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Abstract

This paper studies the polynomial optimization problem whose feasible set is
a union of several basic closed semialgebraic sets. We propose a unified hierarchy
of Moment-SOS relaxations to solve it globally. Under some assumptions, we
prove the asymptotic or finite convergence of the unified hierarchy. Special
properties for the univariate case are discussed. The application for computing
(p, q)-norms of matrices is also presented.
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Chapter 1

Introduction

1.1 Description of the Problem

We consider the optimization problem min f(x)

s.t. x ∈ K :=
m⋃
l=1

Kl,
(1.1.1)

where each Kl is the basic closed semialgebraic set given as

Kl =

{
x ∈ Rn

∣∣∣∣∣ c
(l)
i (x) = 0 (i ∈ E(l)),

c
(l)
j (x) ≥ 0 (j ∈ I(l))

}
.

Here, all functions f , c
(l)
i , c

(l)
j are polynomials in x := (x1, . . . , xn); all E(l) and

I(l) are finite labeling sets. We aim at finding the global minimum value fmin

of (1.1.1) and a global minimizer x∗ if it exists. It is worthy to note that solving
(1.1.1) is equivalent to solving m standard polynomial optimization problems by
minimizing f(x) over each Kl separately, for l = 1, . . . ,m. When K is nonempty
and compact, fmin is achievable at a feasible point, and (1.1.1) has a minimizer.
When K is unbounded, a minimizer may or may not exist. We refer to [28,
Section 5.1] for the existence of optimizers when the feasible set is unbounded.

The optimization (1.1.1) contains a broad class of problems. For the case
m = 1, if all functions are linear, then (1.1.1) is a linear program (LP); if f is

quadratic and all c
(l)
i , c

(l)
j are linear, then (1.1.1) is a quadratic program (QP); if

all f, c
(l)
i , c

(l)
j are quadratic, then (1.1.1) is a quadratically constrained quadratic

program (QCQP). Polynomial optimization has wide applications, including
combinatorial optimization [4, 18], optimal control [8], stochastic and robust
optimization [34, 35, 44], generalized Nash equilibrium problems [30, 31, 33],
and tensor optimization [5, 26, 32, 36].

When the feasible setK is a single basic closed semialgebraic set (i.e., m = 1)
instead of a union of several ones, the problem (1.1.1) becomes a standard poly-
nomial optimization problem. There exists much work for solving standard
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6 CHAPTER 1. INTRODUCTION

polynomial optimization problems. A classical approach for solving them glob-
ally is the hierarchy of Moment-SOS relaxations [12]. Under the archimedean-
ness for constraining polynomials, this hierarchy gives a sequence of convergent
lower bounds for the minimum value fmin. The Moment-SOS hierarchy has
finite convergence if the linear independence constraint qualification, the strict
complementarity and the second order sufficient conditions hold at every global
minimizer [25]. When the equality constraints define a finite set, this hierarchy
is also tight [14, 16, 24]. We refer to the books and surveys [8, 9, 13, 17, 28] for
introductions to polynomial optimization.

1.2 Contributions

When m > 1, the difficulty for solving the optimization problem (1.1.1)
increases. A straightforward approach to solve (1.1.1) is to minimize f(x) over
each Kl separately, for l = 1, . . . ,m. By doing this, we reduce the problem
(1.1.1) into m standard polynomial optimization problems.

In this paper, we propose a unified Moment-SOS hierarchy for solving (1.1.1).
The standard kth order moment relaxation for minimizing f(x) over the subset
Kl is (for l = 1, . . . ,m)

min ⟨f , y(l)⟩
s.t. V

(2k)

c
(l)
i

[y(l)] = 0 (i ∈ E(l)),

L
(k)

c
(l)
j

[y(l)] ⪰ 0 (j ∈ I(l)),

Mk[y
(l)] ⪰ 0,

y
(l)
0 = 1, y(l) ∈ RNn

2k .

(1.2.1)

We refer to Section 2.1 for the above notation. The unified moment relaxation
we propose in this paper is

min ⟨f , y(1)⟩+ · · ·+ ⟨f , y(m)⟩
s.t. V

(2k)

c
(l)
i

[y(l)] = 0 (i ∈ E(l)),

L
(k)

c
(l)
j

[y(l)] ⪰ 0 (j ∈ I(l)),

Mk[y
(l)] ⪰ 0,

m∑
l=1

y
(l)
0 = 1,

y(l) ∈ RNn
2k , l = 1, . . . ,m.

(1.2.2)

For k = 1, 2, . . ., this gives a unified hierarchy of relaxations.
A major advantage of (1.2.2) is that it gives a unified convex relaxation

for solving (1.1.1) instead of solving it over each Kl separately. It gives a se-
quence of lower bounds for the minimum value fmin of (1.1.1). Under the
archimedeanness, we can prove the asymptotic convergence of this unified hier-
archy. Moreover, under some further local optimality conditions, we can prove
its finite convergence. We, in addition, study the special properties for the uni-
variate case. When n = 1, there are nice representations for polynomials that
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are nonnegative over intervals. The resulting unified Moment-SOS relaxations
can be expressed in a more mathematically concise manner. We also present
numerical experiments to demonstrate the efficiency of our unified Moment-SOS
hierarchy.

An application of (1.1.1) is to compute the (p, q)-norm of a matrix A:

∥A∥p,q := max
x ̸=0

∥Ax∥p
∥x∥q

= max
∥x∥q=1

∥Ax∥p,

where p, q are positive integers. When p and q are both even, this is a standard
polynomial optimization problem. If one of them is odd, the norm ∥A∥p,q can
be expressed as the optimal value of a problem like (1.1.1). For instance, when
p = 4 and q = 3, we can formulate this problem as{

max (∥Ax∥4)4
s.t. |x1|3 + · · ·+ |xn|3 = 1.

(1.2.3)

The feasible set of the above can be expressed in the union form as in (1.1.1). It
is interesting to note that the number of sets in the union is 2n, so the difficulty
of (1.2.3) increases substantially as n gets larger. More details are given in
Chapter 5.

The paper is organized as follows. Chapter 2 introduces the notation and
some preliminary results about polynomial optimization. Chapter 3 gives the
unified hierarchy of Moment-SOS relaxations; the asymptotic and finite conver-
gence are proved under certain assumptions. Chapter 4 studies some special
properties of univariate polynomial optimization. Chapter 5 gives numerical
experiments and applications. Chapter 6 draws conclusions and makes some
discussions for future work.
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Chapter 2

Preliminaries

2.1 Notation

The symbol N (resp., R) stands for the set of nonnegative integers (resp.,
real numbers). For an integer m > 0, denote [m] := {1, 2, . . . ,m}. For a scalar
t ∈ R, ⌈t⌉ denotes the smallest integer greater than or equal to t, and ⌊t⌋ denotes
the largest integer less than or equal to t. For a polynomial p, deg(p) denotes
its total degree and vec(p) denotes its coefficient vector. For two vectors a and
b, the notation a ⊥ b means they are perpendicular. The superscript T denotes
the transpose of a matrix or vector. For a symmetric matrix X, X ⪰ 0 (resp.,
X ≻ 0) means that X is positive semidefinite (resp., positive definite). The
symbol Sn

+ stands for the set of all n-by-n real symmetric positive semidefinite
matrices. For two symmetric matrices X and Y , the inequality X ⪰ Y (resp.,
X ≻ Y ) means that X − Y ⪰ 0 (resp., X − Y ≻ 0). For x := (x1, . . . , xn)
and a power vector α := (α1, . . . , αn) ∈ Nn, denote |α| := α1 + · · · + αn and
the monomial xα := xα1

1 · · ·xαn
n . For a real number q ≥ 1, the q-norm of x is

denoted as ∥x∥q := (|x1|q + · · ·+ |xn|q)1/q. The notation

Nn
d := {α ∈ Nn : |α| ≤ d}

denotes the set of monomial powers with degrees at most d. The symbol RNn
d

denotes the space of all real vectors labeled by α ∈ Nn
d . The column vector of

all monomials in x and of degrees up to d is denoted as

[x]d :=
[
1 x1 · · · xn x2

1 x1x2 · · · xd
n

]T
.

The notation R[x] := R[x1, . . . , xn] stands for the ring of polynomials in x with
real coefficients. Let R[x]d be the set of real polynomials with degrees at most
d. Denote by P(K) the cone of polynomials that are nonnegative on K and let

Pd(K) := P(K) ∩ R[x]d.

In the following, we review some basics of polynomial optimization. For a
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tuple h := (h1, . . . , hs) of polynomials in R[x], let

Ideal[h] := h1 · R[x] + · · ·+ hs · R[x].

The 2kth truncation of Ideal[h] is

Ideal[h]2k := h1 · R[x]2k−deg(h1) + · · ·+ hs · R[x]2k−deg(hs).

The real variety of h is

VR(h) = {x ∈ Rn : h(x) = 0}.

A polynomial σ ∈ R[x] is said to be a sum of squares (SOS) if there are polyno-
mials q1, . . . , qt ∈ R[x] such that σ = q21 + · · ·+ q2t . The convex cone of all SOS
polynomials in x is denoted as Σ[x]. We refer to [8, 13, 17, 28] for more details.
For a tuple of polynomials g := (g1, . . . , gt), its quadratic module is (let g0 := 1)

QM[g] :=
{ t∑

i=0

σigi

∣∣∣ each σi ∈ Σ[x]
}
.

For a positive integer k, the degree-2k truncation of QM[g] is

QM[g]2k :=
{ t∑

i=0

σigi

∣∣∣σi ∈ Σ[x],deg(σigi) ≤ 2k
}
.

The quadratic module QM[g] is said to be archimedean if there exists q ∈ QM[g]
such that the set

S(q) := {x ∈ Rn | q(x) ≥ 0}

is compact.

Theorem 2.1.1. [39] If QM[g] is archimedean and a polynomial f > 0 on S(g),
then f ∈ QM[g].

A vector y := (yα)α∈Nn
2k

is said to be a truncated multi-sequences (tms) of

degree 2k. For y ∈ RNn
2k , the Riesz functional determined by y is the linear

functional Ly acting on R[x]2k such that

Ly

( ∑
α∈Nn

2k

pαx
α
)
:=

∑
α∈Nn

2k

pαyα.

For convenience, we denote

⟨p, y⟩ := Ly(p), p ∈ R[x]2k.

The localizing matrix and localizing vector of p generated by y are respectively

L(k)
p [y] := Ly(p(x) · [x]s1 [x]Ts1),

V(2k)
p [y] := Ly(p(x) · [x]s2).
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In the above, the linear operator is applied component-wisely and

s1 := ⌈k − deg(p)/2⌉, s2 := 2k − deg(p).

We remark that L
(k)
p [y] ⪰ 0 if and only if Ly ≥ 0 on QM[p]2k, and V

(2k)
p [y] = 0

if and only if Ly = 0 on Ideal[p]2k. More details for this can be found in

[13, 17, 28]. The localizing matrix L
(k)
p [y] satisfies the following equation〈

p(x)
(
vT [x]s

)2
, y
〉
= vT

(
L(k)
p [y]

)
v

for the degree s := k − ⌈deg(p)/2⌉ and for every vector v of length
(
n+s
s

)
. For

instance, when n = 3, k = 3 and p = x1x2x3 − x3
3,

L(3)
p [y] =


y111 − y003 y211 − y103 y121 − y013 y112 − y004
y211 − y103 y311 − y203 y221 − y113 y212 − y104
y121 − y013 y221 − y113 y131 − y023 y122 − y014
y112 − y004 y212 − y104 y122 − y014 y113 − y005

 .

In particular, for p = 1, we get the moment matrix Mk[y] := L
(k)
1 [y]. Similarly,

the localizing vector V
(2k)
p [y] satisfies〈
p(x)

(
vT [x]t

)
, y
〉
=

(
V(2k)
p [y]

)T

v

for t := 2k− deg(p). For instance, when n = 3, k = 2 and p = x2
1 + x2

2 + x2
3 − 1,

V(4)
p [y] =



y200 + y020 + y002 − y000
y300 + y120 + y102 − y100
y210 + y030 + y012 − y010
y201 + y021 + y003 − y001
y400 + y220 + y202 − y200
y310 + y130 + y112 − y110
y301 + y121 + y103 − y101
y220 + y040 + y022 − y020
y211 + y031 + y013 − y011
y202 + y022 + y004 − y002


.

It is worthy to note that if L
(k)
gi [y] ⪰ 0 and f ∈ QM[g]2k, then ⟨f , y⟩ ≥ 0.

This can be seen as follows. For f =
t∑

i=0

giσi with σi =
∑
j

p2ij ∈ Σ[x] and

deg(giσi) ≤ 2k, we have

⟨f , y⟩ =
〈 t∑

i=0

giσi , y
〉
=

∑
i,j

vec(pij)
T
(
L(k)
gi [y]

)
vec(pij) ≥ 0.

A tms y ∈ RNn
2k is said to admit a Borel measure µ if

yα =

∫
xαdµ for all α ∈ Nn

2k.
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Such µ is called a representing measure for y. The support of µ is the smallest
closed set S ⊆ Rn such that µ(Rn \ S) = 0, denoted as supp(µ). The measure
µ is said to be supported in a set K if supp(µ) ⊆ K.

2.2 Moment relaxation

Consider the polynomial optimization problem min f(x)
s.t. ci(x) = 0 (i ∈ E),

cj(x) ≥ 0 (j ∈ I),
(2.2.1)

where f, ci, cj are polynomials in x. The kth order moment relaxation for (2.2.1)
is 

min ⟨f , y⟩
s.t. V

(2k)
ci [y] = 0 (i ∈ E),

L
(k)
cj [y] ⪰ 0 (j ∈ I),

Mk[y] ⪰ 0,
y0 = 1, y ∈ RNn

2k .

Suppose the tms y∗ is a minimizer of above. Denote the degree

d := max
i∈E∪I

{⌈deg(ci)/2⌉}.

We can extract minimizers if y∗ satisfies the flat truncation condition: there
exists an integer k ≥ t ≥ max{d, deg(f)/2} such that

rankMt−d[y
∗] = rankMt[y

∗]. (2.2.2)

Interestingly, if (2.2.2) holds, we can extract r := rankMt[y
∗] minimizers for the

optimization problem (2.2.1).
The following result is based on work by Curto and Fialkow [3] and Henrion

and Lasserre [6]. The form of the result as presented here can be found in book
[28, Section 2.7].

Theorem 2.2.1. [3, 6] If y∗ satisfies (2.2.2), then there exist r := rankMt[y
∗]

distinct feasible points u1, . . . , ur for (2.2.1) and positive scalars λ1, . . . , λr such
that

y∗|2t = λ1[u1]2t + · · ·+ λr[ur]2t.

In the above, the notation y∗|2t stands for its subvector of entries that are labeled
by α ∈ Nn

2t.

2.3 Optimality conditions

Suppose u is a local minimizer of (2.2.1). Denote the active labeling set

J(u) := {j ∈ I : cj(u) = 0}.
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The linear independence constraint qualification condition (LICQC) holds at u if
the gradient set {∇ci(u)}i∈E∪J(u) is linearly independent. When LICQC holds,
there exists a Lagrange multiplier vector

λ := (λi)i∈E ∪ (λj)j∈I

satisfying the Karush-Kuhn-Tucker (KKT) conditions

∇f(u) =
∑
i∈E

λi∇ci(u) +
∑
j∈I

λj∇cj(u), (2.3.1)

0 ≤ cj(u) ⊥ λj ≥ 0, for all j ∈ I. (2.3.2)

The equation (2.3.1) is known as the first order optimality condition (FOOC),
and (2.3.2) is called the complementarity condition (CC). If, in addition, λj +
cj(u) > 0 for all j ∈ I, the strict complementarity condition (SCC) is said to
hold at u. For the λi satisfying (2.3.1)-(2.3.2), the Lagrange function is

L(x) := f(x)−
∑
i∈E

λici(x)−
∑
j∈I

λjcj(x).

The Hessian of the Lagrangian is

∇2L(x) := ∇2f(x)−
∑
i∈E

λi∇2ci(x)−
∑
j∈I

λj∇2cj(x).

If u is a local minimizer and LICQC holds, the second order necessary condition
(SONC) holds at u:

vT
(
∇2L(u)

)
v ≥ 0 for all v ∈

⋂
i∈E∪J(u)

∇ci(u)
⊥,

where ∇ci(u)
⊥ := {v ∈ Rn | ∇ci(u)

T v = 0}. Stronger than SONC is the second
order sufficient condition (SOSC):

vT
(
∇2L(u)

)
v > 0 for all 0 ̸= v ∈

⋂
i∈E∪J(u)

∇ci(u)
⊥.

If a feasible point u satisfies FOOC, SCC, and SOSC, then u must be a strict
local minimizer. We refer to the book [1] for optimality conditions in nonlinear
programming.
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Chapter 3

A Unified Moment-SOS
Hierarchy

In this chapter, we give a unified hierarchy of Moment-SOS relaxations to
solve (1.1.1). Under some assumptions, we prove this hierarchy has asymptotic
or finite convergence.

3.1 Unified Moment-SOS relaxations

For convenience of description, we denote the equality and inequality con-
straining polynomial tuples for Kl as

c(l)eq := (c
(l)
i )i∈E(l) , c

(l)
in := (c

(l)
j )j∈I(l) .

Recall that Ideal[c
(l)
eq ] denotes the ideal generated by c

(l)
eq and QM[c

(l)
in ] denotes

the quadratic module generated by c
(l)
in . We refer to Section 2.1 for the notation.

The minimum value of (1.1.1) is denoted as fmin and its feasible set is K. We
look for the largest scalar γ that is a lower bound of f overK, i.e., f−γ ∈ P(K).
Since

K = K1 ∪K2 ∪ · · · ∪Km,

we have f − γ ≥ 0 on K if and only if f − γ ≥ 0 on Kl for every l = 1, . . . ,m.
Note that f − γ ≥ 0 on Kl is ensured by the membership (for some degree 2k)

f − γ ∈ Ideal[c(l)eq ]2k +QM[c
(l)
in ]2k.

The kth order SOS relaxation for solving (1.1.1) is therefore max γ

s.t. f − γ ∈
m⋂
l=1

[
Ideal[c

(l)
eq ]2k +QM[c

(l)
in ]2k

]
.

(3.1.1)

15
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The dual optimization of (3.1.1) is then the moment relaxation

min ⟨f , y(1)⟩+ · · ·+ ⟨f , y(m)⟩
s.t. V

(2k)

c
(l)
i

[y(l)] = 0 (i ∈ E(l)),

L
(k)

c
(l)
j

[y(l)] ⪰ 0 (j ∈ I(l)),

Mk[y
(l)] ⪰ 0,

m∑
l=1

y
(l)
0 = 1,

y(l) ∈ RNn
2k , l = 1, . . . ,m.

(3.1.2)

The integer k is called the relaxation order. For k = 1, 2, . . ., the sequence of
primal-dual pairs (3.1.1)-(3.1.2) is called the unified Moment-SOS hierarchy. For
each k, we denote by fsos,k and fmom,k the optimal values of (3.1.1) and (3.1.2)
respectively. We remark that the moment relaxation (3.1.2) can be equivalently
written in terms of Riesz functional. Let L(l) denote the Riesz functional given
by y(l), then (3.1.2) is equivalent to

min L(1)(f) + · · ·+ L(m)(f)

s.t. L(l) = 0 on Ideal[c
(l)
eq ]2k,

L(l) ≥ 0 on QM[c
(l)
in ]2k,

L(1)(1) + · · ·+ L(m)(1) = 1,
l = 1, . . . ,m.

Proposition 3.1.1. For each relaxation order k, it holds that

fsos,k ≤ fmom,k ≤ fmin. (3.1.3)

Moreover, both sequences {fsos,k}∞k=1 and {fmom,k}∞k=1 are monotonically in-
creasing.

Proof. By the weak duality, we have fsos,k ≤ fmom,k. For every ϵ > 0, there
exist l′ ∈ [m] and u ∈ Kl′ such that f(u) ≤ fmin + ϵ. Let y := (y(1), . . . , y(m))
be such that y(l

′) = [u]2k and y(l) = 0 for all l ∈ [m] \ {l′}. Then, y is feasible
for (3.1.2) and

fmom,k ≤ ⟨f , y(1)⟩+ · · ·+ ⟨f , y(m)⟩ = ⟨f , y(l
′)⟩ = f(u) ≤ fmin + ϵ.

Since ϵ > 0 can be arbitrary, fmom,k ≤ fmin. Therefore, we get (3.1.3). Clearly,
if γ is feasible for (3.1.1) with an order k, then γ must also be feasible for (3.1.1)
with all larger values of k, since the feasible set gets larger as k increases. So the
sequence of lower bounds {fsos,k}∞k=1 is monotonically increasing. On the other
hand, when k increases, the feasible set of (3.1.2) shrinks, so the minimum value
of (3.1.2) increases. Therefore, {fmom,k}∞k=1 is also monotonically increasing.

3.2 Extraction of minimizers

We show how to extract minimizers of (1.1.1) from the unified moment
relaxation. This is a natural extension from the case m = 1 in Section 2.2.
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Suppose the tuple y∗ := (y(∗,1), . . . , y(∗,m)) is a minimizer of (3.1.2). Denote the
degree

dl := max
i∈E(l)∪I(l)

{⌈deg(c(l)i )/2⌉}.

We can extract minimizers by checking the flat truncation condition: there
exists an integer t ≥ max

l∈[m]
{dl,deg(f)/2} such that

rankMt−dl
[y(∗,l)] = rankMt[y

(∗,l)] for each l ∈ A, (3.2.1)

where the labeling set

A :=
{
l ∈ [m] : y

(l)
0 > 0

}
.

Interestingly, if (3.2.1) holds, we can extract

r :=
∑
l∈A

rankMt[y
(∗,l)] (3.2.2)

minimizers for the optimization problem (1.1.1).

Algorithm 3.2.1. To solve the polynomial optimization (1.1.1), do the follow-
ing:

Step 0 Let k := max
l∈[m]

{dl, ⌈deg(f)/2⌉}.

Step 1 Solve the relaxation (3.1.2). If it is infeasible, output that (1.1.1) is infeasi-
ble and stop. Otherwise, solve it for a minimizer y∗ := (y(∗,1), . . . , y(∗,m)).

Step 2 Check if the flat truncation (3.2.1) holds or not. If (3.2.1) holds, then
the relaxation (3.1.2) is tight and for each l ∈ A, the truncation y(∗,l)|2t
admits a finitely atomic measure µ(l) such that each point in supp(µ(l)) is
a minimizer of (1.1.1). Moreover, fmin = fmom,k.

Step 3 If (3.2.1) fails, let k := k + 1 and go to Step 1.

The conclusion in Step 2 is justified by the following.

Theorem 3.2.2. Let y∗ := (y(∗,1), . . . , y(∗,m)) be a minimizer of (3.1.2). Sup-
pose (3.2.1) holds for all l ∈ A. Then, the moment relaxation (3.1.2) is tight
and for each l ∈ A, the truncation

y(∗,l)|2t := (y(∗,l)α )α∈Nn
2t

admits a rl-atomic measure µ(l), where rl = rankMt[y
(∗,l)], and each point in

supp(µ(l)) is a minimizer of (1.1.1). Therefore, the total number of minimizers
is r as in (3.2.2).

Proof. By the assumption, the y(∗,l) ∈ RNn
2k satisfies (3.2.1) and

L
(k)

c
(l)
j

[y(∗,l)] ⪰ 0 (j ∈ I(l)), Mk[y
(∗,l)] ⪰ 0.
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Then, by Theorem 2.2.1, there exists rl distinct points u
(l)
1 , . . . , u

(l)
rl ∈ Kl and

positive scalars λ
(l)
1 , . . . , λ

(l)
rl such that

y(∗,l)|2t = λ
(l)
1 [u

(l)
1 ]2t + · · ·+ λ(l)

rl
[u(l)

rl
]2t.

The constriant
m∑
l=1

y
(l)
0 = 1 implies that

m∑
l=1

rl∑
i=1

λ
(l)
i = 1, so

m∑
l=1

rl∑
i=1

λ
(l)
i f(u

(l)
i ) =

m∑
l=1

⟨f, y(∗,l)|2t⟩ =
m∑
l=1

⟨f, y(∗,l)⟩ = fmom,k ≤ fmin.

For each u
(l)
i ∈ Kl, we have f(u

(l)
i ) ≥ fmin, so

m∑
l=1

rl∑
i=1

λ
(l)
i f(u

(l)
i ) ≥

m∑
l=1

rl∑
i=1

λ
(l)
i fmin = fmin.

Hence, fmom,k = fmin and

m∑
l=1

rl∑
i=1

λ
(l)
i

[
f(u

(l)
i )− fmin

]
= 0.

Since each λ
(l)
i > 0, then each f(u

(l)
i ) = fmin, i.e., each u

(l)
i is a minimizer of

(1.1.1).

In Step 2, the flat truncation condition (3.2.1) is used to extract minimizers.
When it holds, a numerical method is given in [6] for computing the minimizers.
We refer to [28, Section 2.7] for more details.

3.3 Convergence analysis

Recall that fmin, fsos,k and fmom,k denote the optimal values of (1.1.1),
(3.1.1) and (3.1.2) respectively. The unified Moment-SOS hierarchy (3.1.1)-
(3.1.2) is said to have asymptotic convergence if fsos,k → fmin as k → ∞. If
fsos,k = fmin for some k, this unified hierarchy is said to be tight or to have
finite convergence. The following theorem is a natural extension from the case
m = 1.

Theorem 3.3.1 (Asymptotic convergence). If Ideal[c
(l)
eq ]+QM[c

(l)
in ] is archimedean

for every l = 1, . . . ,m, then the Moment-SOS hierarchy (3.1.1)-(3.1.2) has
asymptotic convergence:

lim
k→∞

fsos,k = lim
k→∞

fmom,k = fmin.

Proof. For ϵ > 0, let γ = fmin − ϵ. Then

f(x)− γ = f(x)− fmin + ϵ > 0
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on Kl. Since Ideal[c
(l)
eq ]+QM[c

(l)
in ] is archimedean for every l, by Theorem 2.1.1,

f(x)− γ ∈ Ideal[c(l)eq ]2k +QM[c
(l)
in ]2k

for all k large enough. So

fmin − ϵ = γ ≤ fsos,k ≤ fmin =⇒ fmin − ϵ ≤ lim
k→∞

fsos,k ≤ fmin.

Since ϵ > 0 can be arbitrary, lim
k→∞

fsos,k = fmin. By (3.1.3), we get the desired

conclusion.

Recall the linear independence constraint qualification condition (LICQC),
the strict complementarity condition (SCC), and the second order sufficient
condition (SOSC) introduced in Section 2.3. The following is the conclusion for
the finite convergence of the unified Moment-SOS hierarchy of (3.1.1)-(3.1.2).

Theorem 3.3.2 (Finite convergence). Assume Ideal[c
(l)
eq ]+QM[c

(l)
in ] is archimedean

for every l = 1, . . . ,m. If the LICQC, SCC, and SOSC hold at every global min-
imizer of (1.1.1) for each Kl, then the Moment-SOS hierarchy (3.1.1)-(3.1.2)
has finite convergence, i.e.,

fsos,k = fmom,k = fmin

for all k large enough.

Proof. We denote by fmin,l the minimum value of f on the set Kl. Let

B := {l : fmin,l = fmin}.

(i) For the case l /∈ B, fmin,l > fmin,

f(x)− fmin ≥ fmin,l − fmin > 0

on Kl. Since Ideal[c
(l)
eq ]+QM[c

(l)
in ] is archimedean, there exists k0 such that

f − (fmin − ϵ) ∈ Ideal[c(l)eq ]2k0
+QM[c

(l)
in ]2k0

for all ϵ > 0.

(ii) For the case l ∈ B, fmin,l = fmin. Since the LICQC, SCC, and SOSC hold
at every global minimizer x∗ of (1.1.1), there exists a degree k0 such that
for all ϵ > 0, we have

f − (fmin − ϵ) ∈ Ideal[c(l)eq ]2k0
+QM[c

(l)
in ]2k0

.

This is shown in the proof of Theorem 1.1 of [25].

Combining cases (i) and (ii), we know that γ = fmin − ϵ is feasible for (3.1.1)
with the order k0. Hence, fsos,k0 ≥ γ = fmin − ϵ. Since ϵ > 0 can be arbitrary,
we get fsos,k0 ≥ fmin. By Proposition 3.1.1, we get fsos,k = fmom,k = fmin for
all k ≥ k0.
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Chapter 4

Univariate Polynomial
Optimization

In this chapter, we consider the special case of univariate polynomial opti-
mization, i.e., n = 1. The following results for the univariate case are extensions
from the single interval case, and are presented here to provide a complete and
thorough understanding for convenience of readers. The problem (1.1.1) can be
expressed as  min f(x) := f0 + f1x+ · · ·+ fdx

d

s.t. x ∈
m⋃
l=1

Kl,
(4.0.1)

where Kl = [al, bl] with al < bl for l = 1, . . . ,m. We still denote by fmin the
minimum value of (4.0.1). For convenience, we only consider compact intervals.
The discussions for unbounded intervals like (−∞, b] and [a,+∞) are similar
(see [28, Chapter 3]).

Let y := (y0, . . . , yd) ∈ Rd+1 be a univariate tms of degree d with d = 2d0+1
or d = 2d0. The d0th order moment matrix of y is

Md0
[y] =


y0 y1 · · · yd0

y1 y2 · · · yd0+1

...
...

. . .
...

yd0
yd0+1 · · · y2d0

 .

For convenience of notation, we also denote that

Gd0 [y] :=


y2 y3 · · · yd0+1

y3 y4 · · · yd0+2

...
...

. . .
...

yd0+1 yd0+2 · · · y2d0

 ,

21
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Nd0
[y] :=


y1 y2 · · · yd0+1

y2 y3 · · · yd0+2

...
...

. . .
...

yd0+1 yd0+2 · · · y2d0+1

 .

It is well-known that polynomials that are nonnegative over an interval can
be expressed in terms of sum of squares. The following results were known to
Lukács [19], Markov [22], Pólya and Szegö [37], Powers and Reznick [38]. For
each h ∈ R[x]d that is nonnegative on the interval [al, bl], we have:

(i) If d = 2d0 + 1 is odd, then there exist p, q ∈ R[x]d0 such that

h = (x− al)p
2 + (bl − x)q2. (4.0.2)

(ii) If d = 2d0 is even, then there exist p ∈ R[x]d0 , q ∈ R[x]d0−1 such that

h = p2 + (x− al)(bl − x)q2. (4.0.3)

The optimization problem (4.0.1) can be solved by the unified Moment-SOS
hierarchy of (3.1.1)-(3.1.2). For the univariate case, they can be simplified. We
discuss in two different cases of d.

4.1 The case d is odd (d = 2d0 + 1)

When the degree d = 2d0 + 1 is odd, by the representation (4.0.2), fmin

equals the maximum value of the SOS relaxation
max γ
s.t. f − γ = (x− al)[x]

T
d0
Xl[x]d0 + (bl − x)[x]Td0

Yl[x]d0 ,

Xl ∈ Sd0+1
+ , Yl ∈ Sd0+1

+ , l = 1, . . . ,m.
(4.1.1)

Its dual optimization is the moment relaxation

min ⟨f , y(1)⟩+ · · ·+ ⟨f , y(m)⟩
s.t. y

(1)
0 + · · ·+ y

(m)
0 = 1,

blMd0
[y(l)] ⪰ Nd0

[y(l)] ⪰ alMd0
[y(l)],

y(l) = (y
(l)
0 , y

(l)
1 , . . . , y

(l)
2d0+1),

l = 1, . . . ,m.

(4.1.2)

In the above,

⟨f , y(l)⟩ = f0y
(l)
0 + · · ·+ f2d0+1y

(l)
2d0+1.

Denote by fsos and fmom the optimal values of (4.1.1) and (4.1.2) respectively.
For all (Xl, Yl) that is feasible for (4.1.1) and for all y(l) that is feasible for
(4.1.2), we have

⟨f , y(1)⟩+ · · ·+ ⟨f , y(m)⟩ ≥ γ.
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This is because

blMd0
[y(l)]−Nd0

[y(l)] = L
(d0+1)
bl−x [y(l)] ⪰ 0,

Nd0 [y
(l)]− alMd0 [y

(l)] = L
(d0+1)
x−al

[y(l)] ⪰ 0,

which implies that

⟨f , y(1)⟩+ · · ·+ ⟨f , y(m)⟩ − γ

= ⟨f − γ , y(1)⟩+ · · ·+ ⟨f − γ , y(m)⟩

=

m∑
l=1

[〈
L
(d0+1)
x−al

[y(l)] , Xl

〉
+

〈
L
(d0+1)
bl−x [y(l)] , Yl

〉]
≥ 0.

Indeed, we have the following theorem.

Theorem 4.1.1. For the relaxations (4.1.1) and (4.1.2), we always have

fsos = fmom = fmin.

Proof. By the representation (4.0.2), for γ = fmin, the subtraction f−fmin can
be represented as in (4.1.1) for each l = 1, . . . ,m, so fsos = fmin. By the weak
duality, we have fsos ≤ fmom ≤ fmin. Hence, they are all equal.

The optimizers for (4.0.1) can be obtained by the following algorithm.

Algorithm 4.1.2. [28, Algorithm 3.3.6] Assume d = 2d0+1 and (y(1), . . . , y(m))

is a minimizer for the moment relaxation (4.1.2). For each l with y
(l)
0 > 0 and

r = rankMd0
[y(l)], do the following:

Step 1 Solve the linear system
y
(l)
0 y

(l)
1 · · · y

(l)
r−1

y
(l)
1 y

(l)
2 · · · y

(l)
r

...
...

. . .
...

y
(l)
2d0−r+1 y

(l)
2d0−r+2 · · · y

(l)
2d0



g
(l)
0

g
(l)
1
...

g
(l)
r−1

 =


y
(l)
r

y
(l)
r+1
...

y
(l)
2d0+1

 .

Step 2 Compute r distinct roots t
(l)
1 , . . . , t

(l)
r of the polynomial

g(l)(x) := g
(l)
0 + g

(l)
1 x+ · · ·+ g

(l)
r−1x

r−1 − xr.

Step 3 The roots t
(l)
1 , . . . , t

(l)
r are minimizers of the optimization problem (4.0.1).

The conclusion in Step 3 is justified by Theorem 4.2.3. The following is an
exposition for the above algorithm.
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Example 4.1.3. Consider the constrained optimization problem{
min x+ 2x6 − x7

s.t. x ∈ [−2,−1] ∪ [1, 2].

The moment relaxation is
min ⟨f , y(1)⟩+ ⟨f , y(2)⟩
s.t. −M3[y

(1)] ⪰ N3[y
(1)] ⪰ −2M3[y

(1)],
2M3[y

(2)] ⪰ N3[y
(2)] ⪰ M3[y

(2)],

y
(1)
0 + y

(2)
0 = 1.

The minimizer y∗ = (y(∗,1), y(∗,2)) of the above is obtained as

y(∗,1) = 0.4191 · (1,−1, 1,−1, 1,−1, 1,−1),

y(∗,2) = 0.5809 · (1, 0,−2,−6,−14,−30,−62,−126) +

0.6058 · (0, 1, 3, 7, 15, 31, 63, 127).

Applying Algorithm 4.1.2, we get g
(1)
0 = −1, g

(2)
0 = −2, g

(2)
1 = 3 and the poly-

nomials

g(1)(x) = −1− x, g(2)(x) = −2 + 3x− x2.

Therefore, the minimizers are the distinct roots −1, 1, 2 and the global minimum
value fmin = 2.

4.2 The case d is even (d = 2d0)

When the degree d = 2d0 is even, by the representation (4.0.3), fmin equals
the maximum value of

max γ
s.t. f − γ = [x]Td0

Xl[x]d0
+ (x− al)(bl − x)([x]Td0−1Yl[x]d0−1),

Xl ∈ Sd0+1
+ , Yl ∈ Sd0

+ , l = 1, . . . ,m.
(4.2.1)

Its dual optimization is the moment relaxation

min ⟨f , y(1)⟩+ · · ·+ ⟨f , y(m)⟩
s.t. (al + bl)Nd0−1[y

(l)] ⪰ alblMd0−1[y
(l)] +Gd0 [y

(l)],

Md0 [y
(l)] ⪰ 0, y

(1)
0 + · · ·+ y

(m)
0 = 1,

y(l) = (y
(l)
0 , y

(l)
1 , . . . , y

(l)
2d0

),
l = 1, . . . ,m.

(4.2.2)

We still denote by fsos and fmom the optimal values of (4.2.1) and (4.2.2) respec-
tively. The same conclusion in Theorem 4.1.1 also holds here. The optimizers
for (4.0.1) can be obtained by the following algorithm.
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Algorithm 4.2.1. [28, Algorithm 3.3.6] Assume d = 2d0 and (y(1), . . . , y(m))

is a minimizer for the moment relaxation (4.2.2). For each l with y
(l)
0 > 0 and

r = rankMd0
[y(l)], do the following:

Step 1 If r ≤ d0, solve the linear system
y
(l)
0 y

(l)
1 · · · y

(l)
r−1

y
(l)
1 y

(l)
2 · · · y

(l)
r

...
...

. . .
...

y
(l)
2d0−r y

(l)
2d0−r+1 · · · y

(l)
2d0−1



g
(l)
0

g
(l)
1
...

g
(l)
r−1

 =


y
(l)
r

y
(l)
r+1
...

y
(l)
2d0

 .

Step 2 If r = d0 + 1, compute the smallest value of y
(l)
2d0+1 satisfying

blMd0
[y(l)] ⪰ Nd0

[y(l)] ⪰ alMd0
[y(l)],

then solve the linear system
y
(l)
0 y

(l)
1 · · · y

(l)
d0

y
(l)
1 y

(l)
2 · · · y

(l)
d0+1

...
...

. . .
...

y
(l)
d0

y
(l)
d0+1 · · · y

(l)
2d0



g
(l)
0

g
(l)
1
...

g
(l)
d0

 =


y
(l)
d0+1

y
(l)
d0+2
...

y
(l)
2d0+1

 .

Step 3 Compute r distinct roots t
(l)
1 , . . . , t

(l)
r of the polynomial

g(l)(x) := g
(l)
0 + g

(l)
1 x+ · · ·+ g

(l)
r−1x

r−1 − xr.

Step 4 The roots t
(l)
1 , . . . , t

(l)
r are minimizers of the optimization problem (4.0.1).

The conclusion in Step 4 is justified by Theorem 4.2.3. The following is an
exposition for the above algorithm.

Example 4.2.2. Consider the constrained optimization problem{
min 4x2 + 12x3 + 13x4 + 6x5 + x6

s.t. x ∈ [−4,−2] ∪ [−1, 2].

The moment relaxation is
min ⟨f , y(1)⟩+ ⟨f , y(2)⟩
s.t. −6N2[y

(1)] ⪰ 8M2[y
(1)] +G3[y

(1)],
N2[y

(2)] ⪰ −2M2[y
(2)] +G3[y

(2)],
M3[y

(1)] ⪰ 0,M3[y
(2)] ⪰ 0,

y
(1)
0 + y

(2)
0 = 1.
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The minimizer y∗ = (y(∗,1), y(∗,2)) of the above is obtained as

y(∗,1) = 0.0110 · (1,−2, 4,−8, 16,−32, 64),

y(∗,2) = 0.9890 · (1, 0, 0, 0, 0, 0, 0) +
0.2190 · (0,−1, 1,−1, 1,−1, 1).

Applying Algorithm 4.2.1, we get g
(1)
0 = −2, g

(2)
0 = 0, g

(2)
1 = −1 and the poly-

nomials

g(1)(x) = −2− x, g(2)(x) = −x− x2.

Therefore, the minimizers are the distinct roots −2,−1, 0 and the global mini-
mum value fmin = 0.

The performance of the moment relaxations (4.1.2) and (4.2.2) can be sum-
marized as follows.

Theorem 4.2.3. Suppose f is a univariate polynomial of degree d = 2d0 + 1
or d = 2d0. Then, all the optimal values fmin, fsos, fmom are achieved for
each corresponding optimization problem and they are all equal to each other.
Suppose y∗ := (y(∗,1), . . . , y(∗,m)) is a minimizer of (4.1.2) when d = 2d0 + 1 or
of (4.2.2) when d = 2d0. Then, the tms

z∗ := y(∗,1) + · · ·+ y(∗,m)

must admit a representing measure µ∗ supported in K, and each point in the
support of µ∗ is a minimizer of (4.0.1). If f is not a constant polynomial, then
f has at most 2m+ ⌈(d−1)/2⌉ minimizers and the representing measure µ∗ for
z∗ must be r-atomic with

r ≤ 2m+ ⌈(d− 1)/2⌉.

Proof. Since each interval [al, bl] is compact,K is also compact. So the minimum
value fmin is achievable, and it equals the largest γ ∈ R such that f − γ is
nonnegative on [al, bl] for every l = 1, . . . ,m, so fmin = fsos (see Theorem
4.1.1). Each of the moment relaxations (4.1.2) and (4.2.2) has a strictly feasible

point, e.g., the tms ŷ(l) =
∫ bl
al
[x]2d0+1 dx is strictly feasible and

blMd0 [ŷ
(l)] ≻ Nd0 [ŷ

(l)] ≻ alMd0 [ŷ
(l)].

The tms ỹ(l) =
∫ bl
al
[x]2d0

dx is strictly feasible and

(al + bl)Nd0−1[ỹ
(l)] ≻ alblMd0−1[ỹ

(l)] +Gd0
[ỹ(l)], Md0

[ỹ(l)] ≻ 0.

By the strong duality, fsos = fmom, and both (4.1.1) and (4.2.1) achieve their
optimal values. By [28, Theorem 3.3.4], y(∗,l) must admit a representing measure
µ(l) supported in [al, bl]. Hence, z∗ must admit a representing measure µ∗ =
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µ(1) + · · · + µ(m) supported in K. The optimization problem (4.0.1) is then
equivalent to the linear convex conic optimization{

min
∫
f dµ

s.t. µ(K) = 1, µ ∈ B(K),
(4.2.3)

where B(K) denotes the convex cone of all Borel measures whose supports are
contained in K. We claim that if a Borel measure µ∗ is a minimizer of (4.2.3),
then each point in the support of µ∗ is a minimizer of (4.0.1). Suppose E ⊆ K
is the set of minimizers of (4.0.1). For any x∗ ∈ E, let δx∗ denote the unit Dirac
measure supported at x∗. Then, we have

fmin =

∫
K

fmin dµ
∗ ≤

∫
K

f(x) dµ∗ ≤
∫
K

f(x) dδx∗ = f(x∗) = fmin.

Hence,

0 =

∫
K

[f(x)− fmin] dµ
∗ =

∫
supp(µ∗)

[f(x)− fmin] dµ
∗.

Thus, f = fmin on supp(µ∗). This implies that supp(µ∗) ⊆ E. So, every point
in supp(µ∗) is a minimizer of (4.0.1).

Note that f has degree d. If f is not a constant polynomial, it can have
at most d − 1 critical points. Moreover, the local maximizers and minimizers
alternate. Thus, at most ⌈(d−1)/2⌉ of these critical points are local minimizers.
On each interval [al, bl], two endpoints are possibly local minimizers. Since there
are m intervals in total, f has at most 2m + ⌈(d − 1)/2⌉ local minimizers on
K. In the above, we have proved that each point in supp(µ∗) is a minimizer
of (4.0.1). So the representing measure µ∗ for z∗ must be r-atomic with r ≤
2m+ ⌈(d− 1)/2⌉.

We refer to Algorithm 4.1.2 (when d = 2d0 + 1) and Algorithm 4.2.1 (when
d = 2d0) for how to determine the support of the representing measure µ(l)

for y(∗,l). The points in the support are all minimizers of (4.0.1). The upper
bound for the number of minimizers is already sharp when m = 1. For instance,
consider the optimization {

min x(1− x)(x+ 1)
s.t. x ∈ [−1, 1].

There are 3 global minimizers −1, 0, 1 and 2m+ ⌈(d− 1)/2⌉ = 2 + 1 = 3.
We would like to remark that the representations for nonnegative univariate

polynomials have broad applications. In particular, it can be applied to the
shape design of transfer functions for linear time invariant (LTI) single-input-
single-output (SISO) systems [29]. Since the transfer function is rational, the
optimization problem can be formulated in terms of coefficients of polynomials.
We can then solve it by using representations of nonnegative univariate poly-
nomials. For instance, we look for a transfer function such that it is close to a
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piecewise constant shape. That is, we want the transfer function to be close to
given constant values ξ1, . . . , ξm in a union of m disjoint intervals [al, bl] with

a1 < b1 < a2 < b2 < · · · < am < bm.

As in [29], the transfer function can be written as p1(x)/p2(x). Specifically, we
want to get p1, p2 such that

p1(x), p2(x) ≥ 0, ∀x ≥ 0,

(1− α)ξl ≤
p1(x)

p2(x)
≤ (1 + β)ξl, ∀x ∈ [al, bl], l = 1, . . . ,m.

The above is equivalent to the linear conic constraints

p1(x), p2(x) ∈ Pd([0,∞)),

p1 − (1− α)ξlp2 ∈ Pd([al, bl]), l = 1, . . . ,m,

(1 + β)ξlp2 − p1 ∈ Pd([al, bl]), l = 1, . . . ,m.

We refer to [29] for more details.



Chapter 5

Numerical Experiments

In this chapter, we present numerical experiments for how to solve poly-
nomial optimization over the union of several basic closed semialgebraic sets.
Algorithm 3.2.1 is applied to solve it. All computations are implemented using
MATLAB R2022a on a MacBook Pro equipped with Apple M1 Max processor
and 16GB RAM. The unified moment relaxation (3.1.2) is solved by the soft-
ware Gloptipoly [7], which calls the SDP package SeDuMi [41]. For neatness,
all computational results are displayed in four decimal digits.

5.1 Some examples

Example 5.1.1. Consider the constrained optimization problem{
min
x∈R4

(x2
1 + x2

2 + x2
3 + x2

4 + 1)2 − 4(x2
1x

2
2 + x2

2x
2
3 + x2

3x
2
4 + x2

4 + x2
1)

s.t. x ∈ K1 ∪K2 ∪K3 ∪K4,

where
K1 = {x ∈ R4 : x2

1 + x2
2 + x2

3 ≤ 0},

K2 = {x ∈ R4 : x2
1 + x2

2 + x2
4 ≤ 0},

K3 = {x ∈ R4 : x2
1 + x2

3 + x2
4 ≤ 0},

K4 = {x ∈ R4 : x2
2 + x2

3 + x2
4 ≤ 0}.

The objective function is a dehomogenization of the Horn’s form [40]. For k = 2,
we get fmom,2 = 0, and the flat truncation (3.2.1) is met for all l ∈ A = {1, 4}.
So, fmom,2 = fmin. The obtained four minimizers are

(0, 0, 0,±1) ∈ K1, (±1, 0, 0, 0) ∈ K4.

For k = 2, the unified moment relaxation (3.1.2) took around 0.6 second, while
solving the individual moment relaxations (1.2.1) for all K1,K2,K3,K4 took
around 0.9 second.

29
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Example 5.1.2. Consider the constrained optimization problem
min
x∈R3

x3
1 + x3

2 + x3
3 − x2

1x2 − x1x
2
2 − x2

1x3 − x1x
2
3

−x2
2x3 − x2x

2
3 + 3x1x2x3

s.t. x ∈ K1 ∪K2 ∪K3,

where
K1 = {x ∈ R3 : x1 ≥ 0, x2

1 + x2
2 + x2

3 = 1},

K2 = {x ∈ R3 : x2 ≥ 0, x2
1 + x2

2 + x2
3 = 1},

K3 = {x ∈ R3 : x3 ≥ 0, x2
1 + x2

2 + x2
3 = 1}.

The objective function is obtained from Robinson’s form [40] by changing x2
i

to xi for each i. For k = 2, we get fmom,2 = −1.3185, and the flat truncation
(3.2.1) is met for all l ∈ A = {1, 2, 3}. So, fmom,2 = fmin. The obtained three
minimizers are

(0.2783, 0.2783,−0.9193) ∈ K1 ∩K2, (0.2783,−0.9193, 0.2783) ∈ K1 ∩K3,

(−0.9193, 0.2783, 0.2783) ∈ K2 ∩K3.

For k = 2, the unified moment relaxation (3.1.2) took around 0.6 second, while
solving the individual moment relaxations (1.2.1) for all K1,K2,K3 took around
1.1 seconds.

Example 5.1.3. Consider the constrained optimization problem{
min
x∈R3

x1x2x3 + x2
1x

2
2(x

2
1 + x2

2) + x6
3 − 3x2

1x
2
2x

2
3

s.t. x ∈ K1 ∪K2 ∪K3,

where
K1 = {x ∈ R3 : x2

1 + x2
2 − x2

3 = 0, x2x3 ≥ 0},

K2 = {x ∈ R3 : x2
1 + x2

3 − x2
2 = 0, x1x3 ≥ 0},

K3 = {x ∈ R3 : x2
2 + x2

3 − x2
1 = 0, x1x2 ≥ 0}.

The objective function is obtained from Motzkin’s form [40] by adding the term
x1x2x3. For k = 3, we get fmom,3 = −1.0757, and the flat truncation (3.2.1) is
met for all l ∈ A = {2, 3}. So, fmom,3 = fmin. The obtained four minimizers
are

(−1.0287,−1.6390,−1.2760) ∈ K2, (1.0287,−1.6390, 1.2760) ∈ K2,

(−1.6390,−1.0287,−1.2760) ∈ K3, (1.6390, 1.0287,−1.2760) ∈ K3.

For k = 3, the unified moment relaxation (3.1.2) took around 0.7 second, while
solving the individual moment relaxations (1.2.1) for all K1,K2,K3 took around
1.2 seconds.
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Example 5.1.4. Consider the constrained optimization problem{
min
x∈R3

x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3 + 4x1x2x3

s.t. x ∈ K1 ∪K2 ∪K3,

where
K1 = {x ∈ R3 : x1 = x2

2, x3 = x2
2},

K2 = {x ∈ R3 : x2
1 + x2

2 + x2
3 ≤ 4, x1x2 = −x3, x1x3 ≤ 0},

K3 = {x ∈ R3 : −1 ≤ x1 ≤ 0,−1 ≤ x2 ≤ 0,−1 ≤ x3 ≤ 0}.

The objective function is a dehomogenization of the Choi-Lam form [40]. For
k = 2, we get fmom,2 = −1, and the flat truncation (3.2.1) is met for all
l ∈ A = {1, 2, 3}. So, fmom,2 = fmin. The obtained four minimizers are

(1,−1, 1) ∈ K1, (−1, 1, 1) ∈ K2, (1, 1,−1) ∈ K2, (−1,−1,−1) ∈ K3.

For k = 2, the unified moment relaxation (3.1.2) took around 0.6 second, while
solving the individual moment relaxations (1.2.1) for all K1,K2,K3 took around
1.1 seconds.

A class of problems like (1.1.1) has absolute values in the constraints. For
example, we consider that

K =
{
x : h(x) +

ℓ∑
i=1

|gi(x)| ≥ 0
}
.

We can equivalently express K as

K =
⋃

s1,...,sl=±1

{
x : h(x) +

ℓ∑
i=1

si · gi(x) ≥ 0, si · gi(x) ≥ 0
}
. (5.1.1)

Example 5.1.5. Consider the constrained optimization problem{
min
x∈R2

x4
1 + x4

2 − x2
1x

2
2 − 2x2

1 − 3x2
2

s.t. |x1|3 + |x2|3 ≥ 4.

The constraining set can be equivalently expressed as
4⋃

l=1

Kl with

K1 = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, x3
1 + x3

2 ≥ 4},

K2 = {x ∈ R2 : x1 ≥ 0,−x2 ≥ 0, x3
1 − x3

2 ≥ 4},

K3 = {x ∈ R2 : −x1 ≥ 0, x2 ≥ 0,−x3
1 + x3

2 ≥ 4},

K4 = {x ∈ R2 : −x1 ≥ 0,−x2 ≥ 0,−x3
1 − x3

2 ≥ 4}.
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A contour of the objective over the feasible set is in Figure 5.1. For k = 2, we
get fmom,2 = −6.3333, and the flat truncation (3.2.1) is met for all l ∈ A =
{1, 2, 3, 4}. So, fmom,2 = fmin. The obtained four minimizers are

(1.5275, 1.6330) ∈ K1, (1.5275,−1.6330) ∈ K2,

(−1.5275, 1.6330) ∈ K3, (−1.5275,−1.6330) ∈ K4.

For k = 2, the unified moment relaxation (3.1.2) took around 0.6 second, while
solving the individual moment relaxations (1.2.1) for all K1,K2,K3,K4 took
around 0.8 second.

Figure 5.1: The contour is for the objective function in Example 5.1.5. The
region outside the oval is the feasible set. The four diamonds are the minimizers.

5.2 An application

Now we show how to compute the (p, q)-norm of a matrix A ∈ Rm×n for
positive integers p, q. Recall that

∥A∥p,q := max
x ̸=0

∥Ax∥p
∥x∥q

= max
∥x∥q=1

∥Ax∥p.

When p and q are both even integers, this is a standard polynomial optimization
problem. If one of them is odd, then we need to get rid of the absolute value
constraints. When p is even and q is odd, we can equivalently express that{

(∥A∥p,q)p = max (aT1 x)
p + · · ·+ (aTmx)p

s.t. |x1|q + · · ·+ |xn|q = 1.
(5.2.1)

Here, the aTi is the ith row of A. When p is odd and q is even, we have ∥A∥p,q = max xn+1

s.t. (x1)
q + · · ·+ (xn)

q = 1,
|aT1 x|p + · · ·+ |aTmx|p = (xn+1)

p.
(5.2.2)
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Similarly, when p and q are both odd, we have ∥A∥p,q = max xn+1

s.t. |x1|q + · · ·+ |xn|q = 1,
|aT1 x|p + · · ·+ |aTmx|p = (xn+1)

p.
(5.2.3)

The constraining sets in the above optimization problems can be decomposed
in the same way as in (5.1.1).

Example 5.2.1. Consider the following matrix

A =


−8 −8 −3 1
4 −7 7 6
6 −7 −7 −4
8 0 −9 −6

 .

Some typical values of the norm ∥A∥p,q and the vector x∗ for achieving it are
listed in Table 5.1. The norms ∥A∥p,q are all computed successfully by the

Table 5.1: The (p, q)-norms for the matrix A in Example 5.2.1.
(p, q) ∥A∥p,q x∗ for ∥A∥p,q = ∥Ax∗∥p, ∥x∗∥q = 1

(2, 3) 21.6132 (0.6568,−0.3937,−0.7542,−0.6097)
(3, 2) 15.5469 (0.5606,−0.2097,−0.6742,−0.4327)
(3, 3) 19.0928 (0.6782,−0.4598,−0.7329,−0.5820)
(3, 4) 21.2617 (0.7446,−0.5841,−0.7824,−0.6700)
(4, 3) 18.0128 (0.6825,−0.4605,−0.7305,−0.5794)
(4, 4) 20.0605 (0.7465,−0.5863,−0.7809,−0.6682)
(4, 5) 21.4196 (0.7895,−0.6633,−0.8166,−0.7261)
(5, 4) 19.3770 (0.7471,−0.5848,−0.7810,−0.6683)
(5, 5) 20.6894 (0.7896,−0.6635,−0.8165,−0.7260)

unified moment relaxation (3.1.2) for the relaxation order k = 2 or 3.



34 CHAPTER 5. NUMERICAL EXPERIMENTS



Chapter 6

Conclusions and Future
Work

This paper proposes a unified Moment-SOS hierarchy for solving the poly-
nomial optimization problem (1.1.1) whose feasible set K is a union of several
basic closed semialgebraic sets Kl. Instead of minimizing the objective f sepa-
rately over each individual set Kl, we give a unified hierarchy of Moment-SOS
relaxations to solve (1.1.1). This hierarchy produces a sequence of lower bounds
for the optimal value fmin of (1.1.1). When the archimedeanness is met for each
constraining subset Kl, we show the asymptotic convergence of this unified hi-
erarchy. Furthermore, if the linear independence constraint qualification, the
strict complementarity and the second order sufficient conditions hold at every
global minimizer for each Kl, we prove the finite convergence of the hierarchy.
For the univariate case, special properties of the corresponding Moment-SOS
relaxation are discussed. To the best of the authors’ knowledge, this is the
first unified hierarchy of Moment-SOS relaxations for solving polynomial opti-
mization over unions of sets. Moreover, numerical experiments are provided to
demonstrate the efficiency of this method. In particular, as applications, we
show how to compute the (p, q)-norm of a matrix for positive integers p, q.

There exists relevant work on approximation and optimization about mea-
sures with unions of several individual sets. For instance, Korda et al. [11] con-
siders the generalized moment problem (GMP) that exploits the ideal sparsity,
where the feasible set is a basic closed semialgebraic set containing conditions
like xixj = 0. Because of this, the moment relaxation for solving the GMP in-
volves several measures, each supported in an individual set. Lasserre et al. [15]
proposes the multi-measure approach to approximate the moments of Lebesgue
measures supported in unions of basic semialgebraic sets. Magron et al. [20]
discusses the union problem in the context of piecewise polynomial systems. We
would also like to compare the sizes of relaxations (1.2.1) and (1.2.2). To apply
the individual relaxation (1.2.1), we need to solve it for m times. For the unified
relaxation (1.2.2), we only need to solve it for one time. For a fixed relaxation

35



36 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

order k in (1.2.1), the length of the vector y(l) is
(
n+2k
2k

)
. For the same k in

(1.2.2), there are m vectors of y(l), and each of them has length
(
n+2k
2k

)
. The

comparison of the numbers of constraints is similar. Observe that (1.2.1) has
|E(l)| equality constraints, |I(l)| + 1 linear matrix inequality constraints, and
one scalar equality constraint. Similarly, (1.2.2) has |E(1)|+ · · ·+ |E(m)| equality
constraints, |I(1)|+ · · ·+ |I(m)|+m linear matrix inequality constraints, and one
scalar equality constraint. It is not clear which approach is more computation-
ally efficient. However, in our numerical examples, solving (1.2.2) is relatively
faster.

There is much interesting future work to do. For instance, when the number
of individual sets is large, the unified Moment-SOS relaxations have a large
number of variables. How to solve the moment relaxation (3.1.2) efficiently is
important in applications. For large scale problems, some sparsity patterns can
be exploited. We refer to [10, 21, 42, 43] for related work. It is interesting future
work to explore the sparsity for unified Moment-SOS relaxations. Moreover, how
to solve polynomial optimization over a union of infinitely many sets is another
interesting future work.
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