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1 Introduction

This thesis focuses on a variation of the Turán problem in extremal combinatorics. The

fundamental question in extremal hypergraph theory is determining the maximum number

of edges in an n-vertex r-uniform graph that does not contain a prescribed r-uniform graph

F as a subgraph. These maxima, denoted ex(n, F ), are referred to as the extremal numbers

or Turán numbers for F . One of the cornerstones of extremal graph theory, concerning the

case F is a clique, is Turán’s Theorem [19]. To state the theorem, we need the Turán graphs

Tk(n), which denotes a complete multipartite graph with n vertices and k parts of size ⌊n/k⌋
or ⌈n/k⌉.

Theorem A (Turán’s Theorem). The maximum number of edges in an n-vertex graph G

containing no clique of order r + 1 is e(Tr(n)), with equality only if G = Tr(n).

Simonovits [5] observed via the Erdős-Stone Theorem [3] that the asymptotic value of

ex(n, F ) may be obtained whenever F is non-bipartite:

Theorem B (Erdős-Stone Theorem, Simonovits’ Theorem). Let F be any graph of chromatic

number r + 1 ≥ 3. Then ex(n, F ) = (1 + o(1))Tr(n) as n→∞.

There are a number of proofs of the Erdős-Stone Theorem. A very general framework involves

Szemerédi’s Regularity Lemma, which may be stated as follows. A pair (U, V ) of disjoint

sets of vertices in a graph G is called ϵ-regular if for any X ⊆ U and Y ⊆ V of size at least

ϵ|U | and ϵ|V | respectively, ∣∣∣∣e(X, Y )

|X||Y |
− e(U, V )

|U ||V |

∣∣∣∣ < ϵ.

The following was proved by Szemerédi [18]:

Theorem C (Szemerédi’s Regularity Lemma). For all ϵ > 0, there exist m and M such that

for every graph G, there exists a partition (V1, V2, . . . , Vk) of V (G) such that m ≤ k ≤ M

and |V1| ≤ |V2| ≤ · · · ≤ |Vk| ≤ |V1|+ 1 and all but at most ϵk2 pairs (Vi, Vj) are ϵ-regular.

The value of ex(n, F ) for bipartite F is in general wide open, and the order of magnitude

of ex(n,K4,4) or ex(n,C8) is not known – see Füredi and Simonovits [8] for a history of

the bipartite Turán problem. There is also no analog of the above theorems for r-uniform

hypergraphs. The asymptotic value of ex(n,Kr
k) is not known for any k > r ≥ 3, where Kr

k

denotes the complete r-uniform hypergraph on k vertices. The asymptotic value of ex(n,K3
4)

was conjectured by Turán [19] to be 5
9

(
n
3

)
, and this remains open despite decades of intensive

research.
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1.1 Problem Statement

In this thesis, we investigate closely related problems which we refer to as double Turán

problems. To describe these problems, let G1, G2, . . . , Gm be graphs with the same vertex

set V (Gi) = [n] for i ∈ [m].

Definition 1. For a graph F , we say that G1, G2, . . . , Gm is double F -free if E(F ) ̸⊆ E(Gi)∩
E(Gj) for 1 ≤ i < j ≤ m. Moreover, we call a copy of F in Gi ∩Gj a double F in Gi, Gj.

The double Turán problem asks for the maximum sum of edges over G1, G2, . . . , Gm such

that G1, G2, . . . , Gm are double F -free.

Definition 2. For a graph F , the double Turán number for F , denoted ϕ(m,n, F ), is the

maximum value of
∑m

i=1 e(Gi) such that G1, G2, . . . , Gm are double F -free.

We would also like to study a special case of the double Turán problem, which we refer to

as induced double Turán problem.

Definition 3. We call G1, G2, . . . , Gm induced if for each i ∈ [m], Gi is an induced subgraph

of
⋃m

i=1 Gi.

In other words, if {u, v} ∈ E(Gi) and u, v ∈ V (Gj), then {u, v} ∈ E(Gj).

Definition 4. For a graph F , the induced double Turán number, denoted ϕ∗(m,n, F ), is the

maximum value of
∑m

i=1 e(Gi) such that G1, G2, . . . , Gm are induced and double F -free.

The induced double Turán problem is then to determine ϕ∗(m,n, F ). Clearly, ϕ(m,n, F ) ≥
ϕ∗(m,n, F ). Similar to the Turán problem, the induced and non-induced double Turán

problems behave differently depending on whether F is bipartite or non-bipartite. Thus we

will study these two cases separately in this thesis. We shall see that the study of ϕ(m,n, F )

and ϕ∗(m,n, F ) is motivated by certain hypergraph extremal problems.

1.2 Motivation : Link Graphs and Hypergraphs

Apart from the intrinsic interest in investigating ϕ(m,n, F ), one motivation to study is that

ϕ(m,n, F ) is closely connected to pure hypergraph extremal problems via the notion of link

graphs. Let H be a triple system, that is, a set of three-element subsets of a finite set [n].

We may view H as a 3-uniform hypergraph, where the edges are the three-element subsets

of [n].
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Definition 5. For i ∈ V (H), the link graph of i, denoted Hi, is the graph with V (Hi) =

V (H)\{i} and E(Hi) = {{j, k} : {i, j, k} ∈ E(H)}.

A handy idea in extremal hypergraph theory is to reduce a hypergraph extremal problem to

extremal problems for the link graphs. For instance, a triple system H does not contain a

tetrahedron, i.e. four triples on four vertices, if and only if all its link graphs are triangle-free.

In the current context, given a graph F , let F+ denote the triple system with V (F+) =

V (F ) ∪ {x, y} and E(F+) = {e ∪ {x}, e ∪ {y} : e ∈ E(F )}. For example, if F is a 4-cycle

K2,2, then F+ is the hypergraph for octahedron. We can see that ϕ(n, n, F ) and ex(n, F+)

are intimately related: if H is an F+-free triple system with vertex set [n], then the link

graphs H1, H2, . . . , Hn are double F -free, otherwise there exists a double F in some Hi ∩Hj

and the vertices i, j along with that copy of F form a F+ in H, contradiction. Thus,

ex(n, F+) ≤ ϕ(n, n, F ), and this relates the double Turán problem to hypergraph extremal

problems.

On the other hand, the study of the induced double Turán problem is motivated by a special

case of the generalized Turán problem, which asks for the maximum number ex(n, F̄ ,K3) of

triangles in a graph G with vertex set [n] that does not contain some graph F̄ . This problem

was studied by Alon and Shikhelman [1] and Kostochka, Mubayi and Verstraete [10, 12, 14].

Similar to how link graphs relate to hypergraph extremal problems, the generalized Turán

problem is related to ϕ∗(n, n, F ) as follows: Let F̄ be the graph consisting of all pairs

contained in triples in F+. For example, if F = K2,2 then F̄ = K2,2,2. For i ∈ [n], define

E(Gi) = {{j, k} : {i, j}, {j, k}, {i, k} ∈ E(G)}. Then G1, G2, . . . , Gn are induced and double

F -free, so ϕ∗(n, n, F ) ≥ ex(n, F̄ ,K3). This relates the induced double Turán problem to

extremal problems for triangles in graphs.

1.3 Main Results : The Induced Case

The determination of ϕ∗(m,n, F ) turns out to be fairly straightforward when F is a non-

bipartite graph: the extremal objects are simply m copies of the same extremal graph for

F .

Theorem 1. Let r,m ≥ 3. There exists n0(r) such that if n ≥ n0(r) and F is a graph of

chromatic number r, then

ϕ∗(m,n, F ) = m · ex(n, F ).

Moreover, G1, . . . , Gm are induced double F -free graphs on [n] that sum up to m · ex(n, F )

edges only if G1 = · · · = Gm are identical extremal n-vertex F -free graphs.
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In the case F = Kr, we shall see the theorem is true for all n ≥ 3:

Theorem 2. Let m,n, r ≥ 3. Then

ϕ∗(m,n,Kr) = m · e(Tr−1(n)).

Moreover, G1, . . . , Gm are induced double Kr-free graphs on [n] that sum up to m ·e(Tr−1(n))

edges only if G1 = · · · = Gm = Tr−1(n).

In the case F is a bipartite graph, even determining the order of magnitude of ϕ∗(m,n, F )

appears to be difficult. In fact, we do not even know the order of magnitude of ϕ∗(m,n, P )

when P is a path with two edges. In this thesis, we propose the following very broad

conjecture:

Conjecture A. Let F be any non-empty graph and m,n ≥ 1. Then

ϕ∗(m,n, F ) = Θ(m · ex(n, F ) + n2).

It is clear that a single complete graph Kn does not contain a double F , and neither do

identical copies G1, G2, . . . , Gm of an extremal n-vertex F -free graph. Thus we have the

trivial lower bound

ϕ∗(m,n, F ) ≥ max

{(
n

2

)
,m · ex(n, F )

}
.

This conjecture is true when F is non-bipartite, by Theorem 1. If F is bipartite, then the

upper bounds on ϕ∗(m,n, F ) are more difficult to come by, especially when m is large. For

instance, from our discussion in the previous section, we know

ex(n,K2,2,2, K3) ≤ ϕ∗(n, n,K2,2),

and so Conjecture A implies that an n-vertex graph not containing the octahedron graph

has O(n5/2) triangles. In fact, it is also the case that ex(2n,K2,2,2, K3) ≥ ϕ∗(n, n,K2,2): if

we have double K2,2-free induced graphs G1, G2, . . . , Gn with vertex set [n], then let H be

the graph with V (H) = [2n] consisting of all triangles with vertex set {i, j, k} such that

n < k ≤ 2n and {i, j} ∈ E(Gk). The graph H is K2,2,2-free and |E(H)| =
∑n/2

i=1 e(Gi).

This shows that ex(n,K2,2,2, K3) and ϕ∗(n, n,K2,2) are equivalent up to a constant factor.

Similarly, we have

ex(n,K1,2,2, K3) ≤ ϕ∗(n, n,K1,2),

and so Conjecture A implies that an n-vertex graph not containing the wheel graph has O(n2)

triangles, which is conjectured by Mubayi and Verstraete [14]. The conjecture proposes
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more generally that if F is a tree, then ϕ∗(n, n, F ) = O(n2). In fact, it is possible to prove

the following theorem using the removal lemma as in [12] as well as a projective plane

construction for ϕ(n, n, P ):

Theorem 3. Let P be a path with two edges. Then ϕ(n, n, P ) = Ω(n5/2), whereas ϕ∗(n, n, P ) =

o(n5/2), as n→∞. In particular,

lim
n→∞

ϕ∗(n, n, P )

ϕ(n, n, P )
= 0.

Apart from deterimining the order of magnitude of ϕ∗(m,n, F ), this above theorem also

shows that the order of magnitude of ϕ(n, n, P ) and ϕ∗(n, n, P ) can differ significantly. This

suggests that the induced and non-induced double Turán problems may be fundamentally

different.

A special bipartite case where Conjecture A is true is when F is a matching with two edges.

Let M denote a matching with two edges, and let M+ denote the graph obtained from two

copies of K4 sharing one edge by removing that edge. Then ex(n,M+, K3) ≤ ϕ∗(n, n,M).

If F is the triple system consisting of all four triangles in M+, then Füredi [7] showed

ex(n,M+) = O(n2), answering a conjecture of Erdős [4]. It is possible to adapt Füredi’s

proof to give ϕ∗(n, n,M) = O(n2), so in this case Conjecture A is true and ex(n,M+, K3) =

Θ(ϕ∗(n, n,M)). For improvements of the constant factor, see Mubayi and Verstraete [13]

and Pikhurko and Verstraete [15]. We shall see that for some bipartite F , if m is not too

large relative to n, then Conjecture A is also true.

1.4 Main Results : The Non-induced Case

Determining ϕ(m,n, F ) even when F is a complete graph is challenging. The forth theorem

we give is well-suited to the case of certain bipartite graphs, and is due to Wilson:

Theorem 4. Let F be a graph. If there exists an extremal F -free n-vertex graph with

maximum degree at most n1/2/m2, then

ϕ(m,n, F ) =

(
n

2

)
+

(
m

2

)
ex(n, F ).

By the Erdős-Stone Theorem, the extremal number for any non-bipartite F is Θ(n2), which

implies that the maximum degree of an extremal F -free graph exceeds n1/2. Thus the

condition on the maximum degree in the above theorem can only be satisfied for bipartite

graphs, for instance, a path of two edges. An example of a bipartite graph that does not apply
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to this theorem would be a matching of two edges, whose extremal graph has a maximum

degree of n− 1.

Since
(
n
2

)
+ m − 1 ≤ ϕ∗(m,n, F ) ≤ ϕ(m,n, F ) for any graph F with at least two edges,

Theorem 4 shows ϕ∗(m,n, F ) = (1 + o(1))
(
n
2

)
whenever the conditions on m in the theorem

are satisfied, proving Conjecture A to be true in this case.

Our first theorem on ϕ(m,n, F ) for non-bipartite graphs F uses the notion of supersaturation

– see Erdős and Simonovits [6]. We determine the asymptotic value of ϕ(m,n, F ) as m→∞
when F is a non-bipartite graph:

Theorem 5. Let n ≥ 1 and let F be a non-bipartite graph. Then as m→∞,

ϕ(m,n, F ) = (1 + o(1))m · ex(n, F ).

The next result we present concerns non-bipartite graphs. To state the theorem, we require

the notion of the M-color Ramsey number.

Definition 6. For M ≥ 2, the M-color Ramsey number, denoted RM(r), is the smallest

integer N such that any coloring of the edges of the complete graph KN with M colors

contains a monochromatic complete subgraph on r vertices.

Suppose we have a monochromatic Kr-free coloring c : E(KN) → 2[m]. For i ∈ [m], let

Hi = {{u,w} ∈ E(KN) : i ∈ c(u,w)}. Then H1, H2, . . . , Hm are double Kr-free. If we

replace the vertices of KN with disjoint sets V1, V2, . . . , VN whose sizes add up to n, and then

let

Gi = {{x, y} : (x, y) ∈ Vu × Vw, i ∈ c(u,w), 1 ≤ u < w ≤ N}

and make each Vi cliques in G1, then G1, G2, . . . , Gm is also double Kr-free. We call

G1, G2, . . . , Gm an (m,n,N)-blowup.

123

124 34 124

234134

123 123

134234

V1

V2

V3V4

V5

Figure 1: Example of an (4, n, 5)-blowup not containing a double K3.
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Definition 7. Let f(m,n, r) denote the maximum of e(G1) + e(G2) + · · ·+ e(Gm) such that

G1, G2, . . . , Gm is a double Kr-free (m,n,N)-blowup for some N < R(m2 )
(r).

This turns out to be exactly the construction which determines ϕ(m,n, F ) when F is a

complete graph:

Theorem 6. For m,n, r ≥ 3,

ϕ(m,n,Kr) = f(m,n, r).

While computing f(m,n, r) is a finite calculation, the Ramsey number R(m2 )
(r) unfortunately

appears to be intractable in general. It is known that R2(3) = 6 and R3(3) = 17 and

R2(4) = 18, but no further multicolor Ramsey numbers are known [2, 11]. In the special

case r = m = 3, the following holds:

Theorem 7. For n ≥ 1,

ϕ(3, n,K3) =

(
n

2

)
+

⌊
n2

2

⌋
.

The same problem immediately becomes difficult when m is increased by 1. The blowup

construction in Figure 1 shows ϕ(4, n,K3) − [
(
n
2

)
+ 3ex(n,K3)] ≥ n2/100 as n → ∞. This

suggests the actual values of ϕ(m,n,Kr) can be significantly larger than our trivial lower

bound. We leave it as an open problem to determine ϕ(m,n,Kr) for r,m ≥ 3 and (r,m) ̸=
(3, 3).

1.5 Definitions and Notations

Denote the set of first n positive integers as [n] = {1, 2, . . . , n}. Given a set X, we denote

2X as the power set of X. Given graph G = (V,E), let V (G) denote the vertex set and

E(G) denote the edge set of G. Let e(G) = |E(G)| be the number of edges in G. For

vertex v ∈ V (G), we denote by NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)} the neighborhood

of v. Given two graphs G1, G2, we denote G1 ∪ G2 as the graph on V (G1) ∪ V (G2) with

edge set E(G1 ∪ G2) = E(G1) ∪ E(G2). Similarly, we define G1 ∩ G2 as the graph on

V (G1) ∩ V (G2) with edge set E(G1 ∩ G2) = E(G1) ∩ E(G2). In this thesis, we reserve n

to denote the number of vertices in a graph. We call a n-vertex complete graph Kn, and

a complete bipartite graph Ka,b, where a, b are the sizes of its parts. Given graph G,H,

define G + H as the graph fully connecting G,H, i.e. V (G + H) = V (G) ∪ V (H) and

E(G + H) = E(G) ∪ E(H) ∪ {{u, v} : u ∈ V (G), v ∈ V (H)}. Let v be a vertex from

G1, G2, . . . , Gm. Unless otherwise specified, we denote d(v) as the sum of the degree of v

over all Gi.
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2 The Induced Double Turán Problem

We prove the theorems for ϕ∗(m,n, F ) in this chapter. In particular, the main theorem we

prove is Theorem 1 for general non-bipartite graphs F and in the special case of cliques. We

will first introduce two observations that simplify the problem.

The first observation is that the determination of ϕ∗(m,n, F ) can be reduced to smaller

values of m:

Lemma 8. Let n,m, k ≥ 2 with m ≥ k, and let F be some graph. Then

ϕ∗(m,n, F ) ≤ m

k
· ϕ∗(k, n, F ).

Moreover, let G1, . . . , Gm be induced double F -free graphs on [n] and suppose
∑k

i=1 e(Gi) =

ϕ∗(k, n, F ) only if G1 = · · · = Gk. Then
∑m

i=1 e(Gi) = ϕ∗(m,n, F ) only if G1 = · · · = Gm.

Proof. Let G1, . . . , Gm be induced double F -free graphs on [n]. Put Gi+m = Gi for all

i ∈ [m]. Then

m∑
i=1

e(Gi) =
1

k

m∑
i=1

[e(Gi) + · · ·+ e(Gi+k−1)] ≤
1

k

m∑
i=1

ϕ∗(k, n, F ) =
m

k
· ϕ∗(k, n, F ),

which establishes the upper bound. The lower bound follows from the construction with

G1 = · · · = Gm to be n-vertex extremal graphs for F .

Now suppose
∑m

i=1 e(Gi) = (m/k)ϕ∗(k, n, F ) and G1 ̸= G2. By assumption
∑k

i=1 e(Gi) <

ϕ∗(k, n, F ). But then
∑k

i=1 e(Gi+j) > ϕ∗(k, n, F ) for some j ≥ 1, contradiction.

The second observation shows that the determination of ϕ∗(2, n, F ) can be reduced to an

optimization problem over the number of vertices in the intersection of the two graphs:

Lemma 9. Let n ≥ 1. For graph F , define C(n, t, F ) :=
(
n−t
2

)
+ (n − t)t + 2ex(t, F ). Let

G1, G2 be induced double F -free graphs on [n]. Then

e(G1) + e(G2) ≤ max
0≤t≤n

C(n, t, F ),

with equality only if G2 is an extremal graph for F with tmax vertices and G1 = G2 +Kn−t,

where tmax is a maximizer of C(n, t, F ) over 0 ≤ t ≤ n.

Proof. Let G1, G2 be induced double F -free graphs on [n]. Put T = V (G1)∩V (G2), t = |T |,
s = |V (G1)\T |, and n− t− s = |V (G2)\T |. Note that t, s ∈ Z≥0. Since G1, G2 are induced
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subgraphs of G1 ∪ G2, we have G1[T ] = G2[T ] = G1 ∩ G2. But then G1 ∩ G2 is F -free, so

e(G1[T ]) = e(G2[T ]) ≤ ex(t, F ). Notice there can be at most t(n− t) edges between T and

(V (G1) ∪ V (G2))\T . Since G[V (G1)\T ] ≤
(
s
2

)
and G[V (G2)\T ] ≤

(
n−t−s

2

)
,

e(G1) + e(G2) ≤
(
s

2

)
+

(
n− s− t

2

)
+ t(n− t) + 2ex(t, F ).

But then
(
n−t
2

)
>

(
s
2

)
+
(
n−t−s

2

)
for 0 < s < n− t, so

e(G1) + e(G2) ≤
(
n− t

2

)
+ (n− t)t+ 2ex(t, F ) = C(n, t, F ).

This establishes the upper bound. From this we also know that e(G1) + e(G2) = C(n, t, F )

only if G2 is the t-vertex extremal graph for F and G1 = G2 + Kn−t. The result now

follows.

2.1 Proof of Theorem 2

By Lemma 8, it suffices to prove the theorem for m = 3. Let G1, G2, G3 be induced double

Kr-free graphs, such that e(G1) + e(G2) + e(G3) = ϕ∗(3, n,Kr). We may assume e(G1) ≥
e(G2) ≥ e(G3), and we already know ϕ∗(3, n,Kr) ≥ 3ex(n,Kr). Consequently, we must have

e(G1) + e(G2) ≥ 2ex(n,Kr). Since G1, G2, G3 are induced and e(G1) + e(G2) + e(G3) ≥
3ex(n,Kr), it suffices to show that G1 = G2 = Tr−1(n). In particular, we will use Lemma 9

to show that G1, G2 is an extremal configuration without containing a double Kr.

Let t = |V (G1 ∩G2)|. By Turán’s Theorem,

ex(t,Kr)− ex(t− 1, Kr) = e(Tr−1(t))− e(Tr−1(t− 1)) = t−
⌈

t

r − 1

⌉
.

It immediately follows that

C(n, t,Kr)−C(n, t− 1, Kr) = −t+1+2[ex(t,Kr)− ex(t− 1, Kr)] = t+1− 2

⌈
t

r − 1

⌉
. (1)

For r ≥ 4, C(n, t,Kr) is strictly increasing on t, so by Lemma 9,

ϕ∗(2, n,Kr) = C(n, n,Kr) = 2ex(n,Kr) = e(G1) + e(G2)

and G1 = G2 = Tr−1(n), as desired.

Now suppose r = 3. Equation (1) shows that C(n, t,Kr) is non-decreasing on t and
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C(n, t,Kr) > C(n, t,Kr) for even t. By Lemma 9, we now have

ϕ∗(2, n,Kr) = max[C(n, n,Kr), C(n, n− 1, Kr)] = 2ex(n,Kr) = e(G1) + e(G2),

and either G1 = G2 = Tr−1(n), or G2 = Tr−1(n− 1) and G1 = G2 +K1. If the latter case is

true, then e(G3) ≥ ex(n, F ) > e(G2), and this contradiction completes the proof.

2.2 Proof of Theorem 1

If F is a graph of chromatic number r + 1 ≥ 3, then Theorem B shows ex(n, F ) = (1 +

o(1))ex(n,Kr+1) as n→∞. In this section, we prove Theorem 1 following the same line of

reasoning as in the proof of Theorem 2.

Proof of Theorem 1. By Lemma 8, it suffices to prove the theorem for m = 3. Let G1, G2, G3

be induced double F -free graphs, such that e(G1) + e(G2) + e(G3) = ϕ∗(3, n, F ). We may

assume e(G1) ≥ e(G2) ≥ e(G3), and we already know ϕ∗(3, n, F ) ≥ 3ex(n, F ). Consequently,

we must have e(G1) + e(G2) ≥ 2ex(n, F ). Since G1, G2, G3 are induced and e(G1) + e(G2) +

e(G3) ≥ 3ex(n, F ), it suffices to show that G1 = G2 are n-vertex F -free extremal graphs. In

particular, we will use Lemma 9 to show that G1, G2 is an extremal configuration without

containing a double F .

Let t = |V (G1 ∩G2)|. If t <
√
n, then

2ex(n, F ) ≥ 2e(Tr−1(n)) ≥ 2

⌊
n2

4

⌋
≥

(
n

2

)
+

(√
n

2

)
> C(n, t, F ).

Thus t ≥
√
n. But then for large enough t, any extremal t-vertex F -free graph contains a

spanning complete (r−1)-partite subgraph Tr−1(t), so we may add ex(t−1, F )−e(Tr−1(t−1))
egdes to Tr−1(t) and still avoid F as a subgraph. Hence for large enough t, we have ex(t, F ) ≥
ex(t− 1, F )− e(Tr−1(t− 1)) + e(Tr−1(t)), and so

ex(t, F )− ex(t− 1, F ) ≥ e(Tr−1(t))− e(Tr−1(t− 1)) ≥ t−
⌈

t

r − 1

⌉
.

It immediately follows that

C(n, t, F )− C(n, t− 1, F ) = −t+ 1 + 2[ex(t, F )− ex(t− 1, F )] ≥ t+ 1− 2

⌈
t

r − 1

⌉
. (2)

10



For r ≥ 4, C(n, t, F ) is strictly increasing on t, so by Lemma 9,

ϕ∗(2, n, F ) = C(n, n, F ) = 2ex(n, F ) = e(G1) + e(G2),

and G1 = G2 are n-vertex F -free extremal graphs, as desired.

Now suppose r = 3. Equation (2) shows that C(n, t, F ) is strictly increasing for even t and

C(n, t, F ) ≥ C(n, t− 1, F ) for odd t. By Lemma 9, we now have

ϕ∗(2, n, F ) = max[C(n, n, F ), C(n, n− 1, F )] = 2ex(n, F ) = e(G1) + e(G2),

and either G1 = G2 are n-vertex extremal F -free graphs, or G2 is an (n− 1)-vertex extremal

F -free graph and G1 = G2 +K1. If the latter case is true, then e(G3) ≥ ex(n, F ) > e(G2),

and this contradiction completes the proof.

2.3 Proof of Theorem 3

We need to show that ϕ(n, n, P ) = Ω(n5/2) and ϕ∗(n, n, P ) = o(n5/2), as n→∞.

Claim 1. For
√
n < m ≤ n,

ϕ(n, n, P ) = (1/2 + o(1))mn3/2,

as n→∞.

We first show that ϕ(m,n, P ) ≤ (mn3/2 + n2)/2. For each vertex u ∈ [n], define Hu as the

m × n bipartite graph with edge set E(Hu) := {{v, i} : {u, v} ∈ E(Gi)}. If Hu contains

a quadrilateral {v, i}, {v, j}, {w, i}, {w, j}, then {u, v}, {u,w} form a double P in Gi ∩ Gj,

contradiction. Thus we conclude that Hu is quadrilateral-free, and therefore e(Hu) ≤ m
√
n+

n, by the Kővari-Sós-Turán Theorem [9]. It now follows that

m∑
i=1

e(Gi) =
1

2

∑
u∈V (G)

e(Hu) ≤
1

2
(mn3/2 + n2).

We now show the upperbound is tight asymptotically by giving a finite projective plane con-

struction. SupposeG1, G2, . . . , Gn are graphs on [n] containing no double P and
∑n

i=1 e(Gi) ≥
(1/2 + o(1))n5/2, with e(G1) ≥ e(G2) ≥ · · · ≥ e(Gn). Then G1, G2, . . . , Gm are graphs with

no double P and
∑m

i=1 e(Gi) ≥ (1/2 + o(1))mn3/2. Hence, it suffices to prove the case for

m = n.

11



Consider a finite projective plane with n points and n lines, with prime q chosen so that

n = (1 + o(1))(q2 + q + 1) as q → ∞. Let S1, . . . , Sn ⊆ [n] be the n lines of the projective

plane. Note that each line Si contains q + 1 points, and the intersection of any two distinct

lines Si, Sj contains |Si ∩ Sj| = 1 point.

Define G1, . . . , Gn to be graphs on [n], each with edge set

E(Gi) := {{j, k} ⊆ [n] : j ̸= k, j + k ∈ Si mod n}.

Note that the intersection of distinct Gi, Gj is P free: since |Si ∩ Sj| = 1, if {a, b}, {a, c} ∈
E(Gi) ∩ E(Gj), then a+ b = a+ c so b = c.

We now count the number of edges in G1, . . . , Gn. Since |Si| = q + 1, for each point j ∈ [n],

there are q + 1 choices for k ∈ [n] such that j + k ∈ Si. But then we have to avoid counting

the same edge twice and loops, so the number of edges in Gi is

e(Gi) =
n(q + 1)−#loops counted for Gi

2
.

If j ∈ [n] is even, then k = j/2 is the unique number in [n] such that k + k = j mod n. If

j ∈ [n] is odd, then k = (n+ j)/2 is the unique number in [n] such that k+k = j mod n, as

n is even. Hence, for each j ∈ Si, there exists a unique k ∈ [n] such that k + k = j mod n,

and thus

#loops counted for Gi = |Si| = q + 1.

Since q + 1 = (1 + o(1))n1/2, the number of edges in G1, . . . , Gn is

n∑
i=1

e(Gi) = n · n(q + 1)− (q + 1)

2
=

(
1

2
+ o(1)

)
n5/2,

as n→∞. This proves the first claim.

Claim 2. ϕ∗(n, n, P ) = o(n5/2), as n→∞.

Let G1, G2, . . . , Gn be induced and double P -free and let ϵ > 0. Let di(v) be the degree of

vertex v in the graph Gi. Let I be the set of pairs (i, v) such that di(v) ≥
√
n/ϵ + 1. Since

G1, G2, . . . , Gn do not contain a double P ,

∑
(i,v)∈I

(
di(v)

2

)
≤ n3.

The maximum possible value of
∑

(i,v)∈I di(v) subject to this constraint is when di(v) =

12



√
n/ϵ+ 1 for all (i, v), in which case |I| ≤ 2ϵ2n2 and so

∑
(i,v)∈I

di(v) ≤ (2ϵ2n2) ·
(√

n

ϵ
+ 1

)
= 3ϵn5/2

for large enough n. Remove all edges of Gi on vertex v such that (i, v) ∈ I. The total

number of edges removed is at most 3ϵn5/2. Let G′
1, G

′
2, . . . , G

′
n be the remaining subgraphs

of G1, G2, . . . , Gn. If e(G′
i) ≤ ϵn3/2, then remove all edges of G′

i. The number of edges

removed in this process is at most ϵn5/2. The remaining graphs G′′
1, G

′′
2, . . . , G

′′
m have each

at least ϵn3/2 edges and maximum degree at most
√
n/ϵ. In particular, each G′′

i contains a

matching Mi of size at least e(G′′
i )/2∆(G′′

i ) = ϵ2n/2. If m ≤ ϵn, then

n∑
i=1

e(Gi) ≤ 4ϵn5/2 +
m∑
i=1

e(G′′
i ) ≤ 4ϵn5/2 + ϕ(m,n, P ) ≤ 5ϵn5/2

by Claim 1. If m > ϵn, then we apply Szemerédi’s Regularity Lemma to find, for some δ > 0

depending only on ϵ, a matching M1 in G′′
1 such that for some pair of set X, Y ⊆ V (M1) of

size at least δn each, there is a set E of at least δ3n2 edges {x, y} of G′′
1 ∪ G′′

2 ∪ · · · ∪ G′′
m

such that x ∈ X and y ∈ Y . Since G′′
1 is induced, E ⊆ E(G1). In particular, there are

at least δ5n3/4 copies of P in G1. We can repeat the argument in the remaining graphs

G′′
i : i ∈ [2,m] to get say M2 in G′′

2 as above, which gives δ5n3/4 copies of P in G2. If we

do this 4δ−5 times, then we have found n3 copies of P in the first 4δ−5 graphs, and two of

them have the same edge-set. We conclude
∑n

i=1 e(Gi) ≤ 5ϵn5/2 if n is large enough. Since

ϵ is arbitrary, this completes the proof.
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3 The Non-induced Double Turán Problem

In this section, we prove our main theorems on ϕ(m,n, F ).

3.1 Proof of Theorem 4

We first show that for all m,n ≥ 1 and graph F ,

ϕ(m,n, F ) ≤
(
n

2

)
+ ex(n, F )

(
m

2

)
.

Thereafter, we show that if there is an extremal F -free graph with maximum degree at most

n1/2/m2, then the above bound is tight.

Proof of the upper bound. For S ⊆ [m], let ES denote the set of edges that are contained in

exactly {Gi}i∈S, and note that ES ∩ ES′ = ∅ if S ̸= S ′. Then

m∑
i=1

e(Gi) =
∑
S⊆[m]

|S||ES| ≤
(
n

2

)
+

∑
S⊆[m],|S|≥2

(|S| − 1)|ES|.

Note that
⊔

T⊇S ET =
⋂

i∈S E(Gi), which is F -free for |S| ≥ 2 and so∑
T⊇S

|ET | ≤ ex(n, F ).

It now follows that∑
S⊆[m]
|S|≥2

(|S| − 1)|ES| =
∑

S⊆[m],
|S|=2

∑
T⊇S

(|T | − 1)|ET |(|T |
2

) ≤
∑

S⊆[m],
|S|=2

∑
T⊇S

|ET | ≤
(
m

2

)
ex(n, F ),

as each T ∈ [m] with |T | ≥ 2 is counted
(|T |

2

)
times in total and |T | − 1 ≤

(|T |
2

)
. This proves

the upper bound.

Proof of the lower bound. We need to show there exists a construction such that the graph

with edge set ES is an extremal F -free graph, for all S ⊆ [m] of size 2. Let M =
(
m
2

)
and

H1, . . . , HM be copies of an extremal F -free graph on n vertices such that Hi with maximum

degree △ ≤ n1/2/m2 for all i ∈ [m]. It suffices to show that we can embed each Hi onto

[n] such that their edge sets are pairwise disjoint. We begin by an arbitrary embedding of

each Hi and iteratively decrease the number of intersecting edges. Define a (u, v, i)-swap by

swapping the embedding of vertex u and v of Hi, i.e. replacing each edge {u,w} ∈ E(Hi)
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with the edge {u,w} and each edge {v, w} ∈ E(Hi) with the edge {v, w}. This preserves the
type of isomorphism of Hi. Given a vertex v, let N(v) = NH1(v) ∪ · · · ∪ NHM

(v). Suppose

there exists an intersecting edge {u,w} ∈ E(Hi) ∩ E(Hj). Since |N(u)| ≤ M · △ ≤ n1/2/2,

|N(u) ∪ N(N(u))| ≤ △ +△(△− 1) ≤ n/4, so there exists a vertex v /∈ N(u) ∪ N(N(u)).

Since N(u)∩N(v) = ∅, performing a (u, v, i)-swap reduces the number of intersecting edges.

The result now follows from iterating this process.

3.2 Proof of Theorem 5

We need the following saturation theorem, which may be found in [6].

Proposition 10. Let F be any non-empty graph with k vertices. For all ϵ > 0, there exists

δ > 0 such that if G is any n-vertex graph with ex(n, F ) + ϵn2 edges, then G contains δnk

copies of F .

Proof of Theorem 5. Let k = |V (F )| and let ϵ > 0. Let G1, G2, . . . , Gm be double F -free.

ReorderG1, G2 . . . , Gm so that e(Gi) ≥ ex(n, F )+ϵn2 for 1 ≤ i ≤ ℓ and e(Gi) < ex(n, F )+ϵn2

for ℓ < i ≤ m. Then each Gi : 1 ≤ i ≤ ℓ contains at least δnk copies of F , by Proposition

10. On the other hand, there are at most nk copies of F such that F ⊆ Gi for some i ∈ [m].

Therefore ℓ ≤ 1/δ and

m∑
i=1

e(Gi) =
ℓ∑

i=1

e(Gi) +
m∑

i=ℓ+1

e(Gi)

≤ 1

δ

(
n

2

)
+ (m− ℓ)ex(n, F ) + (m− ℓ)ϵn2

≤ m · ex(n, F ) + ϵmn2 +
1

δ

(
n

2

)
.

Since F is not bipartite, ex(n, F ) = Θ(n2) and so ϕ(m,n, F ) ≤ m ·ex(n, F )+(ϵ+1/δm)mn2.

Since ϵ was arbitrary and δ is a constant depending only on ϵ, we conclude ϕ(m,n, F ) ≤
(1 + o(1))m · ex(n, F ) as m→∞.

Let F be a bipartite graph with k ≥ 2 vertices and j ≥ 1 edges. A strong version of a

conjecture of Simonovits [16, 17] would suggest that for all ϵ > 0, there exists δ > 0 such that

every n-vertex graph G with at least p
(
n
2

)
(1+ ϵ)ex(n, F ) edges contains at least δpjnk copies

of F . For instance, this is known to be true whenever the asymptotic behavior of ex(n, F )

is known, which includes the case F = K2,t. If F is bipartite and m · ex(n, F )/n2 → ∞ as

m,n→∞, then this conjecture with the same proof as above shows ϕ(m,n, F ) = (1+o(1))m·
ex(n, F ). When F contains a cycle, then there exists α > 0 such that ex(n, F ) ≥ n1+α for
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large enough n. Thus, we conclude that if F contains a cycle and the Simonovits conjecture

is true for F , then ϕ(m,n, F ) = (1+ o(1))m · ex(n, F ) for m ≥ n and n→∞. In particular,

this shows ϕ(m,n,K2,t) = (1 + o(1))m · ex(n, F ) for m ≥ n as n→∞.

3.3 Proof of Theorem 6

We now prove Theorem 6. Notice that we trivially have f(m,n, r) ≤ ϕ(m,n,Kr), so it

suffices to show the reverse inequality. That is, we need to show that there exists a blowup

construction meeting the desired bound.

Let G1, G2, . . . , Gm be graphs on [n] with no double Kr and
∑m

i=1 e(Gi) = ϕ(m,n,Kr).

Observe that any pair {i, j} ⊆ [n] must be in some Gi, otherwise, we may add it to G1

without creating a double Kr.

We call vertices v, v′ clones if for all u ∈ [n]\{v, v′} and i ∈ [m], the edge {u, v} ∈ E(Gi) if

and only if {u, v′} ∈ E(Gi). Furthermore, we call {v, v′} a light edge if {v, v′} is in exactly

one graph Gi.

We now apply Algorithm 1 to G1, G2, . . . , Gm.

Algorithm 1 symmetrization algorithm

while ∃ a light edge whose endpoints are not clones do
among all vertices incident to such an edge, select a vertex v with maximum degree
Bv ← collection of vertices sending a light edge to v that are not clones of v
while Bv ̸= ∅ do

pick u ∈ Bv

j ← colour of the light edge from u to v
for 1 ≤ i ≤ m do

if i ̸= j then;
NGi

(u)← NGi
(v)

else if i = j then
NGi

(u)← (NGi
(v) \ {u}) ∪ {v}

end if
end for

end while
end while

Claim 3. Algorithm 1 terminates.

Notice that at the end of the ‘while Bv ̸= ∅’ loop, every vertex sending a light edge to v is

a clone of v. This implies v along with the set Lv of vertices receiving light edges from v

induce a clique of size at least two in some Gi, and an empty graph in every other graph Gj
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with j ̸= i. Moreover, any vertex w /∈ Lv sends edges to either all or none of the vertices

in Lv, and if w is incident to Lv, then w sends edges to Lv in at least two graphs. It now

follows that no light edge incident with a vertex in Lv will be picked again in an iteration of

the out most while loop. Thus the algorithm can run through at most n/2 such iterations,

and so it terminates.

Claim 4. The resulting graphs G′
1, G

′
2, . . . , G

′
m do not contain a double Kr and

∑m
i=1 e(G

′
i) =

ϕ(m,n,Kr).

Note that we replace u by a clone of v in the for loop of Algorithm 1. Since {u, v} remains

a light edge in this step, u and v cannot both belong to a double Kr in the modified graphs.

Furthermore, any doubleKr containing u after the for loop arises from a doubleKr containing

v prior to the for loop. But then G1, G2, . . . , Gm contained no double Kr to begin with, so

G′
1, G

′
2, . . . , G

′
m do not contain a double Kr.

We now show that the algorithm does not reduce the number of edges. By our choice of v,

we know d(v) ≥ d(u) for all u ∈ Bv prior to the for loop. Hence, replacing u with a clone

of v does not decrease the number of edge over a complete iteration of the inner while loop.

Therefore,
∑m

i=1 e(G
′
i) = ϕ(m,n,Kr). The proof of the claim is now complete.

Hence, the algorithm results in graphs G′
1, G

′
2, . . . , G

′
m with ϕ(m,n,Kr) edges and the addi-

tional property that light edges come in ‘clone cliques.’ We may thus partition the vertex set

[n] into k disjoint sets V1, V2, . . . , Vk, such that each Vi induces a clique of light edges from

the same graph. Moreover, for distinct i, j ∈ [k], define Sij to be the set of all edges between

Vi and Vj, and note that any edge in Sij appears in at least two modified graphs. The sets Sij

now yield a k-blowup. Notice that if the pattern of the k-blowup contains a double Kr, then

the original graphs G1, G2, . . . , Gm must have contained a double Kr as well, contradiction.

Thus the k-blowup is double Kr-free.

It remains to show that k < RM(Kr). For each edge {i, j} ⊆ [k] in the pattern of the

k-blowup, we assign an arbitrary distinct pair {a, b} ⊆ Lij ⊆ [m] to {i, j}. If k ≥ RM(Kr),

then there existsKr in the pattern of the k-blowup colored by some distinct pair {a, b} ⊆ [m].

But then this implies the pattern of the k-blowup contains a double Kr, contradiction. This

completes the proof.
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3.4 Proof of Theorem 7

It is not hard to see that ϕ(2, n,K3) =
(
n
2

)
+ ⌊n2/4⌋: if G1, G2 is double triangle-free, then

we have

e(G1) + e(G2) ≤
(
n

2

)
+ e(G1 ∩G2) ≤

(
n

2

)
+ ex(n,K3)

and so ϕ(2, n,K3) ≤
(
n
2

)
+⌊n2/4⌋. Taking G1 = Kn and G2 = K⌊n/2⌋,⌈n/2⌉ meets this bounds.

The main result of this section is to show for all n ≥ 1,

ϕ(3, n,K3) =

(
n

2

)
+
⌊n2

2

⌋
.

Let G1, G2, G3 be double triangle-free. Define Hk ⊆ G to be the graph with edges contained

in at least k of the Gi’s and note that e(G1)+ e(G2)+ e(G3) = e(H1)+ e(H2)+ e(H3). Thus

it suffices to show that e(H2) + e(H3) ≤ n2/2. Notice H2 must not contain any triangles

with two edges in H3, so

e(H2) + e(H3) ≤
(
n

2

)
+ e(H3)− |{{u, v} : u ̸= v,NH3(u) ∩NH3(v) ̸= ∅}|.

Let H ′
3 be the graph with the same vertex set as H3 and edge set {{u, v} : u ̸= v,NH3(u) ∩

NH3(v) ̸= ∅}. It suffices to show that n/2 ≥ e(H3)− e(H ′
3).

Let d1 ≥ d2 ≥ · · · ≥ dn and f1 ≥ f2 ≥ · · · ≥ fn each be the degree sequence of H3 and H ′
3,

respectively. We show that fi ≥ di − 1 for all i. Let vi denote the vertex in H with degree

di and ui be the vertex in H with degree fi. Let Si = |NH3(v1) ∪ · · · ∪NH3(vi)|. Since∑
u∈Si

dH3(u) ≥ d1 + · · ·+ di,

we have that |Si| ≥ i. But then Si\{u1, . . . , ui−1} is non-empty, and every u ∈ Si has degree

dH′
3
(u) ≥ di − 1. Hence, fi ≥ di − 1 for all i, which yields

e(H ′
3) =

1

2

n∑
i=1

fi ≥
1

2

n∑
i=1

(di − 1) = e(H3)−
n

2
.

This proves Theorem 7.

18



4 Concluding Remarks

• For Theorem 1, we may not be able to achieve the same result with smaller n. For

example, consider F to be the bowtie graph, i.e. the 5-vertex graph with two triangles

sharing a vertex. The n-vertex extremal graph for F is given by K⌊n2 ⌋,⌈n2 ⌉ plus an

edge when n ≥ 5, otherwise it is the complete graph. For n = 5, the construction

G1 = K4, G2 = K5 then shows that ϕ∗(2, 5, F ) > 2 · ex(5, F ). Fortunately, for non-

bipartite F with |V (F )| = k, it is not hard to show n ≥ k2 is sufficient to avoid this

issue.

• We note that Theorem 6 may be generalized to any family of non-bipartite graphs up

to asymptotic error via Szemerédi’s Regularity lemma

• One could ask for the analogous results for hypergraphs. That is, if F is an r-uniform

hypergraph, let ϕ(m,n, F ) be the maximum number of edges over m double F -free

r-uniform hypergraphs on [n]. Again, we have ϕ(m,n, F ) ≥
(
n
r

)
+ (m − 1) · ex(n, F ).

Another direction of generalization is to relax the constraint to no copies of F contained

in the intersection of k of the graphs G1, G2, . . . , Gm. Many of the theorems and

proofs also hold in this case. For instance, the proof of Theorem 4 applies for this

generalization by merely changing the numbers.
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