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Abstract

Regression discontinuity designs (RDDs) are common quasi-experiment designs in economics and
statistics. RDDs rely on discontinuous treatment assignment mechanisms to identify causal effects. Units
are assigned a treatment based on whether their value of an observed covariate is above or below a fixed
cutoff. The most popular methodologies for analyzing RDDs utilize continuity-based assumptions and
local polynomial regression. However, an alternative framework, the local randomization framework,
has repeatedly proven its usefulness in practice. On the other hand, the available data grows fast,
such as the features of the units. To benefit from the flexibility of the machine learning methods to
control for high-dimensional confounding and keep the validity of our statistical inference, we need
double/debiased machine learning (DML). In this thesis, we apply DML on the inference in RDDs under
local randomization. We illustrate our proposed methodology with a simulation study.

1 Introduction

Average treatment effect estimation is a crucial problem in causal inference and has been the topic of a
considerable amount of recent literature Bradic, Wager, and Zhu (2019). Regression discontinuity designs are
a popular approach to causal inference that rely on known discontinuous treatment assignment mechanisms
to identify causal effects. Thistlethwaite and Campbell (1960). The basic idea behind the RD design is that
the assignment to the treatment is determined, either completely or partially, by the value of a predictor (the
covariate Zi) being on either side of a fixed threshold Imbens and Lemieux (2008). In RDDs, we assume that
there is a running variable and a cutoff (threshold), such that if the running variable is above the cutoff, we
regard it as “assigned treatment”, vice versa Villamizar-Villegas, Pinzon-Puerto, and Ruiz-Sanchez (2021).
Since we do not take the treatment assignment to be random, approaches in random controlled trials, such
as IPW, do not apply to RDD Rubin (2008). This means we have to develop a new algorithm to do the
estimation.

The traditional inference approach in RDDs estimates treatment effects using local nonparametric meth-
ods and observations near the known cutoff. The key assumption is that the conditional expectation of a
potential outcome is continuous at the threshold.

The analogy between RD designs and randomized experiments was first formalized without continuity
conditions by Cattaneo et al. (2015). Rather than relying on limits as the score tends to the cutoff and
on heuristic analogies between units barely above and barely below the cutoff, this framework considers
assumptions under which the RD design would produce conditions equivalent to the conditions that would
have occurred if a randomized experiment had been conducted in a neighborhood around the cutoff Matias
and Rocio (2022). Thus, many methods for analyzing randomized experiments can be used. Motivated by this
idea, we develop a methodological framework for analyzing RDDs under local randomization inference setup
with another recently introduced method-double/debiased machine learning Chernozhukov et al. (2018).

The remainder of the paper is as follows. In Section 2, we review the local randomization framework for
RDDs, specifically for Sharp RDDs. In Section 3, we review methods for choosing the window around the cut-
off for which units are deemed as-if randomized. In Section 4, we review the framework for double/debiased
machine learning. In Section 5, we discuss the application of DML in local randomization framework. In
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Section 6, we compare the original local randomization approach and the DML local randomization approach
through simulation studies. In section 7, we conclude the paper.

2 The Local Randomization Framework for Sharp Regression Dis-
continuity Designs

The key idea behind local randomization methods is that we assume that there is some window around the
cutoff in an RDD such that units are as-if randomized to treatment and control. Therefore, methods for
analyzing randomized experiments can be applied to estimate treatment effects within this window. After
declaring the necessary notations, we will review the assumptions that the local randomization framework
needs to estimate the treatment effects in RDDs. We will also introduce some assignment mechanism in
RDDs and the analytic form of estimands.

2.1 Notations

We follow Imbens and Lemieux (2008) to discuss the framework of sharp RDD formalized using potential out-
comes. Consider the setting with N units, indexed i = 1, 2, ..., N , we have potential outcomes (Yi(1), Yi(0)),
where Yi(1) denotes the outcome of unit i under treatment, and Yi(0) denotes the outcome of unit i under
control. Let Zi denote the running variable for unit i, and let c be a known cutoff or threshold. Let Ti denote
the treatment assignment for unit i, where Ti = 1 if unit i is assigned to treatment and 0 otherwise, which
means Ti = 1{Zi≥c}. Let Xi be a d dimensional vector of other pretreatment covariates. The pretreatment
covariates are required within the local randomization framework because these covariates are used to deter-
mine if units within a particular window are effectively randomized, which we will discuss further in Section
3. Without these additional covariates Xi, the assumptions discussed later are not testable.

The distribution of treatment assignment T for units with Z < c is different from the distribution of T
for units with Z ≥ c for some cutoff c. The local randomization framework for RDDs mainly focuses on
units within a window around the cutoff for which units are effectively randomized to treatment and control.
Thus, we define the window Wh = [c−h, c+h] for some bandwidth h. For simplicity, we choose a symmetric
window. We denote the number of observations inside of the window be Nw.

1. Running variable: Zi ∈ R

2. Pretreatment covariates: Xi ∈ Rd

3. Outcome variable: Yi ∈ R

4. Binary treatment: Ti = 1{Zi≥c} (Ti is not randomized)

5. Data set: (Xi, Zi, Yi, Ti) ∈ Rd × R × R × {0, 1}

2.2 Local Randomization Mechanism Assumptions

The key assumption behind the local randomization approach to RDDs is that units near the cutoff are
as-if randomly assigned to treatment. We now begin the discussion of local randomization by specifying
the assumptions within the window around the cutoff that allow us to analyze the RDDs as a randomized
experiment.

The local randomization framework for RDDs is characterized by two features: a) a known treatment
assignment mechanism in the window and b) an exclusion restriction on the potential outcomes.Cattaneo et
all. (2016)

2.2.1 Example of Local Randomization mechanism

The first feature is analogous to the requirement of know assignment mechanism in classical randomized
experiments. One natural randomization mechanism is Bernoulli trials. Since we have binary treatment,
we can model each treatment assignment as independent Bernoulli trails. Units are assigned independently
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to treated and control group within the window. Typically, e(Xi) needs to be estimated(e.g., via logistic

regression). One simple choice of e(Xi) is
N+

w

Nw
. Under the Local Bernoulli Trials assumption, any treatment

assignment in {0, 1}|Wh| could have plausibly occurred for units in Wh, including the cases where all units
are assigned to treatment or all units are assigned to control. Thus, this is the least strict assumption.

Local Bernoulli Trials: For units i ∈Wh,

P(T = t | X) =
∏

i∈Wh

e(Xi)
Ti [1− e(Xi)]

1−Ti , where 0 < e(Xi) < 1 (2.1)

where e(Xi) ≡ P(Zi = 1 | Xi) is the propensity score for unit i.
Since the local Bernoulli trials allow the situation of all treatment can be equal to 0 or 1, we need more

restricted assumptions to avoid the generalization of that possible treatment assignment. Local Complete
Randomization assumes that the propensity scores for all units in Wh are equal, conditional on the number

of units assigned to treatment. This means that the probability of each treatment assignment is
(Nw

N+
w

)−1
,

where N+
w is the number of treatment units within the window W .

Local Complete Randomization: For units i ∈Wh,

P(T = t | X) =


((Nw

N+
w

))−1

if
∑

i∈Wh
Ti = N+

w ,

0 otherwise.
(2.2)

2.2.2 SUTVA and Local Unconfoundedness and Overlap

In general, the running variable is often correlated with the potential outcomes in RDDs. Such a relationship
between the score and the potential outcomes would hinder the comparability of unis above and below the
cutoff within the window because of the lack of common support in the score Matias and Rocio (2022).
Thus, we need to explicitly give assumptions on the exclusion restriction.

Assumption 2.1 (Local SUTVA). There exist a window Wh = [c − h, c + h] such that for each i ∈ Wh,
consider two values Z ′

i and Z
′′
i , where Z

′
i ̸= Z ′′

i , corresponding to treatment assignments T ′
i = 1(Z ′

i > c) and
Z ′′
i = 1(Z ′′

i > c), where 1 denotes the indicator function for event A. If T ′
i = T ′′

i , then Yi(T
′
i ) = Yi(T

′′
i ).

This means that for units i ∈ Wh, the treatment assignment of a unit depends on the running variable
only through its being above or below c, and that the potential outcomes of each unit do not depend on
other units treatment assignment.

We also need one additional assumption to make the average treatment effect identifiable. We need
the potential outcomes are independent of treatment assignment given covariates and there is non-zero
probability of units receiving treatment or control, which are very basic assumptions in causal inference.
Under local randomization framework, we need these assumptions to be true for all units in the window
Wh = [c− h, c+ h].

Assumption 2.2 (Local Unconfoundedness and Overlap). There exist a window Wh = [c − h, c + h] such
that for all i ∈Wh,

(Yi(1), Yi(0)) ⊥⊥ Ti | Xi and 0 < P(Ti = 1 | Xi) < 1 (2.3)

The assumption that 0 < P(Ti = 1 | Xi) < 1 for all i ∈Wh ensures that there is a non-zero probability on
each of the 2|Wh| possible treatment assignments. The local unconfoundedness assumes that Ti is independent
of the potential outcomes and holds conditional on Xi.
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2.3 Estimand and Estimation

Under the local SUTVA, the regression functions E[Yi(1)|Zi = z] and E[Yi(0)|Zi = z] are constant for all
values of the running variable inside the window Wh. The average treatment effect is then the difference
between E[Yi(1)|Zi = z] and E[Yi(0)|Zi = z] inside Wh. For the Nw units with Zi ∈ Wh, the sharp local
randomization RD treatment effect cam be defined as

θSLR =
1

Nw

∑
i:Zi∈Wh

Ew[Yi(1)− Yi(0)] (2.4)

=
1

Nw

∑
i:Zi∈Wh

E[
TiYi

Pw(Ti = 1)
]− 1

Nw

∑
i:Zi∈W

E[
(1− Ti)Yi

1− Pw(Ti = 1)
] (2.5)

where Ew and Pw denote expectation and probability computed conditionally for all units with Zi ∈ Wh

Matias and Rocio (2022).
Similar to most works on causal inference, a common choice for the estimation of average treatment effect

is difference-in-means.

θ̂SLR = Ȳ + − Ȳ − (2.6)

=
1

Nw

∑
i:Zi∈Wh

TiYi
Pw(Ti = 1)

− 1

Nw

∑
i:Zi∈Wh

(1− Ti)Yi
1− Pw(Ti = 1)

(2.7)

where Wi denotes appropriate weights that are chosen according to the assumptions and the framework
employed.

3 Bandwidth selection

In order for local randomization methods to yield trustworthy causal inferences, we need to find a bandwidth
h such that, within the windowWh = [c−h, c+h], it is plausible that Local SUTVA, Local Unconfoundedness
and overlap and a particular assignment mechanism hold. In this section, we will mainly utilize the method in
rdlocrand package. Motivated by the idea that the treatment assignment is as-if random inside the window,
Cattaneo et al. (2015) propose that distribution of preintervention covariates(before treatment assignment)
and postintervention covariates(after treatment assignment) should be the same between treated and control
units. The distribution of these covariates for control and treatment units should be unaffected by the
treatment within W0 but should be affected by the treatment outside the window.

Define X be the n× k matrix with k covariates. For an arbitrary window Wi, let XWi be the subvector
corresponding to units with running variable inside the window Wi. Then, the window selection algorithm
is the following:

1. Choose an initial small window, Ŵ1.

2. For each of the k covariates, conduct a test of the null hypothesis of no effect of the treatment on the
covariate using some test statistic T (XŴ1

, ZŴ1
). Take the minimum p-value from the k test.

3. If the minimum p-value obtained in step 2, p1, is less than some prespecified level (0.15 by default),
the initial window was too large. Then, we decrease the initial window and start over. If the window
cannot be decreased (for example, because a smaller window would contain too few data points), we
conclude that the window cannot be found.

4. If p1 ≥ 0.15, then we choose a larger window Ŵ1 ⊂ Ŵ2, and go back to step 2 to calculate p2. Repeat
the process until the minimum p-value is less than 0.15. The selected window is the largest window
such that the minimum p-value is larger than or equal to 0.15 in that window and in all windows
contained in it.

The resulting window, Ŵ , is the estimate of W0. Intuitively, this algorithm would choose the largest
window in which the distributions of all covariates are not affected by the treatment assignment.
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The p-value can only tell us whether the distribution of covariats are affected inside the window. If the
window Ŵi haves p-value is greater or equal to 0.15 and the window ˆWi+1 have p-value less than 0.15, we can
conclude that the treatment assignmenet does not affect the distribution of covariates inside Ŵi but affect
the distribution of covariates outside Ŵi. If the smallest window has p-value less than 0.15, then we can
only conclude that the distribution of covariates is affected in all windows, which invalidate our assumption.
Thus, we reach to the result in step 3.

Usually, researchers are concerned about controlling Type I error to avoid rejecting the null hypothesis
too often when it is true. However, in our study, our goal is to learn whether the data support the existence
of a window around the cutoff where our null hypothesis(treatment assignment does not affect covariate
distribution) fails to be rejected. We actually focus on controlling Type II error. And by power calculations,
the window selection method recommends 0.15 as the significance value, instead of the conventional 0.05.

4 Double/Debiased Machine Learning Methods

To estimate and construct confidence intervals for a parameter of interest when having a high-dimensional
set of covariates, researchers introduced machine learning methods. However, naively plugging data in
these methods would cause two problems—overfitting and regularization bias. Chernozhukov et al. (2018)
showed these two problems can be vanished by using two adjustments–cross-fitting and Neyman-orthognoal
scores. In terms of estimating treatment effects, Chernozhukov et al. (2018) combined machine learning
techniques with interactive model, introducing a robust methodology for estimating treatment effects in
high-dimensional settings. They propose an extension on classical literature under unconfoundedness using
machine learning methods. They consider the estimation of average treatment effects when treatment effects
are fully heterogeneous and the treatment variable is binary.

4.1 Inference on Treatment Effects in the Interactive Model

Let Ti ∈ {0, 1}. Let potential outcomes be (Yi(1), Yi(0)), where Yi(1) denotes the outcome of unit i under
treatment, and Yi(0) denotes the outcome of unit i under control. Let Xi ∈ Rd be covariates. With the
vector (Xi, Yi, Ti) ∈ Rd × R × {0, 1}, we have

Yi = g0(Ti, Xi) + Ui, E[Ui|Xi, Ti] = 0 (4.1)

Ti = m0(Xi) + Vi, E[Vi|Xi] = 0 (4.2)

A common true parameter of interest in this model is the average treatment effect:

θ = Ep[g0(1, X)− g0(0, X)] (4.3)

The covatiates Xi affect the treatment variable via the propensity score m0 and the potential outcome Yi
via the function g0. Since both of these functions are unknown and potentially complicated, we can take
advantage of machine learning methods to learn them.

For estimation of the ATE, we use

ψ(W ; θ, η) := (g(1, X)− g(0, X)) +
T (Y − g(1, X))

m(X)
− (1− T )(Y − g(0, X))

1−m(X)
− θ, (4.4)

where the nuisance parameter is η = (m, g) consists of P-square-integrable functions g and m mapping the
support of (T,X) to R and the support of X to (ϵ, 1− ϵ), respectively, for some ϵ ∈ (0, 1/2). The true value
of η is η0 = (m0, g0).

4.2 Assumption

To make the interactive model useful, Chernozhukov et al. (2018) raised the regularity condition for ATE
estimation 4.1 and the DML inference on ATE theorem 4.1. The this ensures the estimator converges to the
true parameter at rate of

√
n and has asymptotic normality.
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Using the score, it can be easily seen that true parameter values θ0 for ATE obey the moment condition
EPψ(W ; θ0, η0) = 0, and also that the orthogonality condition ∂ηEPψ(W ; θ0, η0)[η − η0] = 0 holds.

Let (δN )∞N=1 and (∆N )∞N=1 be sequences of positive constants approaching 0. Also, let c, ϵ, C and q
be fixed strictly positive constants such that q > 2, and let K ≥ 2 be a fixed integer. Moreover, for any
η = (ℓ1, . . . , ℓl), denote ∥η∥P,q = max1≤j≤l ∥ℓj∥P,q. For simplicity, assume that N/K is an integer.

Assumption 4.1 (Regularity Conditions for ATE Estimation). For all probability laws P ∈ P for the triple
(Y, T,X) the following conditions hold: (a) equations 4.1-4.2 hold, with T ∈ {0, 1}, (b) ∥Y ∥P,q ≤ C, (c)
PP {ϵ ≤ m0(X) ≤ 1 − ϵ} = 1, (d) ∥U∥P,2 ≥ c, (e) ∥EP [U

2 | X]∥P,∞ ≤ C, and (f) given a random subset I
of [N ] of size n = N/K, the nuisance parameter estimator η̂0 = η̂0((Wi)i∈Ic) obeys the following conditions:
with P-probability no less than 1−∆N :

∥η̂0 − η0∥P,q ≤ C, ∥η̂0 − η0∥P,2 ≤ δN , ∥m̂0 − 1/2∥P,∞ ≤ 1/2− ϵ, and

for the score ψ in 4.4, where η0 = (g0,m0) and the target parameter is ATE,

∥m̂0 −m0∥P,2 × ∥ĝ0 − g0∥P,2 ≤ δNN
−1/2.

Theorem 4.1 (DML Inference on ATE). Suppose that θ0 = EP [g0(1, X)− g0(0, X)] and the score ψ in 4.4

is used. In addition, suppose that 4.1 holds. Then the DML estimators θ̂ obey

σ−1
√
N(θ̂0 − θ0)⇝ N(0, 1), (4.5)

uniformly over P ∈ P, where σ2 = EP [ψ
2(W ; θ0, η0)]. Consequently, confidence regions based upon the DML

estimators θ̂ have uniform asymptotic validity:

lim
N→∞

sup
P∈P

∣∣∣PP

(
θ0 ∈ [θ̂0 ± Φ−1(1− α/2)σ̂/

√
N ]

)
− (1− α)

∣∣∣ = 0.

4.3 Machine Learning Method

Machine Learning method primarily focused on pattern recognition. The goal is to build models under fewer
distributional assumptions. So ML methods are more like algorithms instead of starting with a relatively
simple, predefined equation. Chernozhukov et al. (2018) apply Lasso, Random Forest, and Regression Trees
in empirical studies. For our study, we use these three machine learning methods as well. To make these
methods more clear, we give a short description about these methods.

4.3.1 Lasso

Least Absolute Selection and Shrinkage Operator Tibshirani (1996) is a machine learning method that can
be applied when having a linear regression with many regressors. It minimizes the sum of squared residuals
with an additional term:

min
β

N∑
i=1

(Yi −Xiβ)
2 + λ · ∥β∥ (4.6)

where ∥β∥ =
∑K

k=1 |βk|. Rewrite (4.6) as follows to choose the penalty parameter

min
β

N∑
i=1

(Yi −Xiβ)
2 s.t.

K∑
k=1

|βk| ≤ t ·
K∑

k=1

|βols
k | (4.7)

where t is a scalar between zero and one. When t equals zero, it is easy to see that all estimates shrinks to
zero. When t is equal to one, the estimates are not shrinking and it is just OLS. The penalty parameter λ
in (4.6) or t in (4.7) are chosen through cross-validation.
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4.3.2 Random Forests

When applying Random Forests, we draw several bootstrap samples from the data and start to build a tree
for each bootstrap sample. First, we consider all the samples in a single root node. Then, we recursively
split nodes. We randomly select L covariates out of the K total available covariates. Among the subset
consisting of L covariates, we select the optimal covariate and split threshold to create child nodes. Then, we
repeat this splitting procedure for any resulting node that contains more units than a predefined minimum
leaf size. If a node meets this minimum criterion or other stopping rules, it becomes a terminal leaf. Finally,
we take the average of the predictions from all the individual trees grown on the bootstrap samples to get
the final Random Forest prediction.

4.3.3 Neural Network

A neural network algorithm processes input data through interconnected layers of nodes (neurons). Input
data are fed into the first layer. Each neuron receives inputs, multiplies them by associated weights, sums
these weighted inputs, adds a bias, and then passes the result through an activation function to produce its
output. The output is then fed forward as input to the neurons in the subsequent layer. This input-output
process repeats until the final layer produces the network’s prediction. The network’s prediction is compared
to the actual target value from the training data using a loss function. This measures how wrong the
prediction was. The error calculated by the loss function is propagated backward through the network. This
step calculates the gradient of the loss function with respect to each weight and bias, essentially determining
how much each parameter contributed to the error. Then, an optimization algorithm uses these gradients to
update the weights and biases in a direction that minimizes the loss. Finally, these processes are repeated
iteratively for many data samples and multiple passes through the entire training dataset until the network’s
performance converges.

5 Application of DML in Local Randomization Framework

5.1 Motivation

5.1.1 Theoretical feasibility

Because the key idea behind local randomization methods is that we assume that units are as-if randomized
to treatment and control inside some window around the cutoff in an RDD. Therefore, methods for analyzing
randomized experiments can be applied to estimate treatment effects within this window. This means we
can utilize double/debiased machine learning method inside the window. The other necessary step in the
inference of RDDs is the local randomization mechanism. This can also be solved by DML because we have
propensity score function m0(X) in the DML framework. Since the confounding factors affect the treatment
assignment via the propensity score, we can interchange the original local randomization mechanism, for
example, local bernoulli trails and local complete randomization above, by function m0(X). To represent
the treatment assignment is completely determined by the running variable Z, we define m0(X) maps from
the support of Z to (ϵ, 1− ϵ), respectively, for some ϵ ∈ (0, 1/2).

5.1.2 Benefit

We notice that the window selection procedure would dramatically decrease the usable observations in
inference. Thus, though we may have a large number of observations in the beginning, we may have a data
set where the number of features is large relative to the number of observations after the window selection.
That is, window selection may shift the problem from the setting where classical statistical inference methods
are typically appropriate to one that requires the techniques of high-dimensional statistical inference. In
this case, double machine learning offers significant benefits in solving high-dimensional causal statistical
problems. The most important benefit of DML is that DML enables valid statistical inference under high-
dimensional settings. Getting reliable standard errors, confidence intervals, and p-values for a parameter θ0
is difficult when high-dimensional machine learning methods are used in the estimation process. However,
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DML yields the estimates of θ0 that are asymptotically normal and centered around the true parameter θ0.
This allows us to construct valid confidence intervals and run hypothesis testing.

5.2 Assumption

The assumptions of the application of DML in local randomization framework should follow the assumption
from the local randomization framework and the local regularity conditions for ATE estimation.

First, the structure of interactive model requires two parts: propensity score and overall regression
function. By defining the propensity score here, we can fulfill the requirement of the treatment assignment
mechanism of the local randomization framework. The key difference in our assumption and the original
interactive model is that, the argument of propensity score and the regression function involves running
variable Z and covariates X, instead of X only.

Assumption 5.1 (Local Propensity Score). Let c be the cutoff. There exists a window Wh = [c− h, c+ h]
such that there exist a function m0 mapping the support of running variable Z and covariates X to (ϵ, 1− ϵ)
such that

T = m0(Z,X) + V, E[V |Z,X] = 0 (5.1)

where V is the error term.

Assumption 5.2 (Local Regression Function). Let c be the cutoff. There exists a window Wh = [c−h, c+h]
such that there exist a function g0 mapping the support of (T, Z, X) to R such that

Y = g0(T,Z,X) + U, E[U |Z,X] = 0 (5.2)

where U is the error term.

Similarly, we need to define the exclusion restriction on potential outcomes for the local randomization
framework. Under this assumption, the treatment assignment of a unit depends on the running variable
only through its being above or below the cutoff. And the potential outcomes of each unit do not depend
on other units’ treatment assignment inside the window. Meanwhile, we do not have different version of
treatment assignment for differenct values of the running variable within the window.

Assumption 5.3 (Local DML SUTVA). Let c be the cutoff. There exists a window Wh = [c − h, c + h]
such that for each i ∈ Wh, consider two values Z ′

i and Z ′′
i , where Z ′

i ̸= Z ′′
i , corresponding to treatment

assignments T ′
i = 1(Z ′

i > c) and T ′′
i = 1(Z ′′

i > c), where 1 denotes the indicator function for event A. If
T ′
i = T ′′

i , then Yi(T
′
i ) = Yi(T

′′
i ).

In order for the parameter to be identifiable, we still need unconfoundedness and overlap inside the
window. That says, the potential outcomes are independent of treatment assignment given covriates. And
there is a non zero probability of units receiving treatement or control.

Assumption 5.4 (Local DML Unconfoundedness and Overlap). Let c be the cutoff. There exists a window
Wh = [c− h, c+ h] such that for all i ∈Wh,

(Yi(1), Yi(0)) ⊥⊥ Ti | Xi and 0 < P(Ti = 1 | Xi) < 1 (5.3)

Then, to make DML valid, we need the regularity conditions for ATE inside the window.

Assumption 5.5 (Regularity Conditions for ATE Estimation). There exists a window Wh = [c− h, c+ h].
Let Nw be the number of observations in Wh. Let (δNw

)∞Nw=1 and (∆Nw
)∞Nw=1 be sequences of positive

constants approaching 0. Also, let c, ϵ, C and q be fixed strictly positive constants such that q > 2, and
let K ≥ 2 be a fixed integer. Moreover, for any η = (ℓ1, . . . , ℓl), denote ∥η∥P,q = max1≤j≤l ∥ℓj∥P,q. For
simplicity, assume that N/K is an integer.

For all probability laws P ∈ P for the quadruple (Y, T, Z,X) the following conditions hold: (a) equations
5.1-5.2 hold, with T ∈ {0, 1}, (b) ∥Y ∥P,q ≤ C, (c) ∥U∥P,2 ≥ c, (d) ∥EP [U

2 | Z,X]∥P,∞ ≤ C, and (e) given
a random subset I of [Nw] of size n = Nw/K, the nuisance parameter estimator η̂0 = η̂0((Ti)i∈Ic) obeys the
following conditions: with P-probability no less than 1−∆Nw :

∥η̂0 − η0∥P,q ≤ C, ∥η̂0 − η0∥P,2 ≤ δNw
, ∥m̂0 − 1/2∥P,∞ ≤ 1/2− ϵ, and
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for the score ψ in 4.4, where η0 = (g0,m0) and the target parameter is ATE,

∥m̂0 −m0∥P,2 × ∥ĝ0 − g0∥P,2 ≤ δNw
Nw

−1/2.

5.3 Bandwidth Selection

The algorithm to find the window is similar as before. The key idea is the same: the distribution of covariates
before treatment assignment and covariates after treatment assignment should be the same between treated
and control group. But the distribution should be affected by the treatment assignment outside the window.

1. Choose an initial small window, Ŵ1.

2. For each of the k covariates, we conduct a test of the null hypothesis of no effect of the treatment on
the covariate using some test statistic T (XŴ1

, ZŴ1
). Take the minimum p-value from the k test.

3. If the minimum p-value obtained in step 2, p1, is less than 0.15, the initial window was too large.
Then, we decrease the initial window and start over. If the window cannot be decreased (for example,
because a smaller window would contain too few data points), we conclude that the window cannot be
found. Otherwise, if p1 ≥ 0.15, then we choose a larger window Ŵ1 ⊂ Ŵ2, and go back to step 2 to
calculate p2.

4. Repeat the process until the minimum p-value is less than 0.15. The selected window is the largest
window such that the minimum p-value is larger than or equal to 0.15 in that window and in all
windows contained in it.

5.4 Estimand

Our estimand is similar to the original estimand. But the regression function and the propensity score are
different.

θDMLSLR =
1

Nw

∑
i:Zi∈Wh

Ew[Yi(1)− Yi(0)] (5.4)

=
1

Nw

∑
i:Zi∈W

Ew[g(1, Zi, Xi)− g(0, Zi, Xi)] (5.5)

=
1

Nw

∑
i:Zi∈W

Ew[
Tig(1, Zi, Xi)

m(Zi, Xi)
]− 1

Nw

∑
i:Zi∈W

Ew[
(1− Ti)g(0, Zi, Xi)

1−m(Zi, Xi)
] (5.6)

The running variable Zi affects the treatment variable via the propensity score m0. And both Zi and
covariates Xi affect the potential outcome Yi via the function g0. Since both of these functions are unknown
and potentially complicated, we can take advantage of machine learning methods to learn them.

For estimation of the ATE, we use

ψ(W ; θ, η) := (g(1, Z,X)− g(0, Z,X)) +
T (Y − g(1, Z,X))

m(Z,X)
− (1− T )(Y − g(0, Z,X))

1−m(Z,X)
− θ, (5.7)

where the nuisance parameter is η = (m, g) consists of P-square-integrable functions g and m mapping the
support of (T,Z,X) to R and the support of Z to (ϵ, 1 − ϵ), respectively, for some ϵ ∈ (0, 1/2). The true
value of η is η0 = (m0, g0).

6 Simulation Study

To illustrate the methods developed in section 5, we consider four simulation examples. The first data
set represents the data with clear discontinuity. The second data set represents the data without clear
discontinuity. The third data set represents the high-dimensional data with clear discontinuity. And the
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last data set represents the high-dimensional data without clear discontinuity. Here, high-dimensional data
refers to datasets with a large number of features (large number of covariates X).

We first show the data generating process. We claim the distribution of each covariate and the regression
function. Then, we show the process of window selection. We report results based on the conventional local
randomization method and double machine learning methods. We label the conventional local randomization
method as“OG”, Lasso as “Lasso”, random forest as “RF”, and neural network as “NN”. For “Lasso”, we
set λ = 0.01. The results in the “RF” column are obtained by estimating each nuisance function with a
random forest with averages over 100 trees. To estimate the nuisance functions using the neural networks,
we use 5 neurons, a decay parameter of 0.01, and a maximum number of iterations of 5. Besides the selected
window, we also show the inference in a smaller window and a larger window to test the robustness of all
the methods. To show which method is more robust in each window, we calculate the Mean Squared Error
(MSE) for each estimator. We run the Monte Carlo simulation with 1000 repetitions for the calculation of
MSE.

6.1 Dataset 1 - Data with clear discontinuity

This model employs the similar regression function form described in Imbens and Kalyanaraman (2012),
which was generated using data from Lee (2008). Lee studies the incumbency advantage in elections, and
thus his identification strategy was based on the discontinuity generated by the rule that the party with
a majority vote share wins. The running variable is the difference in vote share between the Democratic
candidate and his/her strongest opponent (usually Republican) in a given election. In this model, we have
the cutoff c = 0. The regression function is obtained by fitting a fifth-order global polynomial with different
coefficients for running variable below and above the cutoff. The resulting coefficients estimated on the Lee
(2008) data, after discarding observations with past vote share differences greater than 0.99 and less than
-0.99.

6.1.1 Data Generating Process

The data are generated as i.i.d. draws i = 1, 2, ..., n with n = 5000 as follows:

Yi = µ1(Zi) + 0.50 ∗X1,i − 0.10 ∗X2,i + 0.20 ∗X3,i − 0.30 ∗X4,i

+ 0.66 ∗X5,i − 0.05 ∗X6,i + 0.25 ∗X7,i − 0.15 ∗X8,i + ϵi (6.1)

ϵi ∼ N (0, σ2
ϵ ) (6.2)

X1,i ∼ N (5, 3.14) (6.3)

X2,i ∼ U(−2.5, 2) (6.4)

X3,i ∼ B(5, 2) (6.5)

X4,i ∼ Gamma(2, 0.5) (6.6)

X5,i ∼ Poisson(2) (6.7)

X6,i ∼ N (0, 1.3) (6.8)

X7,i ∼ Exp(1.2) (6.9)

X8,i ∼ U(−1, 3) (6.10)

Zi ∼ 2B(2, 4)− 1 (6.11)

where B(α, β) denotes a beta distribution with parameters α and β, N (µ, σ2) denotes a normal dis-
tribution with mean µ and variance σ2, U(a, b) denotes a uniform distribution with parameters a and b,
Gamma(k, λ) denotes a Gamma distribution with shape parameter k and rate parameter λ, Poisson(λ) de-
notes a Poisson distribution with rate parameter λ, Exp(λ) denotes an Exponential distribution with rate
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parameter λ, and ϵi ∼ N (0, σ2
ϵ ) with σ2

ϵ = 0.1295. The running variable Zi is generated from a Beta(3, 4)
distribution, scaled and shifted to have support [−1, 1].And the regression function follows:

µ1(z) =

{
−0.58 + 1.27z + 7.18z2 + 20.21z3 + 21.54z4 + 7.33z5, if z < 0,

1.92 + 0.84z − 3.00z2 + 7.99z3 − 9.01z4 + 3.56z5, if z ≥ 0.
(6.12)

This function introduces a discontinuity at the cutoff c = 0, with the true parameter θ0 of 2.5.

(a) The distribution of generated dateset 1. (b) A smooth curve of the distribution of generated

dateset 1.

Figure 1: Generated data set 1 - data with clear discontinuity.

Figure 1 summarizes the distribution of the data set. We can clearly see that the data have a discontinuity
on Z = 0. And according to the graph of smooth curve of the distribution of the generated data, we can see
that the regression function has a big jump on Z = 0

6.1.2 Bandwidth Selection

We select out window using the method based on the rdlocarand package, rdwinselect function. The largest
window we considered is [-0.87585, 0.87585], covering almost the entire support of our running variable. The
smallest window is [-0.05, 0.05]. We analyze all symmetric windows around the cutoff between the [-0.05,
0.05] and [-0.87585, 0.87585] in increments of 0.00415 on each side of the cutoff. In each window, we perform
randomization-based test of the sharp null hypothesis of no treatment effect for each of the predetermined
covariates X1 through X8. As the default setting in rdwinselect, we set the minimum accepted value of the
p-value from the covariate balance tests to be 0.15. And we use difference in means statistic as the test
statistics in our randomization-based tests. The test is based on 1000 replications. For each window, we
choose the minimum p-value across X1 through X8.

Figure 2 summarizes graphically the results of our window selector. The x-axis represents the upper limit
of symmetric window [-w, w] around the cutoff, which is the absolute value of our running variable. For
every symmetric window considered (x-axis), we plot the minimum p-value found in that window (y-axis).
For example, the point 0.5 on the x-axis corresponds to the [-0.5, 0.5] window. The figure also shows the
conventional significance level of 0.05 and the significance level of 0.15 that we use for implementation. Using
significance level = 0.15, our chosen window is [-0.15790, 0.15790], since this is the largest window where the
minimum p-value exceeds 15% in that window and all the windows contained in it.

The selected window is [−0.15790, 0.15790]. Table 1 shows the minimum p-value for the first three
consecutive windows, [−0.15790, 0.15790] and the next largest window, and last three consecutive windows.
The minimum p-value of our chosen window is 0.187, and the minimum p-value of next largest window,
[−0.16205, 0.16205], is 0.116. From the Table 1 and Figure 2, we can see that p-value decreases rapidly after
the selected window and keeps relatively almost surely.
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Figure 2: Window selector based on predetermined covariates.

Figure 3: Figure of randomization-based estimation within the selected window
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Table 1: Randomization-based p-value from the test for different windows

Window Minimum p-value Number of observations inside the window

[−0.05000, 0.05000] 0.296 462
[−0.05415, 0.05415] 0.368 503
[−0.05830, 0.05830] 0.256 549
[−0.15790, 0.15790] 0.187 1481
[−0.16205, 0.16205] 0.116 1508
[−0.86755, 0.86755] 0.018 4992
[−0.87170, 0.87170] 0.018 4992
[−0.87585, 0.87585] 0.013 4963

Table 2: Estimated Average Treatment Effect under Different Window

Window Property Window OG Lasso RF NN
Smaller Window [-0.0500, 0.0500] 2.56952 2.52611 2.57872 2.51248
Selected Window [-0.1579, 0.1579] 2.49790 2.55973 2.56041 2.50989
Larger Window [-0.8717, 0.8717] 2.75186 2.55425 2.70658 2.51781

6.1.3 Inference within the Window

Figure 3 shows the actual data we used in the inference of selected window. Table 2 lists out the estimation
results. We noticed that all four methods produce ATE estimates that are relatively close to each other and
generally near the likely true value of 2.5. Meanwhile, since the difference in bandwidth of Smaller Window
and Selected Window is small, we received similar estimation across all 4 methods when inference in Selected
Window. As the window grows larger, the estimates diverge. Lasso and NN estimates remain significantly
stable and close to the true ATE of 2.5. RF estimate increases to 2.70658. And OG estimate remains higher
at 2.75186.

Table 3 shows the result of MSE. The results of MSE support what we describe above. The MSE’s
of all three DML estimators are similar in the selected window, which the MSE of the conventional local
randomization method is slightly higher. By the small difference between Smaller Window and Selected
Window, MSE’s of all four estimators in ”smaller window” also follows the same concludsion in Selected
Window. However, we can find a noticeable difference in MSE of all four estimators in ”larger window”.
Overall, Lasso and NN consistently show the best performance in terms of MSE across all windows. The
conventional method’s accuracy deteriorates as the window size increases. RF performs better than the con-
ventional method but its accuracy deteriorates significantly in larger window. Thus, the results suggest that
the robustness of the DML methods does not affected by the choice of window size. While the conventional
method’s MSE increases with a misspecified window, the DML methods maintain low MSE, indicating their
estimates remain accurate and precise even when the window is misspecified. This proves an advantage of
using these DML techniques in RDD analysis.

6.2 Dataset 2 - Data without clear discontinuity

This dataset keeps the distribution of all covariates Xi identical to data set 1. We ensure that any observed
differences in the outcome Y in the performance of models fitted to the data are directly contributed by the

Table 3: Monte Carlo MSE of each estimator

Window Property Window OG Lasso RF NN
Smaller Window [-0.0500, 0.0500] 0.01605 0.00234 0.00445 0.00012
Selected Window [-0.1579, 0.1579] 0.02289 0.00624 0.00719 0.00171
Larger Window [-0.8717, 0.8717] 0.04877 0.00422 0.04228 0.00197
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change in the running variable Z. Thus, the only change in the data generating process is the constant term
in the regression function. This setup mimics a controlled experiment and allows was for a direct comparison
between the clear discontinuity and the unclear discontinuity.

6.2.1 Data Generating Process

The data are generated as i.i.d. draws i = 1, 2, ..., n with n = 5000 as follows:

Yi = µ2(Zi) + 0.50 ∗X1,i − 0.10 ∗X2,i + 0.20 ∗X3,i − 0.30 ∗X4,i

+ 0.66 ∗X5,i − 0.05 ∗X6,i + 0.25 ∗X7,i − 0.15 ∗X8,i + ϵi (6.13)

ϵi ∼ N (0, σ2
ϵ ) (6.14)

X1,i ∼ N (5, 3.14) (6.15)

X2,i ∼ U(−2.5, 2) (6.16)

X3,i ∼ B(5, 2) (6.17)

X4,i ∼ Gamma(2, 0.5) (6.18)

X5,i ∼ Poisson(2) (6.19)

X6,i ∼ N (0, 1.3) (6.20)

X7,i ∼ Exp(1.2) (6.21)

X8,i ∼ U(−1, 3) (6.22)

Zi ∼ 2B(2, 4)− 1 (6.23)

where B(α, β) denotes a beta distribution with parameters α and β, N (µ, σ2) denotes a normal dis-
tribution with mean µ and variance σ2, U(a, b) denotes a uniform distribution with parameters a and b,
Gamma(k, λ) denotes a Gamma distribution with shape parameter k and rate parameter λ, Poisson(λ) de-
notes a Poisson distribution with rate parameter λ, Exp(λ) denotes an Exponential distribution with rate
parameter λ, and ϵi ∼ N (0, σ2

ϵ ) with σ2
ϵ = 0.1295. The running variable Zi is generated from a Beta(3, 4)

distribution, scaled and shifted to have support [−1, 1]. And the regression function follows:

µ2(z) =

{
0.4 + 1.27z + 7.18z2 + 20.21z3 + 21.54z4 + 7.33z5, if z < 0,

0.42 + 0.84z − 3.00z2 + 7.99z3 − 9.01z4 + 3.56z5, if z ≥ 0.
(6.24)

This function introduces a discontinuity at the cutoff c = 0, with a the true parameter θ0 of 0.02.
Figure 4 summarizes the distribution of the data set. Compared to data set 1, we cannot see the

discontinuity at Z = 0. In terms of the smooth curve of the distribution of generated data set 2, the curve
is relatively smooth at Z = 0.

6.2.2 Bandwidth Selection

We select out window using the method based on the rdlocarand package, rdwinselect function. The largest
window we considered is [-0.816, 0.816], covering almost the entire support of our running variable. The
smallest window is [-0.02, 0.02]. We analyze all symmetric windows around the cutoff between the [-0.02,
0.02] and [-0.816, 0.816] in increments of 0.004 on each side of the cutoff. In each window, we perform
randomization-based test of the sharp null hypothesis of no treatment effect for each of the predetermined
covariates X1 through X8. As the default setting in rdwinselect, we set the minimum accepted value of the
p-value from the covariate balance tests to be 0.15. And we use difference in means statistic as the test
statistics in our randomization-based tests. The test is based on 1000 replications. For each window, we
choose the minimum p-value across X1 through X8.

Figure 5 summarizes graphically the results of our window selector. The selected window is [-0.036,
0.036]. Notably, the mean of the potential outcome Y calculated for observations immediately to the left of
the cutoff Z = 0 is very close to the mean calculated immediately to the right. This aligns with the regression
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(a) The distribution of generated dateset 2.

(b) A smooth curve of the distribution of generated

dateset 2.

Figure 4: Generated dataset 2 - data with clear discontinuity.

Figure 5: Window selector based on predetermined covariates.

Table 4: Randomization-based p-value from the test for different windows

Window Minimum p-value Number of observations inside the window

[−0.020, 0.020] 0.174 183
[−0.024, 0.024] 0.165 223
[−0.028, 0.028] 0.254 261
[−0.036, 0.036] 0.164 331
[−0.040, 0.040] 0.108 357
[−0.808, 0.808] 0.027 4926
[−0.812, 0.812] 0.015 4931
[−0.816, 0.816] 0.019 4935

function µ2(z) whose values of the constant differs slightly on both side of the cutoff. Therefore, since the
true jump in the regression function at the cutoff is small, the estimated treatment effect is expected to be
correspondingly small.

The selected window is [−0.036, 0.036]. Table 4 shows the minimum p-value for the first three consecutive
windows, [−0.036, 0.036] and the next largest window, and last three consecutive windows. The trend of
p-value is similar to the trend of pvalue in data set 1.
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Figure 6: Figure of randomization-based estimation within the selected window

6.2.3 Inference within the Window

Table 5: Estimated Average Treatment Effect under Different Window

Window Property Window OG Lasso RF NN
Smaller Window [-0.020, 0.020] 0.32828 0.00453 0.09842 0.02788
Selected Window [-0.036, 0.036] 0.12335 0.04190 0.08255 0.06316
Larger Window [-0.816, 0.816] 0.24490 0.07644 0.27288 0.05307

Table 6: Monte Carlo MSE of each estimator

Window Property Window OG Lasso RF NN
Smaller Window [-0.020, 0.020] 0.11395 0.00067 0.07039 0.05726
Selected Window [-0.036, 0.036] 0.03685 0.00109 0.01823 0.02945
Larger Window [-0.816, 0.816] 0.06238 0.00403 0.03175 0.00084

Figure 6 shows the actual data we used in inference of the selected window. Table 5 lists out the
estimation results. The results of this data set vary. Under Smaller Window, the Lasso estimator yields a
point estimate 0.00453 very close to the true value, which is 0.02. The NN estimate is also close. The RF
estimate is farther from the true value with small bias. However, the OG estimate shows a big bias. In
Selected Window, all methods now produce estimates somewhat higher than the true ATE. Lasso, NN, and
RF are moderately biased , while the OG estimate still remains the furthest from the true value. In Larger
Window, all estimates still appear biased relative to 0.02. Lasso and NN show less bias than RF and OG. In
terms of MSE, Lasso achieves the lowest MSE, showing the best overall performance. NN performs very well
in the Larger Window but less well in the smaller windows compared to Lasso. RF has relatively high MSE,
particularly in the smallest window. The OG estimator generally has the highest or second-highest MSE.
The results highlight the potential benefits of using DML methods in this RDD without a clear discontinuity
scenario.

6.3 Dataset 3 - High dimensional Data with clear discontinuity

We generate a high-dimensional dataset for the RDD scenario with a clear discontinuity. We introduce
some correlation structure among covariates, making the dataset more realistic than independent covariates.
To reduce dimensionality, we implemented different variable selection strategies for each machine learning
method. For Lasso, we use its built-in L1 regularization to automatically identify non-zero coefficients
through cross-validated lambda selection. With RF, we calculate permutation-based variable importance
measures and establish a threshold to identify covariates with meaningful predictive power. For NN, we use
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a permutation approach that measured each variable’s contribution to quantify each coefficient’s impact on
the outcome prediction.

6.3.1 Data Generating Process

The data are generated as i.i.d. draws for i = 1, 2, ..., n, with sample size n = 5000, total number of covariates
p = 100, and number of active covariates pactive = 10, as follows:

Yi = µ3(Zi) +

p∑
k=1

Xk,iβk + ϵi (6.25)

ϵi ∼ N (0, σ2
ϵ ) (6.26)

Xi = (X1,i, . . . , Xp,i) ∼ Np(0,Σ) (6.27)

Zi ∼ 2B(2, 4)− 1 (6.28)

where N (µ, σ2) denotes a normal distribution with mean µ and variance σ2, Np(µ,Σ) denotes a p-variate
normal distribution with mean vector µ and p×p covariance matrix Σ, and B(α, β) denotes a beta distribution
with shape parameters α and β. The error ϵi has distribution N (0, σ2

ϵ ) with σ2
ϵ = 0.1295. The running

variable Zi is generated from a Beta(3, 4) distribution, scaled and shifted to have support [−1, 1].
The p×p covariance matrix Σ (with p = 100) has an autoregressive AR(1) structure with elements Σjk =

ρ|j−k|, where the correlation parameter is ρ = 0.5. The p-dimensional coefficient vector β = (β1, . . . , βp) is
sparse. The first pactive = 10 coefficients are drawn independently from a uniform distribution, βk ∼ U(−1, 1)
for k = 1, . . . , 10. The remaining p− pactive = 90 coefficients are set to zero, βk = 0 for k = 11, . . . , 100. And
the regression function follows:

µ3(z) =

{
−1.58 + 1.27z + 7.18z2 + 20.21z3 + 21.54z4 + 7.33z5, if z < 0,

1.92 + 0.84z − 3.00z2 + 7.99z3 − 9.01z4 + 3.56z5, if z ≥ 0.
(6.29)

This function introduces a discontinuity at the cutoff Z = 0, with a the true parameter θ0 of 3.5.

(a) The distribution of generated dateset 3. (b) A smooth curve of the distribution of generated

dateset 3.

Figure 7: Generated dataset 3 - data with clear discontinuity.

Figure 7 summarizes the distribution of the data set. In terms of the smooth curve of the distribution of
generated dataset 3, the curve is relatively smooth at Z = 0.

6.3.2 Bandwidth Selection

Before window selection, we use random forest feature importance to reduce dimensionality. We create
a function that fits a random forest model with 500 trees to identify which covariates have the strongest
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Figure 8: Window selector based on predetermined covariates.

predictive relationship with the outcome variable Y. Then, we calculate importance scores for all covariates
X and select the top 15 most influential features based on their importance rankings. Finally, we use these
15 selected covariates for the hypothesis test in window selection. We select out window using the method
based on the rdlocarand package, rdwinselect function. The largest window we considered is [-0.8965, 0.8965],
covering almost the entire support of our running variable. The smallest window is [-0.200, 0.200]. We analyze
all symmetric windows around the cutoff between the [-0.200, 0.200] and [-0.8965, 0.8965] in increments of
0.0035 on each side of the cutoff. We perform randomization-based test of the sharp null hypothesis of no
treatment effect for each of the predetermined covariates for selected covariates in each window. As the
default setting in rdwinselect, we set the minimum accepted value of the p-value from the covariate balance
tests to be 0.15. And we use difference in means statistic as the test statistics in our randomization-based
tests. The test is based on 1000 replications. For each window, we choose the minimum p-value across all
selected covariates.

Table 7: Randomization-based p-value from the test for different windows

Window Minimum p-value Number of observations inside the window

[−0.2000, 0.200] 0.174 1905
[−0.2035, 0.2035] 0.165 1926
[−0.2070, 0.2070] 0.254 1960
[−0.3365, 0.3365] 0.164 2942
[−0.3400, 0.3400] 0.108 2968
[−0.8895, 0.8895] 0.145 4985
[−0.8930, 0.8930] 0.134 4986
[−0.8965, 0.8965] 0.130 4986

The selected window is [−0.3365, 0.3365]. Table 7 shows the minimum p-value for the first three con-
secutive windows, [−0.3365, 0.3365] and the next largest window, and last three consecutive windows.
The minimum p-value of our chosen window is 0.164, and the minimum p-value of next largest window,
[−0.3400, 0.3400], is 0.108. From the Table 7 and Figure 8, we can see that p-value decreases rapidly after
the selected window. But the p-values increase gradually after the window around [−0.43, 0.43]. This suggest
that the conventional window selection method would not be the desired window selection method in this
case.

6.3.3 Inference within the Window

Figure 9 shows the actual data we used in inference of the selected window. Table 8 lists out the estimation
results. The results of this data set vary. Under Smaller Window, the Lasso estimator yields a point estimate
3.56538, which is very close to the true value. The RF estimate is farther from the true value with small
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Figure 9: Figure of randomization-based estimation within the selected window

Table 8: Estimated Average Treatment Effect under Different Window

Window Property Window OG Lasso RF NN
Smaller Window [-0.2000, 0.2000] 3.69378 3.57532 3.65952 3.40026
Selected Window [-0.3365, 0.3365] 3.74410 3.58470 3.68385 3.70978
Larger Window [-0.8965, 0.8965] 3.85901 3.57524 3.80864 3.89268

Table 9: Monte Carlo MSE of each estimator

Window Property Window OG Lasso RF NN
Smaller Window [-0.2000, 0.2000] 0.03763 0.00405 0.01909 0.00201
Selected Window [-0.3365, 0.3365] 0.05762 0.00532 0.03320 0.01863
Larger Window [-0.8965, 0.8965] 0.12980 0.00407 0.08046 0.47929

19



bias. This aligns the results in the previous two dataset. The OG and NN estimate show larger biases. In
Selected Window, all methods now produce estimates higher than the true ATE. Notably, the bias across all
four methods get larger than that in Smaller window. This result aligns the conclusion in window selection–
the conventional window selection method may not be desired under high-dimensional dataset. In Larger
Window, all estimates still appear biased relative to 3.5. But we can see a decrease in bias for Lasso. In terms
of MSE, Lasso achieves the lowest MSE, showing the best overall performance. RF performs very well in the
Smaller Window but less well in the Larger Window. The OG and NN estimator generally have the highest
MSE. The results show that we need to pay attention to method selection under high dimensional dataset
since not all DML methods have a better bias-variance tradeoff than the conventional method. Though
there are the potential benefits of using DML methods in high-dimensional RDDs, we have to always remind
ourselves that method properties are more important than naively choosing any high-dimensional approach.

6.4 Dataset 4 - High dimensional Data without clear discontinuity

Similar to the relationship between Dataset 1 and Dataset2, this dataset keeps the distribution of all covari-
ates Xi identical to data set 3. We ensure that any observed differences in the outcome Y in the performance
of models fitted to the data are directly contributed by the change in the running variable Z. Thus, the
only change in the data generating process is the constant term in the regression function. We use the same
dimensionality reduction method as we used in dataset 3.

Though NN performs well in the previous three datasets, it fails in this scenario. Despite their theoretical
power, neural networks struggle with overfitting and fail to distinguish the weak signal, which is the unclear
discontinuity in this dataset, from the surrounding noise dimensions. On the other hand, Lasso’s feature
selection capabilities and Random Forest’s balanced flexibility proved crucial for isolating the small true
treatment effect in high-dimensional noise.

6.4.1 Data Generating Process

The data are generated as i.i.d. draws for i = 1, 2, ..., n, with sample size n = 5000, total number of covariates
p = 100, and number of active covariates pactive = 10, as follows:

Yi = µ4(Zi) +

p∑
k=1

Xk,iβk + ϵi (6.30)

ϵi ∼ N (0, σ2
ϵ ) (6.31)

Xi = (X1,i, . . . , Xp,i) ∼ Np(0,Σ) (6.32)

Zi ∼ 2B(2, 4)− 1 (6.33)

where N (µ, σ2) denotes a normal distribution with mean µ and variance σ2, Np(µ,Σ) denotes a p-variate
normal distribution with mean vector µ and p×p covariance matrix Σ, and B(α, β) denotes a beta distribution
with shape parameters α and β. The error ϵi has distribution N (0, σ2

ϵ ) with σ2
ϵ = 0.1295. The running

variable Zi is generated from a Beta(3, 4) distribution, scaled and shifted to have support [−1, 1].
The p×p covariance matrix Σ (with p = 100) has an autoregressive AR(1) structure with elements Σjk =

ρ|j−k|, where the correlation parameter is ρ = 0.5. The p-dimensional coefficient vector β = (β1, . . . , βp) is
sparse. The first pactive = 10 coefficients are drawn independently from a uniform distribution, βk ∼ U(−1, 1)
for k = 1, . . . , 10. The remaining p− pactive = 90 coefficients are set to zero, βk = 0 for k = 11, . . . , 100. And
the regression function follows:

µ4(z) =

{
0.58 + 1.27z + 7.18z2 + 20.21z3 + 21.54z4 + 7.33z5, if z < 0,

0.57 + 0.84z − 3.00z2 + 7.99z3 − 9.01z4 + 3.56z5, if z ≥ 0.
(6.34)

This function introduces a discontinuity at the cutoff Z = 0, with a the true parameter θ0 of 0.01. In terms
of the smooth curve of the distribution of generated data set 2, the curve is relatively smooth at Z = 0.

Figure 10 summarizes the distribution of the data set. In terms of the smooth curve of the distribution
of generated dataset 4, the curve is relatively smooth at Z = 0.
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(a) The distribution of generated dateset 4. (b) A smooth curve of the distribution of generated

dateset 4.

Figure 10: Generated dataset 4 - data with clear discontinuity.

Figure 11: Window selector based on predetermined covariates.

6.4.2 Bandwidth Selection

Similarly, we use random forest feature importance to reduce dimensionality. We select out window using
the method based on the rdlocarand package, rdwinselect function. The largest window we considered is [-
0.4383, 0.4383], covering only the half of the support of our running variable.The smallest window is [-0.1000,
0.1000]. We analyze all symmetric windows around the cutoff between the [-0.1000, 0.1000] and [-0.4383,
0.4383] in increments of 0.0017 on each side of the cutoff. We perform randomization-based test of the sharp
null hypothesis of no treatment effect for each of the predetermined covariates for all selected covariates in
each window. We set the minimum accepted value of the p-value from the covariate balance tests to be 0.15.
And we use difference in means statistic as the test statistics in our randomization-based tests. The test is
based on 1000 replications. For each window, we choose the minimum p-value across all selected covariates.
If we consider windows larger than [-0.4383, 0.4383], the p-value of the tests would be greater than 0.15 and
fails the whole process.

The selected window is [−0.1391, 0.1391]. Table 10 shows the minimum p-value for the first three
consecutive windows, [−0.1391, 0.1391] and the next largest window, and last three consecutive windows.
The minimum p-value of our chosen window is 0.168, and the minimum p-value of next largest window,
[−0.1408, 0.1408], is 0.147. From the Table 10 and Figure 11, we can see that p-value decreases rapidly after
the selected window and keeps relatively almost surely.

21



Table 10: Randomization-based p-value from the test for different windows

Window Minimum p-value Number of observations inside the window

[−0.020, 0.020] 0.394 940
[−0.024, 0.024] 0.365 958
[−0.028, 0.028] 0.438 977
[−0.1391, 0.1391] 0.168 1324
[−0.1408, 0.1408] 0.147 1339
[−0.4349, 0.4349] 0.81 3640
[−0.4366, 0.4366] 0.87 3650
[−0.4383, 0.4383] 0.124 3668

Figure 12: Figure of randomization-based estimation within the selected window

6.4.3 Inference within the Window

Figure 12 shows the actual data we used in inference of the selected window. Table 11 lists out the estimation
results. The Lasso estimator demonstrated the highest accuracy. It has the closest estimated ATE to the
true ATE of 0.01 across all three windows. The OG estimator consistently exhibited positive bias across
all windows. The RF estimator also showed positive bias, but generally performing better than OG and
worse than Lasso in terms of bias. Lasso significantly outperformed the other methods in terms of MSE,
achieving the lowest MSE across all three window. This indicates Lasso provided the best combination
of low bias and low variance. RF was the second-best performance with MSEs, which are lower than
the MSEs’ of conventional method. The OG estimator consistently yields the highest MSE, reflecting its
relative inaccuracy and bias. Finally, the failure of NN serves as a practical reminder that method selection
should be guided by problem structure rather than model complexity. The bias-variance tradeoff remains a
fundamental consideration in causal inference settings where accurate effect estimation is the primary goal.

Table 11: Estimated Average Treatment Effect under Different Window

Window Property Window OG Lasso RF NN
Smaller Window [-0.1000, 0.1000] 0.09622 0.0453 0.04865 Fail
Selected Window [-0.1391, 0.1391] 0.09171 0.044990 0.07329 Fail
Larger Window [-0.4383, 0.4383] 0.15145 0.05884 0.15499 Fail

7 Discussion and Conclusion

Regression discontinuity designs (RDDs) are a common quasi-experiment in economics, education, political
science, statistics, and biological statistics. Though the most popular methodologies for estimating casual
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Table 12: Monte Carlo MSE of each estimator

Window Property Window OG Lasso RF NN
Smaller Window [-0.1000, 0.1000] 0.02461 0.00126 0.01098 Fail
Selected Window [-0.1391, 0.1391] 0.02219 0.00213 0.01229 Fail
Larger Window [-0.4383, 0.4383] 0.02703 0.00371 0.02539 Fail

effect is an RDD relying on continuity assumptions, the local randomization framework for RDDs has been
more frequently discussed in recent literature. The local randomization framework views the running variable
as stochastic, which introducing randomness to the assignment mechanism.

Double/Debiased Machine Learning (DML) is a powerful tool for the inference on high-dimensional
parameters. It removes the impact of regularization bias and overfitting on estimation of the parameter
of interest θ0, which are caused by naively plugging ML estimators of nuisance parameter into estimation
equations for θ0. DML delivers point estimators that concentrated in a n−1/2 neighborhood of the true
parameter and are approximately unbiased and normally distributed, which allows construction of valid
confidence statements.

In this paper, we provided a review of both local randomization framework for RDDs and DML. Then,
we showed the application of DML in local randmization framework for RDDs. We declared the theoretical
feasibility and the benefit of the application. We claimed the assumptions of the application. Finally,
we provided the bandwidth selection algorithm and the estimand. We used four simulations on different
datasets–data with clear discontinuity, data without clear discontinuity, high-dimensional data with clear
discontinuity, and high-dimensional data without clear discontinuity–to show the advantage of our proposed
method. The DML approach proved remarkably superior to the conventional local randomization method
when estimating both small treatment effect and large treatment effect, under low-dimensional dataset
or high-dimensional datasets. The application of DML on local randomization framework allowed us to
effectively control the confounding bias while maintaining relatively low variance, resulting in a lower MSE
than the conventional local randomization method. Our proposed method suggests a promising line for
future research that explores a more robust method to estimate ATE under local randomization framework.
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