the assumptions for Laplace method,

so the function value falls off quickly away from x0. A shrinking ball (such as
|x − x0| < 1

n
) intersected with the summation region would contain most of

the non-negligible function values, but without a rapidly-growing number of
points.
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9.2.2 Conjectures about the Discrete Laplace Method (DLM)

Next we give some general conjectures about the DLM which apply to our particular
problem.

Lemma 9.2.1 (Intersecting with a lattice). Fix a dimension d ≥ 1, vector v ∈ Rd,
and invertible linear transformation A : Rd → Rd. This determines a sequence of
lattices

Λn :=
1

n
AZd + v. (9.2.1)

Let W ⊆ Rd be open and bounded, and fix some continuous, Riemann-integrable
function g : W → R. Then as n → ∞, we have:∑

x∈W∩Λn

g(x)dx ∼ nd

|det(A)|

∫
W
g(x)dx. (9.2.2)

Moreover, by letting g = 1, if W has finite volume, then

|W ∩ Λn| ∼
nd

|det(A)|
Volume(W) (9.2.3)

Proof. The sum is a Riemann sum for the displayed Riemann integral.

Lemma 9.2.2 (Discrete Laplace sum: outside part goes to 0). Let A,W ,Λn be as in
Lemma 9.2.1. Suppose g, h : W → R satisfies Laplace assumptions with maximizer
x0. Let B be a ball around x0 with B ⊆ W. Then as n → ∞,∑

x∈(W\B)∩Λn

g(x)enh(x) → 0. (9.2.4)

Proof. Item 2 and continuity of h implies lim supx→∂B h(x) < 0. Since ∂(W \ B) ⊆
∂W ∪ ∂B, together with Item 4, we get

lim sup
x→∂(W\B)

h(x) < 0.

Since W is compact and h < 0 on W \B by Item 2, we thus have

sup
x∈W\B

h(x) < 0.

Thus there exists s > 0 such that h(x) < −s for all x ∈ W \B.

∑
x∈(W\B)∩Λn

g(x)enh(x) ≤

 ∑
x∈(W\B)∩Λn

g(x)

 sup
x∈W\B

enh(x) (9.2.5)

≤ e−ns

 ∑
x∈(W\B)∩Λn

g(x)

 (9.2.6)

∼ e−ns nd

det(A)

∫
W\B

g(x)dx (9.2.7)

→ 0 (9.2.8)

where the final step follows from det(A) and
∫
W\B g(x)dx being constant.
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Corollary 9.2.3. Let A,Λn,W be as in Lemma 9.2.1 and g, h : W → R satisfies
Laplace assumptions with maximizer x0. Let B ⊆ W be a fixed ball containing x0.
Suppose Sn : W ∩ Λn → R has asymptotic approximation Sn(x) ∼ g(x)enh(x) with
uniformly bounded error in W \B, precisely:

There exists fixed kupper > 0 such that for all x ∈ (W \ B) ∩ Λn and all
n ≥ 1, we have

0 ≤ Sn(x) ≤ kupperg(x)e
nh(x). (9.2.9)

Then as n → ∞, ∑
x∈(W\B)∩Λn

Sn(x) → 0.. (9.2.10)

Proof. ∑
x∈(W\B)∩Λn

Sn(x) ≤ kupper
∑

x∈(W\B)∩Λn

g(x)enh(x) → 0.

Conjecture 9.2.4 (Discrete Laplace sum: inside). Let A,W ,Λn be as in Lemma 9.2.1.
Suppose g, h : W → R satisfies Laplace assumptions with maximizer x0. Let B be a
ball around x0 with B ⊆ W. Then as n → ∞,

∑
x∈B∩Λn

g(x)enh(x) ∼ (2πn)d/2

|det(A)|
g(x0)e

nh(x0)√
det(−H{h}(x0))

. (9.2.11)

Proof idea: There is a convergence problem with naively applying the continuous
Laplace method (Lemma 9.1.1) and the integral convergence from Lemma 9.2.1.

The integral of a Gaussian is∫
Rd

exp

(
−1

2
x⊤Hx

)
dx =

(2π)d/2√
det(H)

(9.2.12)

We do not have time to fix this carefully, but we expect that the following sketch
can be filled-in to work out. Let H = H{h}(x0). Leveraging the Taylor expansion
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9.3 Asymptotic Approximation of the big sum

h(x) ∼ h(x0) + (x− x0)
⊤H(x− x0), we see∑

x∈B∩Λn

g(x)enh(x) ∼ nd

|det(A)|

∫
B

g(x)enh(x)dx (9.2.13)∫
B

g(x)enh(x)dx ∼ g(x0)

∫
B

enh(x)dx (9.2.14)∫
B

enh(x)dx ∼
∫
B

e
1
2
n(x−x0)⊤H(x−x0)dx (9.2.15)

∼
∫
B−x0

e
1
2
nx⊤Hxdx (9.2.16)

∼ 1

nd

∫
n(B−x0)

e
1
2
x⊤Hxdx (9.2.17)

∼ 1

nd

∫
Rn

e
1
2
x⊤Hxdx (9.2.18)

∼ 1

nd

(2π)d/2√
det(−H{h}x0)

(9.2.19)

∼
(
2π

n

)d/2
enh(x0)√
det(−H)

. (9.2.20)

These combine to give the formula given by the Conjecture.

Conjecture-Corollary 9.2.5. Let A,Λn,W be as in Lemma 9.2.1 and g, h : W →
R satisfies Laplace assumptions with maximizer x0. Let B ⊆ W be a fixed ball
containing x0. Suppose Sn : W ∩ Λn → R has asymptotic approximation Sn(x) ∼
g(x)enh(x) uniformly convergent in B, precisely:

For all ϵ > 0, there exists N > 0 such that for all x ∈ B and n ≥ N ,
then ∣∣∣Sn(x)

(
g(x)enh(x)

)−1 − 1
∣∣∣ < ϵ. (9.2.21)

Then as n → ∞, ∑
x∈B∩Λn

Sn(x) ∼
(2πn)d/2

|det(A)|
g(x0)√

det(−H{h}(x0))
. (9.2.22)

Proof. Uniform convergence (Equation (9.2.21)) implies for all ϵ > 0, then (1 −
ϵ)genh ≤ Sn ≤ (1 + ϵ)genh for all x ∈ B, for all sufficiently large n. Hence as
n → ∞, ∑

x∈B∩Λn

Sn(x) ∼
∑

x∈B∩Λn

g(x)enh(x). (9.2.23)

9.3 Asymptotic Approximation of the big sum

Now we return to the special situation occurring in our critical threshold problem.
We combine work done here with the previous work on asymptotics from Corol-
lary 7.6.4 and Proposition 8.3.1 to obtain (in Conjecture 9.3.2) the explicit but
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9.3 Asymptotic Approximation of the big sum

complicated formula for E(N2)
E(N)2

, used as Equation (1.2.3) in the introduction. Recall
from Section 8.3, the polytope Uc is the disjoint union

U01
c = U Int

c ∪ U∂
c ,

where

U Int
c := IntUc = U01

c ∩ {0 < ri < 1, 0 < αi < 1, 0 < ti} (9.3.1)

U∂
c := U01

c \ U Int
c . (9.3.2)

Also recall, where Lm,n is the lattice defined in Equation (7.5.2), for c = m/n:

U01
c := {(r⃗, α⃗) | r⃗ ∈ T , (ri, αi) ∈ P0,1

c , i = 1, 2, 3} (9.3.3)

U01
m,n := U01

c ∩ Lm,n (9.3.4)

U Int
c := IntUc = U01

c ∩ {0 < ri < 1, 0 < αi < 1, 0 < ti} (9.3.5)

U Int
m,n := U Int

c ∩ Lm,n (9.3.6)

U∂
m,n := U01

m,n \ U Int
m,n (9.3.7)

U1/12
c := {(r⃗, α⃗) | r⃗ ∈ T 1/12, (ri, αi) ∈ P1/12

c , i = 1, 2, 3} ⊆ U Int
c . (9.3.8)

As motivation, recall from Corollary 7.6.4 that the big sum we care about is

E(N2)

E(N)2
=

∑
(r⃗,α⃗)∈U01

m,n

˘Sm,n(r⃗, α⃗).

Note Proposition 8.3.1 approximated ˘Sm,n(r⃗, α⃗) well on U Int
m,n, so U∂

m,n provides the
terms of the sum where the approximation does not hold.

Conjecture 9.3.1. Fix c. Along m = cn,∑
x∈U∂

m,n

˘Sm,n → 0, as n → ∞. (9.3.9)

This is suggested by numerical plots for small n and is a topic for future work.
Finally, we state the main formula Equation (1.2.3) which underlies this thesis.

Conjecture 9.3.2. Fix c. Along m = cn, as n → ∞,

E(N2)

E(N)2
∼ c3

2
(2π)3

gc(x0)√
det(−H{h}(x0))

(9.3.10)

where x0 =
(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
, and gc, hc are defined in Section 3.3.

Proof. (Using other conjectures). Fix c. From Corollary 7.6.4, the big sum is written
as

E(N2)

E(N)2
=

∑
x∈U01

m,n

˘Sm,n(x).

Conjecture 9.3.1 allows subtracting the terms in U∂
m,n, leaving only the terms in

U Int
m,n = U01

m,n \ U∂
m,n:

E(N2)

E(N)2
∼

∑
x∈U Int

m,n

˘Sm,n(x).
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Consider the asymptotic approximation

n3 ˘Sm,n(r⃗, α⃗) ∼ gc(r⃗, α⃗)e
nhc(r⃗,α⃗). (9.3.11)

The calculations in Section 4 and Section 5 imply, gc, hc satisfies Laplace assumptions
with maximizer x0 =

(
1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

)
.

Let B ⊆ U1/12
c be a ball centered at x0. By Proposition 8.3.1, Equation (9.3.11)

has uniformly bounded error in U Int
c , hence uniformly bounded error in U Int

c \ B, so
Lemma 9.2.2 applies: ∑

x∈(U Int
c \B)∩Lm,n

n3 ˘Sm,n(x) → 0. (9.3.12)

By Proposition 8.3.1, Equation (9.3.11) is uniformly convergent in U1/12
c , hence

uniformly convergent in B, so Conjecture-Corollary 9.2.5 applies:

∑
x∈B∩Lm,n

n3 ˘Sm,n(x) ∼
(2πn)d/2

|det(Ac)|
gc(x0)√

det(−H{hc}(x0))
. (9.3.13)

Simplification using d = 6 and det(Ac) = 2/c3 yields the result.

10 Conclusion

In this honors thesis we gave evidence supporting Conjecture 1.2.1, and coupled
with work in progress we have gone a long way toward proving the following weaker
conjecture.

Conjecture 10.0.1. For 2.5 < c and m = cn, as n → ∞, random (uniformly
distributed) 3-XOR-game two-core problems:

1. have at least one solution in Z2 w.h.p. provided c < 3.

2. have no solution in Z2 w.h.p. provided c > 3.

Proof. Conjecture 9.3.2 combined with Proposition 4.3.3 tells us

E(N2)

E(N)2
∼ 1. (10.0.1)

The second moment inequality then implies Pr(N ≥ 1) ≥ 1, so the random problems
have at least one solution in Z2 with high probability as n → ∞.

The biggest gap in proving this is Conjecture 9.3.1, which we have not had time
to consider seriously. This is work we are planning for the future.

The major difference between Conjecture 10.0.1 and Conjecture 1.2.1 is that the
latter has the weaker hypothesis m = n(c+ o(1)) instead of m = cn. There are ideas
for approaching this, but they are relatively unexplored.

Worth pointing out is that the gaps discussed in Section 9.2.1 also apply to the
classic 3-SAT proof in [DM02b], and we fill some of these gaps.
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