Complex Analysis Qualifying Exam – Fall 2025

Name:				
Student ID:				

Instructions:

No books or notes. You may use without proofs results proved in Conway, Chapters I-XI. However, if using a homework problem, please make sure you reprove it. Present your solutions clearly, with appropriate detail.

You have 180 minutes to complete the test.

Notation: $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}.$

Question	Score	Maximum	
1		10	
2		10	
3		10	
4		10	
5		10	
6		10	
Total		60	

Problem 1. [10 points.]

How many zeros does the polynomial equation $z^4 - 6z + 3 = 0$ have in the annulus

$$G = \{ z \in \mathbb{C} : 1 < |z| < 2 \}?$$

Please justify your answer.

Problem 2. [10 points.]

Let

$$f:\{z:0<|z|<1\}\to\mathbb{C}$$

be holomorphic and assume that

$$|f(z)| \le A|z|^{-3/2}$$

for some constant A. Prove that there is a complex constant α such that

$$g(z) := f(z) - \alpha z^{-1}$$

can be extended to a holomorphic function on $\{z:|z|<1\}$.

Problem 3. [10 points; 3, 5, 2.]

Suppose R_1, R_2 are bounded simply connected regions in \mathbb{C} . Let $z_1 \in R_1$ and $z_2 \in R_2$.

(i) Prove that there exists a holomorphic bijective function

$$f:R_1\to R_2$$

such that $f(z_1) = z_2$.

(iii) When does equality occur in (ii)?

Problem 4. [10 points; 7, 3.]

Let $f: \mathbb{D} \to \mathbb{C}$ be a holomorphic function in the unit disk. Assume that |f(z)| is constant on each circle |z| = r for 0 < r < 1; i.e., $|f(re^{i\theta})| = \phi(r)$, for some non-negative function ϕ on 0 < r < 1.

(i) Assume that $f(0) \neq 0$. Show that f is constant.

(ii) Assume that f has a zero of order m > 0 at z = 0. Show that $f(z) = cz^m$ for some constant c.

Problem 5. [10 points.]

Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function, and define $f_n(z) = f(nz)$. Suppose that

$$\mathcal{F} = \{f_n : n \ge 1\}$$

is a normal family on the annulus $\{1<|z|<2\}$. Show that f is constant.

Problem 6. [10 points; 6, 4.]

(i) Let $G \subset \mathbb{C}$ be a nonempty simply connected region. Show that $G = \mathbb{C}$ if and only if every positive harmonic function $h: G \to \mathbb{R}$ is constant.

(ii) Let $G = \mathbb{C} \setminus \{0\}$. If $h: G \to \mathbb{R}$ is a positive harmonic function, show that h is constant.