
Solving Min-Min Optimization Problems via Iterative
Polynomial Approximation

Saya Egashira
Advisor: Professor Jiawang Nie

Abstract

Nested min-min optimization problems are challenging to solve, especially when the
value function of the inner problem lacks a closed form or is computationally expensive
to evaluate. This thesis develops and analyzes a framework to address this challenge
by approximating the value function with a tractable polynomial. Our method first
constructs an initial approximation from sampled data using a least-squares fit. It
then iteratively refines this polynomial by strategically sampling new points at the
minimum of the current approximation and efficiently updating the coefficients using
the Sherman-Morrison formula. We demonstrate through numerical experiments that
this iterative process effectively improves the accuracy of the solution.

1 Introduction

We consider the following min-min optimization problem:

min
z∈Kz

{
P (z) := min

x∈Kx

f(x, z)

}
(1.1)

where f : Rn×Rk → R is a jointly continuous function, and Kx ⊆ Rn, Kz ⊆ Rk are compact
sets.

Solving the optimization problem (1.1) is challenging due to its nested structure. The
value function P (z) lacks an analytic form and is typically nonconvex and non-differentiable,
even when f(x, z) is well-behaved. Furthermore, each evaluation of P (z) requires solving an
inner optimization problem, creating a significant computational bottleneck. Prior algorith-
mic approaches have focused on settings with more structure. For instance, gradient-based
methods have been proposed for cases where strong convexity is assumed [5], alongside
mixed-oracle approaches [1]. However, these methods often rely on restrictive assumptions
and their computational cost can be substantial, limiting their applicability to large-scale or
complex problems.

To overcome these challenges, we propose an optimization framework that replaces the in-
tractable value function P (z) with a tractable polynomial approximation, P̃ (z). Our method
proceeds in three main stages. First, we generate an initial set of N samples {(zi, P (zi))}Ni=1

by solving the inner problem at randomly selected points zi ∈ Kz. We then construct an

1



initial polynomial P̃ (z) by solving a least-squares regression problem. Second, we find the
global minimum of the polynomial approximation P̃ (z) using powerful tools from computa-
tional algebraic geometry, such as moment-SOS relaxations [3]. Third, we strategically select
new points at which to sample P (z) and efficiently update the coefficients of P̃ (z) using the
Sherman-Morrison formula, thereby avoiding the need to resolve the least-squares problem
from scratch.

The theoretical validity of our approach rests on two cornerstone theorems from anal-
ysis. Berge’s Maximum Theorem ensures that P (z) is continuous under our assumptions
[11]. Subsequently, the Stone-Weierstrass Theorem guarantees that this continuous function
can be uniformly approximated by a polynomial on the compact set Kz, providing a solid
foundation for our framework.

This approximation-based framework offers several advantages over traditional methods.
By decoupling the inner and outer optimization loops, our method addresses the compu-
tational bottleneck of sequential nested evaluations through targeted parallelization. That
is, the evaluation of inner problems (3.2) can be distributed across parallel workers, while
the polynomial approximation P̃ (z) maintains a sequential refinement process. This hybrid
structure is particularly effective when inner optimizations dominate computational cost.

The use of polynomials provides not only an interpretable approximation model but also
computational flexibility. Unlike strictly sequential nested-loop algorithms, our approach
enables the concurrent solution of new inner problems alongside model updates using existing
data. Modern computational architectures (e.g., multi-core CPUs or distributed clusters) can
thus be leveraged efficiently, though the ultimate scalability is constrained by the sequential
refinement component.

This paper is organized as follows. Section 2 reviews preliminary concepts, including
notation and the fundamentals of polynomial optimization and moment relaxations. Section
3 details the proposed method for constructing an initial polynomial approximation of the
value function. Section 4 presents our main contribution, an iterative refinement framework.
Section 5 provides a series of numerical experiments to demonstrate the practical performance
and behavior of our algorithm. Finally, Section 6 concludes the paper with a summary of
our findings and a discussion of future research directions.

2 Preliminaries

Notation

The symbol N (resp., R) represents the set of nonnegative integers (resp., real numbers).
For an integer m > 0, denote [m] := {1, 2, . . . ,m}. For a scalar t ∈ R, ⌈t⌉ denotes the
smallest integer greater than or equal to t. For a polynomial p, deg(p) denotes its total
degree, and vec(p) denotes its coefficient vector. For two vectors a and b, the notation
a ⊥ b means they are perpendicular. The superscript T denotes the transpose of a matrix
or vector. For a symmetric matrix X, X ⪰ 0 (resp. X ≻ 0) means that X is positive
semidefinite (resp. positive definite). The symbol Sn

+ stands for the set of all n by n real
symmetric positive semidefinite matrices. For two symmetric matrices X and Y , X ⪰ Y
(resp. X ≻ Y ) means that X −Y ⪰ 0 (resp. X −Y ≻ 0). For x := (x1, . . . , xn) and a power

2



vector α := (α1, . . . , αn) ∈ Nn, let |α|:= α1 + · · · + αn and the monomial xα := xα1
1 · · ·xαn

n .
For a real number q ≥ 1, the q-norm of x is denoted as ∥x∥q:= (|x1|q+ · · · + |xn|q)1/q. The
notation Nn

d := {α ∈ Nn : |α|≤ d} denotes the set of monomial powers with degree at most
d. The symbol RNn

d denotes the space of all real vectors labeled by α ∈ Nn
d . The column

vector of all monomials in x of degree up to d is denoted as

[x]d := [1 x · · · xn x2
1 x1x2 · · · xd

n]
T .

The notation R[x] := R[x1, . . . , xn] stands for the ring of polynomials in x with real coeffi-
cients. Let R[x]d be the set of real polynomials with degree at most d. P(K) denotes the
cone of polynomials that are nonnegative on K and let

Pd(K) := P(K) ∩ R[x]d.

2.1 Polynomial Optimization

In the following, we preview some basics of polynomial optimization. For a tuple h :=
(h1, . . . , hs) of polynomials in R[x], let

Ideal[h] := h1 · R[x] + · · ·+ hs · R[x].

The degree-2k truncation of Ideal[h] is

Ideal[h]2k := h1 · R[x]2k−deg(h1) + · · ·+ hs · R[x]2k−deg(hs).

The real variety of h is
VR(h) := {x ∈ Rn : h(x) = 0}.

A polynomial σ ∈ R[x] is said to be a sum of squares (SOS) if there are polynomials
q1, . . . , qt ∈ R[x] such that σ = q21 + · · · + q2t . The convex cone of all SOS polynomials in x
is denoted as Σ[x]. We refer to [3, 6, 7, 8] for more details.

For a tuple of polynomials g := (g1, . . . , gt), its quadratic module is

QM[g] :=

{
t∑

i=0

σigi : σi ∈ Σ[x], with g0 := 1

}
.

For a positive integer k, the degree-2k truncation of QM[g] is

QM[g]2k :=

{
t∑

i=0

σigi : σi ∈ Σ[x], deg(σigi) ≤ 2k, with g0 := 1

}
.

The quadratic module QM[g] is said to be archimedean if there exists q ∈ QM[g] such that
the set {x ∈ Rn : q(x) ≥ 0} is compact. The semialgebraic set defined by g is S(g) := {x ∈
Rn : g1(x) ≥ 0, . . . , gt(x) ≥ 0}.

Theorem 2.1. [9] If QM[g] is archimedean and a polynomial f > 0 on S(g), then f ∈ QM[g].

3



A vector y := (yα)α∈Nn
2k

is said to be a truncated multi-sequence (tms) of degree 2k. For

y ∈ RNn
2k , the Riesz functional determined by y is the linear functional Ly acting on R[x]2k

such that

Ly

 ∑
α∈Nn

2k

pαx
α

 :=
∑
α∈Nn

2k

pαyα.

For convenience, we denote

⟨p, y⟩ := Ly(p) for p ∈ R[x]2k.

The localizing matrix and localizing vector of p generated by y are

L(k)
p [y] := Ly

(
p(x) · [x]s1 [x]Ts1

)
, V (2k)

p [y] := Ly (p(x) · [x]s2) , (2.1)

respectively. In the above, the linear operator is applied component-wisely and

s1 := k − ⌈deg(p)/2⌉, s2 := 2k − deg(p). (2.2)

We remark that L
(k)
p [y] ⪰ 0 if and only if Ly ≥ 0 on QM[p]2k, and V (2k)

p [y] = 0 if and
only if Ly = 0 on Ideal[p]2k. More details for this can be found in [3, 6, 8].

2.2 Moment Relaxation

Moment relaxation is a technique used to find the global minimum of a polynomial opti-
mization problem (POP) by solving a sequence of convex semidefinite programs (SDPs).
Consider the general POP:

fmin := min f(x)
s .t . ci(x) = 0 (i ∈ E),

cj(x) ≥ 0 (j ∈ I),
(2.3)

where f, ci, cj are real-valued polynomials in x ∈ Rn.
The Moment-SOS relaxation method can be applied to any problem of the form (2.3).

It generates a monotonically nondecreasing sequence of lower bounds on fmin. Crucially,
this sequence of bounds is guaranteed to converge to the true global minimum fmin if the
feasible set K := {x ∈ Rn | ci(x) = 0, cj(x) ≥ 0} is compact. A sufficient condition for
this convergence is that the quadratic module generated by the inequality constraints is
Archimedean, as mentioned in Section 2.1.

Denote the degrees

d0 := max{⌈deg(ci)/2⌉ : i ∈ E ∪ I},
d1 := max{⌈deg(f)/2⌉, d0}.

For a relaxation order k ≥ d1, the k-th order moment relaxation of (2.3) is the SDP:

fmom,k := min
y
⟨f, y⟩

s .t . Ly(ci · xα) = 0 ∀α s.t. |α|≤ 2k − deg(ci) (i ∈ E),
L
(k)
cj [y] ⪰ 0 (j ∈ I),

Mk[y] ⪰ 0,
y0 = 1, y ∈ RNn

2k .

(2.4)

4



In the above, Mk[y] := L
(k)
1 [y] is the moment matrix. The dual of (2.4) is the k-th order

SOS relaxation: {
fsos,k := max

γ
γ

s .t . f − γ ∈ Ideal[cE ]2k +QM[cI ]2k.
(2.5)

For k = d1, d1 + 1, . . ., the primal-dual pair of SDPs (2.4)-(2.5) is called the Moment-SOS
hierarchy. A fundamental property of this hierarchy is that the optimal values are always
lower bounds for the true minimum.

Proposition 2.2. [8] For any relaxation order k ≥ d1, we have fsos,k ≤ fmom,k ≤ fmin.

This proposition implies that moment relaxations provide valid lower bounds for fmin. As
mentioned, if the Archimedean condition holds (guaranteeing the compactness of the feasible
set), the sequence of lower bounds converges to the global minimum, i.e., limk→∞ fmom,k =
fmin. This makes the Moment-SOS hierarchy a powerful tool for global polynomial opti-
mization.

3 Constructing the Polynomial Approximation

In this section, we detail our method for constructing a polynomial function P̃ (z) that
approximates the value function P (z). The primary motivation for this approach is to
leverage powerful tools from polynomial optimization. While general-purpose solvers like
gradient descent often fail on nonconvex problems by becoming trapped in local minima,
techniques such as moment-SOS relaxation can find the global minimum of a polynomial,
even if it is nonconvex [3]. By replacing P (z) with a polynomial approximation P̃ (z), we
can apply these global optimization methods.

The validity of this approximation rests on a solid theoretical foundation. A key require-
ment is the continuity of the value function P (z). Under our initial problem assumptions,
P (z) is guaranteed to be continuous on the compact set Kz by Berge’s Maximum Theorem.
We also assume standard technical conditions, such as the restricted inf-compactness (RIC)
condition [2], to guarantee that the problem is well-posed and a finite minimum exists.

Given the continuity of P (z) on the compact set Kz, the Stone-Weierstrass Theorem
guarantees that it can be uniformly approximated by a polynomial to any desired degree of
accuracy. This theorem formally justifies our strategy.

Theorem 3.1 (Stone-Weierstrass). LetKz ⊆ Rk be a compact set. The set of all polynomial
functions is dense in C(Kz), the space of all continuous real-valued functions on Kz. That
is, for any function P ∈ C(Kz) and any ϵ > 0, there exists a polynomial function P̃ such
that

sup
z∈Kz

|P (z)− P̃ (z)|< ϵ.

Grounded by this theoretical support, we can confidently proceed with our strategy. The
remainder of this section details the practical construction of the approximating polynomial
P̃ (z), which involves first building the approximation from samples of P (z) and then finding
its global minimum.

5



3.1 Univariate Case

To begin, we consider the case where z ∈ R for the sake of simplicity. We aim to approximate
the continuous function P (z) with a degree-m polynomial P̃ (z):

P (z) ≈ P̃ (z) := p0 + p1z + p2z
2 + · · ·+ pmz

m. (3.1)

Our goal is to estimate the coefficient vector vec(p) = [p0, . . . , pm]
T . To do this, we

first generate N ≥ m + 1 sample points {zi}Ni=1 from the compact domain Kz. While
several sampling strategies exist (e.g., uniform grids or adaptive sampling), we adopt random
sampling for its simplicity and effectiveness. For each sample zi, we then compute the
corresponding value of the function P (z) by solving the inner optimization problem:

P (zi) := min
x∈Kx

f(x, zi). (3.2)

This can be solved using any suitable numerical solver. For instance, gradient-based methods
can be used if f is smooth, or global techniques like moment-SOS relaxations can be used if
f is a polynomial.

Once we obtain the N sample pairs {(zi, P (zi))}Ni=1, we set up a linear system to find the
coefficients. This takes the form Z · vec(p) ≈ P , where Z is the Vandermonde matrix and
P is the vector of computed values:

1 z1 z21 · · · zm1
1 z2 z22 · · · zm2
...

...
...

. . .
...

1 zN z2N · · · zmN




p0
p1
...
pm

 ≈


P (z1)
P (z2)

...
P (zN)

 . (3.3)

When N > m + 1, this overdetermined system is solved in the least-squares sense, i.e., we
find the vector vec(p) that minimizes ∥Z · vec(p) − P∥22. If the points zi are distinct, the
matrix Z has full column rank, guaranteeing a unique solution. The computational cost of
this step using standard methods like QR decomposition is O(N(m+ 1)2).

Once the polynomial approximation P̃ (z) is constructed, we replace the original problem
(1.1) with the task of minimizing this polynomial:

min
z∈Kz

P̃ (z) = p0 + p1z + · · ·+ pmz
m. (3.4)

This is a constrained polynomial optimization problem over a compact set. Since P̃ (z) is
a polynomial, we can apply global optimization techniques such as moment-SOS relaxation
to find its true minimum, which is a key advantage over local descent methods that can get
trapped in non-global optima.

3.2 Multivariate Case

We now extend the polynomial approximation framework to the multivariate case where
z ∈ Rk. The goal remains to construct a polynomial approximation P̃ (z) of the value
function P (z).

6



Let m be the total degree of the approximating polynomial. The polynomial takes the
form:

P̃ (z) =
∑
|α|≤m

pαz
α, (3.5)

where α = (α1, . . . , αk) ∈ Nk is a multi-index with |α|=
∑k

i=1 αi ≤ m, and zα = zα1
1 · · · z

αk
k .

The total number of monomial terms is D =
(
k+m
k

)
.

The construction process follows the same three steps as the univariate case. We draw
N ≥ D distinct sample points {zi}Ni=1 from the compact domain Kz and evaluate the corre-
sponding values P (zi) by solving the inner optimization problem (3.2).

With the sample pairs, we solve a multivariate linear least-squares problem. We form
the design matrix Zm ∈ RN×D, where each row is the vector of all monomials up to degree
m evaluated at a point zi. The system is then:

[z1]
T
m

[z2]
T
m
...

[zN ]
T
m


︸ ︷︷ ︸

Zm

vec(p) ≈


P (z1)
P (z2)

...
P (zN)


︸ ︷︷ ︸

P

. (3.6)

We find the coefficient vector vec(p) by minimizing ∥Zm ·vec(p)−P∥22. The computational
cost for solving this system scales as O(ND2). This cost becomes significant as the dimension
k and degree m increase (a challenge known as the curse of dimensionality), but can be
mitigated in some cases using sparse polynomial bases or other advanced techniques.

Once the coefficient vector vec(p) is obtained, we solve the resulting polynomial opti-
mization problem:

min
z∈Kz

P̃ (z) =
∑
|α|≤m

pαz
α. (3.7)

This is again a problem that can be solved for a global minimum using techniques such as
moment-SOS relaxation.

4 Iterative Refinement of the Approximation

The initial polynomial approximation P̃ (z), constructed from a set of N samples, serves as
a starting point. To improve its accuracy, we can adopt an iterative refinement strategy.
This process involves sequentially adding new, informative data points to our sample set
and updating the polynomial coefficients accordingly. A key aspect of this approach is the
strategic selection of new sample points.

Simply adding another randomly chosen point may offer little new information. To
maximize the benefit of an additional sample, we must choose it strategically. A powerful
strategy is to select the point that is most relevant to our ultimate goal of finding the
minimum of P (z).

At a given iteration, we have the current polynomial approximation P̃t(z). We can find
its global minimum:

z∗t = arg min
z∈Kz

P̃t(z). (4.1)

7



This point z∗t represents our current best estimate for the true minimizer. We then select
this point as our next sample, znew = z∗t , and compute the true function value P (znew).
Adding the pair (znew, P (znew)) to our dataset forces the model to correct its estimation error
precisely at the location it deemed most promising, effectively steering the approximation
towards the true minimum of P (z).

Adding a new data point (znew, P (znew)) corresponds to appending a new row to the
design matrix Zm and a new entry to the observation vector P . A naive approach would be to
re-solve the entire least-squares problem from scratch with the augmented (N+1)×D system.
However, repeatedly solving a growing system of equations is computationally inefficient,
especially if many refinement steps are desired.

This computational challenge motivates the need for a more intelligent approach. The
following section introduces how the Sherman-Morrison formula can be used to perform this
update efficiently, allowing for rapid and low-cost refinement of the polynomial coefficients.

4.1 Sherman-Morrison Formula

Instead of re-solving the linear system from scratch at each iteration, we use the Sherman-
Morrison formula to efficiently perform a rank-one update on the solution. The standard
least-squares solution to the system Zm · vec(p) ≈ P is given by the normal equations:

vec(p) = (ZT
mZm)

−1ZT
mP. (4.2)

Let us denote the inverse matrix we store and update as At := (ZT
m,tZm,t)

−1 at iteration t.
When a new data point gives a new monomial row vector [znew]

T
m, the matrix to be inverted,

ZT
m,t+1Zm,t+1, is a rank-one update of ZT

m,tZm,t:

ZT
m,t+1Zm,t+1 = ZT

m,tZm,t + [znew]m[znew]
T
m. (4.3)

The Sherman-Morrison formula provides an explicit formula for the new inverse At+1 based
on the old inverse At:

At+1 = At −
At[znew]m[znew]

T
mAt

1 + [znew]TmAt[znew]m
. (4.4)

The updated coefficient vector vec(p)t+1 can then be computed efficiently using this new
inverse. This update procedure avoids a full matrix inversion at each step, and the overall
iterative scheme is detailed in Algorithm 1.

4.2 Computational Costs

Here, we compare the computational costs of finding the new coefficient vector after adding
a single data point.

Solving from Scratch The standard method to solve the least-squares problem with
an updated design matrix Zm ∈ R(N+1)×D is to use a QR decomposition, at a cost of
O((N + 1)D2), or simply O(ND2). Alternatively, forming the normal equations matrix
ZT

mZm also costs O(ND2). This cost is incurred at each refinement iteration.

8



Algorithm 1 Iterative Polynomial Approximation Algorithm

1: Input: Objective function f(x, z), domains Kx, Kz, polynomial degree m.
2: Parameters: Initial sample size N ≥ D =

(
k+m
k

)
, max iterations T , tolerance ε > 0.

3: Phase 1: Initialization
4: Choose N random points {zi}Ni=1 from Kz.
5: Compute Pi ← minx∈Kx f(x, zi) for i = 1, . . . , N .
6: Construct initial design matrix Zm and observation vector P .
7: Compute vec(p)0 ← (ZT

mZm)
−1(ZT

mP ).
8: Store A← (ZT

mZm)
−1 and q ← ZT

mP .
9: Initialize t← 0, Pbest ←∞.

10: Phase 2: Iterative Refinement
11: while t < T do
12: Define current polynomial P̃t(z) using coefficient vector vec(p)t.
13: Find minimizer of approximation: znew ← argminz∈Kz P̃t(z).
14: Calculate minimum value of approximation: P̃min ← P̃t(znew).
15: if t > 0 and |P̃min − P̃prev min|< ε then
16: break ▷ Converged
17: end if
18: P̃prev min ← P̃min.
19: Evaluate true function: Pnew ← minx∈Kx f(x, znew).
20: if Pnew < Pbest then
21: Pbest ← Pnew, zbest ← znew.
22: end if
23: Form new monomial vector [znew]m from point znew.
24: Update inverse matrix: A← A− (A[znew]m[znew]

T
mA)/(1 + [znew]

T
mA[znew]m).

25: Update right-hand side vector: q ← q + [znew]mPnew.
26: Update coefficient vector: vec(p)t+1 ← Aq.
27: vec(p)t ← vec(p)t+1, t← t+ 1.
28: end while

29: Output: The best found solution (zbest, Pbest).

Updating with Sherman-Morrison In contrast, the Sherman-Morrison update avoids
re-forming large matrices. The update consists of several matrix-vector and vector-vector
operations. The most expensive operation is a matrix-vector product like Ak[znew]m, which
costs O(D2), where Ak ∈ RD×D. The total cost for an update is therefore dominated by
operations of complexity O(D2). O(D2) for the update versus O(ND2) for re-solving. As
the number of total samples N grows, the Sherman-Morrison formula offers a significant
computational advantage, making the iterative refinement strategy practical.

9



4.3 Equivalence of the Iterative Update

In this section, we formally prove that the coefficient vector vec(p) produced by our iterative
refinement process is mathematically identical to the vector that would be obtained by
solving a single, large least-squares problem with all data points at once.

Proposition 4.1. Let vec(p)k be the least-squares solution using a set of k data points,
represented by the design matrix Zk and observation vector Pk. Let a new data point
(znew, Pnew) be added, forming the new matrices Zk+1 and Pk+1. The new coefficient vector
vec(p)k+1 calculated via the Sherman-Morrison update is identical to the direct least-squares
solution with all k + 1 points.

Proof. The direct least-squares solution for all k + 1 data points is given by the normal
equations:

vec(p)direct = (ZT
k+1Zk+1)

−1(ZT
k+1Pk+1). (4.5)

Let [znew]
T
m be the new row vector of monomials corresponding to the point znew. By con-

struction, the new matrices can be written in block form:

Zk+1 =

[
Zk

[znew]
T
m

]
, Pk+1 =

[
Pk

Pnew

]
.

We can expand the terms in (4.5):

ZT
k+1Zk+1 =

[
ZT

k [znew]m
] [ Zk

[znew]
T
m

]
= ZT

k Zk + [znew]m[znew]
T
m. (4.6)

ZT
k+1Pk+1 =

[
ZT

k [znew]m
] [ Pk

Pnew

]
= ZT

k Pk + [znew]mPnew. (4.7)

Substituting (4.6) and (4.7) back into (4.5), we get:

vec(p)direct = (ZT
k Zk + [znew]m[znew]

T
m)

−1(ZT
k Pk + [znew]mPnew). (4.8)

Now, we apply the Sherman-Morrison formula to the inverted term in (4.8). Let Ak =
(ZT

k Zk)
−1. The formula states:

(ZT
k Zk + [znew]m[znew]

T
m)

−1 = Ak −
Ak[znew]m[znew]

T
mAk

1 + [znew]TmAk[znew]m
.

This resulting matrix is precisely the updated inverse matrix Ak+1 used in our iterative
algorithm. Substituting this back into (4.8) gives:

vec(p)direct =

(
Ak −

Ak[znew]m[znew]
T
mAk

1 + [znew]TmAk[znew]m

)
(ZT

k Pk + [znew]mPnew) = Ak+1(Z
T
k+1Pk+1).

This final expression is exactly the formula for the updated coefficient vector vec(p)k+1 from
our iterative procedure. Thus, the direct solution and the sequentially updated solution are
identical.

10



5 Numerical Experiments

In this section, we present numerical experiments to demonstrate the effectiveness and prac-
tical behavior of our proposed polynomial approximation framework. All computations are
implemented using Matlab R2024a on an Inspiron 16 7630 2-in-1 equipped with a 13th
Gen Intel(R) Core(TM) i5-1335U processor and 8GB RAM. The polynomial optimization
problems are solved using the software Gloptipoly [4], which calls the SDP package SeDuMi
[10]. For neatness, all computational results are displayed to four decimal digits.

5.1 Experimental Validation of the Update Method’s Efficiency

Here, we experimentally validate the computational efficiency of the Sherman-Morrison for-
mula compared to direct re-computation for rank-one updates. While our computational
cost analysis in Section 4.2 showed an advantage, these results provide empirical confirma-
tion. The Sherman-Morrison formula updates the existing inverse matrix in O(D2) time,
whereas the standard approach of re-inverting the matrix from scratch costs O(D3), where
D is the matrix dimension.

(a) Square Matrices (b) Rectangular Matrices

Figure 1: Time comparison for a single rank-one update to (A⊤A)−1 when ap-
pending a row to A. (a)The y-axis shows the computation time in seconds for
updating the inverse of a D×D matrix with Sherman-Morrison (O(D2)) vs. full
re-inversion (O(D3)), where D is the matrix size on the x-axis. (b)Fixed col-
umn size (20), showing update time versus row count. Both plots confirm the
theoretical advantage of Sherman-Morrison, with direct recomputation becoming
prohibitively expensive for larger matrices.

To illustrate this performance difference, we measured the time required to update the
inverse of matrices of increasing size D using both methods. The results, shown in Figure 1,
provide empirical confirmation of the theoretical complexity across two scenarios: square
matrices (Figure 1a), where D is the dimension of matrix A, showing the expected scaling as
D grows, and rectangular matrices (Figure 1b), with fixed column size (20), demonstrating
how update time scales with row count. In both cases, the Sherman-Morrison formula
significantly outperforms direct re-inversion. While the methods perform comparably for

11



small D, the cost of re-computation grows rapidly, becoming impractical for larger matrices.
In contrast, the Sherman-Morrison update maintains efficiency even at scale, with sub-
millisecond times for D ≤ 1000 in the square case and linear growth in row count for
rectangular matrices.

These findings confirm that the Sherman-Morrison formula is a highly effective strategy
for the iterative refinement step of our algorithm, making it a preferred choice for applications
requiring frequent updates, especially in high-dimensional settings.

5.2 Numerical Examples

Example 5.1. Consider the dehomogenized Motzkin polynomial f(x, z) = x4 + x2 + z6 −
3x2z2 on the compact domain (x, z) ∈ [−1, 1] × [0, 1]. This polynomial is a well-known
example of a nonnegative polynomial that is not a sum of squares (SOS) [8]. The optimization
problem is:

min
z∈[0,1]

{
P (z) := min

x∈[−1,1]
f(x, z)

}
.

We apply our iterative algorithm to solve this problem. To analyze the impact of the initial
sample size, we run the experiment with three different sizes: N ∈ {10, 50, 100}. For all
cases, the approximating polynomial degree is m = 6, and the refinement process terminates
when the change in the approximated minimum is less than ε = 10−6 or a maximum of
T = 100 iterations is reached.

The initial polynomial P̃0(z) is constructed for each case by solving the inner minimization
problem at N points sampled uniformly at random from [0, 1]. We then apply the iterative
refinement procedure as described in Algorithm 1.

Figure 2 shows how the polynomial approximation improves over iterations for each
initial sample size. A larger N results in a better initial approximation, which requires fewer
iterations to closely match the true value function (the solid black curve). Figure 3 tracks
the convergence of the minimum value of the approximation, min P̃k(z), over the iterations.
All three cases converge towards the true minimum of 0.

(a) N = 10 (b) N = 50 (c) N = 100

Figure 2: Polynomial approximation improvement with different initial sample
sizes N . The initial approximation (blue) is refined over iterations (red, yellow)
to better match the true value function (black).

The results, summarized in Table 1a, highlight an important trade-off. A smaller initial
sample size (N = 10) requires more refinement iterations (61) to converge. In contrast, a
larger initial sample size (N = 100) requires significantly fewer iterations (23). This suggests

12



(a) N = 10 (b) N = 50 (c) N = 100

Figure 3: Convergence of the approximated minimum value over iterations for
each case.

that while a larger N increases the cost of the initial model construction, it can reduce
the number of expensive iterative refinement steps, each of which requires solving a global
polynomial optimization problem. For the N = 50 case, the final approximated polynomial
after 32 iterations is:

P̃final(z) = 0.0065− 0.2557z + 3.2571z2 − 16.7981z3 + 39.1733z4 − 40.1089z5 + 14.7386z6.

The time comparison in Table 1b for this case also confirms the computational advantage of
the Sherman-Morrison update.

N Iterations Initial Min Final Min

10 61 -0.0051 -0.0001
50 32 -0.0020 -0.0004
100 21 -0.0013 -0.0004

(a) Convergence Results vs. Initial Sample Size

Method
(N = 50)

Avg Time Total Time

Regular 0.0002s 0.0054s
S-M 0.0001s 0.0037s

(b) Update Time Comparison

Table 1: Summary of experimental results for the Motzkin polynomial example.

Example 5.2. Consider the dehomogenized Robinson polynomial, a classical example of a
nonnegative polynomial that is not a sum of squares (SOS):

f(x1, x2, z) = x6
1 + x6

2 + z6 + 3x2
1x

2
2z

2 − (x4
1x

2
2 + x2

1x
4
2 + x4

1z
2 + x2

1z
4 + x4

2z
2 + x2

2z
4).

We aim to solve the min-min problem for x = (x1, x2) on the unit disk and z ∈ [−1.5, 1.5]:

min
z∈[−1.5,1.5]

{
P (z) := min

∥x∥2≤1
f(x, z)

}
.

We apply our framework with a degree m = 6 polynomial approximation, starting with N =
10 random samples. The inner minimization problems are solved using moment relaxation
via GloptiPoly. After 4 iterations, the refinement process terminates (ε = 10−4).

P̃initial(z) = 0.0026 + 0.0015z − 2.6630z2 + 0.0001z3 − 1.1322z4 − 0.001z5 + 1.0288z6

P̃final(z) = 0.0031 + 0.0012z − 2.6689z2 + 0.0002z3 − 1.1233z4 − 0.0008z5 + 1.0259z6

13



As shown in Figure 4, the final approximation P̃final(z) captures the shape of the true
value function P (z) with remarkable accuracy. However, a significant discrepancy in value
is observed. While the true minimum of P (z) is 0, our method reports a minimum of
approximately -3.1239 (Table 2a).

Figure 4: Polynomial approximation (m = 6) for the Robinson polynomial. The
approximation curve (dashed) closely matches the shape of the value function
computed by the inner solver (solid).

This difference does not represent a failure of our polynomial approximation method.
Rather, it highlights that our method accurately learns the data it is given. The discrepancy
arises because moment relaxation provides a non-tight lower bound for this specific problem.
As shown in Table 2a, GloptiPoly computes the minimum of the inner problem as -3.1233,
not 0. Our algorithm successfully learns this value function, but inherits its inherent error.

Furthermore, the time comparison in Table 2b shows that the Sherman-Morrison update
was slower for this case. This is attributable to the very small problem size (both the
number of coefficients D = 7 and the number of samples N = 10), where the overhead
of the iterative method can exceed the cost of a direct solve. The asymptotic advantage of
Sherman-Morrison, as demonstrated theoretically and in other experiments, becomes evident
in problems with a larger number of coefficients.

Example 5.3. Consider the dehomogenized Schmüdgen polynomial, where the value func-
tion P (z) depends on a bivariate parameter z = (z1, z2) ∈ R2:

f(x, z) = 200(x3 − 4xz22)
2 + (z31 − 4z1z

2
2)

2 + (z21 − x2)x(x+ 2z2)(x
2 − 2xz2 + 2z21 − 8z22).

We aim to solve the min-min problem on the domain (x, z) ∈ [−1, 1]× ([−1, 1]× [−1, 1]):

min
z∈[−1,1]2

{
P (z) := min

x∈[−1,1]
f(x, z)

}
.

14



We approximate P (z) with a bivariate polynomial P̃ (z) of total degree m = 5, which has
D =

(
2+5
5

)
= 21 coefficients. We begin with N = 50 random samples and apply our iterative

refinement algorithm.
After 93 iterations, the process converges (ε = 10−4). The initial and final approximations

are given below:

P̃initial(z) = 0.1838 + 0.8926z1 + 0.7511z2 − 0.8513z21 + 1.5883z1z2 − 1.7312z22
− 5.7813z31 − 0.1409z21z2 − 2.2676z1z

2
2 − 3.8164z32 + 0.4059z41

− 2.8898z31z2 + 7.4409z21z
2
2 − 1.1196z1z

3
2 + 2.6172z42 + 6.4156z51

− 3.6141z41z2 + 5.9898z31z
2
2 + 3.3235z21z

3
2 + 1.0870z1z

4
2 + 3.4136z52

P̃final(z) = 0.4146− 0.0900z1 + 0.1104z2 − 1.5586z21 − 0.1021z1z2 − 2.5984z22
− 0.1789z31 + 0.9296z21z2 + 0.9112z1z

2
2 − 0.5666z32 + 1.5207z41

− 1.3159z31z2 + 7.6308z21z
2
2 + 1.4555z1z

3
2 + 3.7771z42 + 0.5434z51

− 2.5378z41z2 + 2.2058z31z
2
2 + 0.1835z21z

3
2 − 1.6872z1z

4
2 + 0.6533z52 .

Figure 5 visualizes the progress of the algorithm. The true value function P (z) is a
complex surface, as illustrated by the yellow-to-blue gradient color for reference. To illustrate
convergence, we plot the minimum value of our polynomial approximation at different stages
as horizontal planes. The sequence of planes (blue for initial, yellow for final) rises towards
the true global minimum of 0, demonstrating the effectiveness of the refinement. Figure 6
shows this convergence path more directly.

The results are summarized in Table 3. The final approximated minimum value, −0.0480,
is significantly closer to the true minimum of 0 than the initial estimate of −2.0828. Fur-
thermore, the time comparison confirms that the Sherman-Morrison update is substantially
more efficient in this higher-dimensional setting, providing considerable runtime savings.

Example 5.4. This example tests the framework’s performance on a problem with a higher-
dimensional inner variable, x ∈ R3. We consider the dehomogenized Horn polynomial:

f(x, z) = (x2
1 + x2

2 + x2
3 + z21 + z22)

2 − 4(x2
1x

2
2 + x2

2x
2
3 + x2

3z
2
1 + z21z

2
2 + z22x

2
1).

The min-min optimization problem is defined for z ∈ [−2, 2]2 and x on the unit ball, ∥x∥2≤ 1:

min
z∈[−2,2]2

{
P (z) := min

∥x∥2≤1
f(x, z)

}
.

Function Minimum

True f(x, z) 0
P (zn) via Moment-SOS -3.1233

P̃initial(z) -3.1257

P̃final(z) -3.1239

(a) Comparison of Minimum Values

Method Avg Time Total Time

Regular 0.0025s 0.0100s
S-M 0.0064s 0.0257s

(b) Update Time Comparison

Table 2: Summary of results for the Robinson polynomial example.

15



Figure 5: Visualization of the approximation improvement for the Schmüdgen
polynomial. The true value surface P (z) is shown at the bottom. The horizontal
planes represent the minimum value of the polynomial approximation P̃k(z) at
different iterations (0, 30, and 93), showing convergence toward the true mini-
mum.

Figure 6: Convergence of the approximated minimum value over 93 iterations for
the Schmüdgen polynomial.

To approximate the bivariate value function P (z), we use a polynomial P̃ (z) of total degree
m = 3, which has D =

(
2+3
3

)
= 10 coefficients. The initial model is built from N = 100

random samples.
The initial approximation P̃initial(z) is found by solving the least-squares problem. The

iterative refinement process is then applied for a maximum of 100 iterations. The initial and

16



Function Minimum

True f(x, z) 0

P̃initial(z) -2.0828

P̃final(z) -0.0480

(a) Minimum Values

Method Avg Time (s) Total Time (s)

Regular 0.0003 0.0322
S-M 0.0001 0.0095

(b) Update Time Comparison

Table 3: Summary of results for the Schmüdgen polynomial example.

final polynomials are:

P̃initial(z) = 0.1322− 0.3820z1 − 0.1833z2 + 0.5016z21 − 0.1001z1z2
+ 0.4256z22 + 0.1497z31 + 0.0437z21z2 − 0.0071z1z

2
2 + 0.0871z32 .

P̃final(z) = 0.1059− 0.3960z1 − 0.1994z2 + 0.5088z21 − 0.1000z1z2
+ 0.4335z22 + 0.1540z31 + 0.0461z21z2 − 0.0058z1z

2
2 + 0.0917z32 .

The results demonstrate that our method remains effective even with a more complex
inner problem structure. Figure 7 visualizes the convergence, with the horizontal plane
representing the minimum of our approximation rising towards the true minimum. Figure 8
shows the path of this convergence over the 100 iterations. The final estimated minimum of
0.0074 is a significant improvement over the initial 0.0408 (Table 4a). The efficiency of the
Sherman-Morrison update is again confirmed in Table 4b.

Figure 7: Approximation improvement for the Horn polynomial. Horizontal
planes show the minimum value of the approximation at different iterations.

17



Figure 8: Convergence of the approximated minimum value over 100 iterations
for the Horn polynomial.

Function Minimum

True f(x, z) 0

P̃initial(z) 0.0408

P̃final(z) 0.0074

(a) Minimum Values

Method Avg Time (s) Total Time (s)

Regular 0.0005 0.0473
S-M 0.0002 0.0238

(b) Update Time Comparison

Table 4: Summary of results for the Horn polynomial example.

6 Conclusion

In this thesis, we developed and analyzed a computational framework for solving min-min
optimization problems, particularly those where the value function is intractable. Our pri-
mary research question was how to efficiently find a global minimum for such nested problems
without relying on traditional, often infeasible, nested-loop methods.

Our approach was to replace the difficult value function P (z) with a tractable polynomial
approximation, P̃ (z). We presented a three-stage methodology: (1) an initial approximation
from sampled data using least-squares, (2) global optimization of the resulting polynomial,
and (3) an iterative refinement strategy. The refinement stage, a key contribution of this
work, strategically selects new sample points at the minimum of the current approximation
and uses the Sherman-Morrison formula to efficiently update the polynomial coefficients.
Our numerical experiments demonstrated that this iterative process successfully improves
the solution accuracy and confirmed the computational advantages of the update formula.

The significance of this work lies in providing a practical and computationally flexible
paradigm for a challenging class of optimization problems. By decoupling the expensive
inner and outer optimization loops, our method is well-suited for parallel and distributed
computing environments, thereby making previously intractable problems more approach-
able.

18



However, our framework has limitations that open avenues for future work. First, while
our experiments demonstrate practical convergence, this thesis does not provide a formal
proof that the sequence of generated solutions converges to the true global optimum. Such
an analysis remains a non-trivial future challenge. Second, our iterative refinement relies on
a purely exploitative sampling strategy (selecting the current minimum), which could risk
premature convergence if the initial approximation is poor. Lastly, the method’s practicality
is subject to the curse of dimensionality in the parameter space.

Several avenues for future research arise from these limitations. A primary theoretical
goal would be to establish conditions under which the algorithm is guaranteed to converge.
On the practical side, exploring more sophisticated sampling strategies that balance exploita-
tion with exploration could enhance the robustness of the refinement process. To combat
the curse of dimensionality, investigating alternative approximation bases like sparse polyno-
mials or tensor-train formats is a promising direction. The framework’s potential extension
to min-max problems, though requiring additional care for inner maximization, could fur-
ther broaden its applicability in robust optimization and game theory. Finally, applying the
framework to a wider range of real-world problems would further validate its utility.

In conclusion, this thesis has demonstrated that iterative polynomial approximation pro-
vides a powerful and adaptable framework for solving nested optimization problems. This
approach effectively bridges the gap between global optimization theory and computational
practice.

Acknowledgements

I would like to express my deepest gratitude to Professor Jiawang Nie for his generous guid-
ance as my thesis advisor and for welcoming me into the honors program. I am also sincerely
thankful to Jiyoung Choi for her patient mentorship and insightful feedback throughout this
research. My appreciation extends to the UCSD Department of Mathematics for this aca-
demic opportunity, and to my family for their unwavering support.

References

[1] Gladin, E., Sadiev, A., Gasnikov, A., Dvurechensky, P., Beznosikov, A.,
and Alkousa, M. Solving smooth min-min and min-max problems by mixed oracle
algorithms. Communications in Computer and Information Science (2021), 19–40.

[2] Guo, L., Lin, G.-H., Ye, J. J., and Zhang, J. Sensitivity analysis of the value
function for parametric mathematical programs with equilibrium constraints. SIAM
Journal on Optimization 24, 3 (2014), 1206–1237.

[3] Henrion, D., Korda, M., and Lasserre, J. B. The Moment-SOS Hierarchy.
World Scientific, 2020.

[4] Henrion, D., Lasserre, J., and Lofberg, J. Gloptipoly 3: moments, optimization
and semidefinite programming. Optimization Methods & Software, 2009, p. 761–779.

19



[5] Kovalev, D., Gasnikov, A., and Malinovsky, G. Optimal and nearly optimal
algorithms for min-min optimization, 2023.

[6] Lasserre, J. B. Introduction to polynomial and semi-algebraic optimization. Cam-
bridge University Press, 2015.

[7] Laurent, M. Sums of Squares, Moment Matrices and Optimization Over Polynomials.
Emerging Applications of Algebraic Geometry of IMA Volumes in Mathematics and its
Applications, Springer, 2009, ch. 7.

[8] Nie, J. Moment and Polynomial Optimization. SIAM - Society for Industrial and
Applied Mathematics, 2023.

[9] Putinar, M. Positive polynomials on compact semi-algebraic sets. Indiana University
Mathematics Journal (1993).

[10] Sturm, J. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.
Optimization methods and software, 1999, p. 625–653.

[11] Weretka, M. An ordinal theorem of the maximum. Economic Theory 76, 1 (2022),
353–373.

20


