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We provide a summary of the essential topics that students are expected to
master for the algebra qualification exam. These are the topics for the academic
year 2024-2025.

1 Group theory

1.1 Group actions

1. Bijection between group actions of G on X and group homomorphisms
from G to the symmetric group SX .

2. Consequence: A non-trivial action on a small set gives us a normal sub-
group. For example, normal core of a subgroup, and the following result:
if [G : H] is the smallest prime factor of |G|, then H is a normal subgroup.

3. Various useful actions:

(a) G ↷ G/H by left-translations.

(b) For every normal subgroup N of G, G ↷ N by conjugation.

(c) G acts on the set of subgroups of G by conjugation.

4. The orbit-stabilizer theorem: suppose G ↷ X, then

G/Gx → G · x, gGx 7→ g · x

is a bijection.

5. Cl(g) = [G : CG(g)] where Cl(g) is the conjugacy class of g.

6. Number of conjugates of a subgroup H of G is [G : NG(H)].

7. Orbits form a partition and the quotient space X/G.

8. Class equation.

9. (Not) Burnside’s theorem: |X/G| = 1
|G|

∑
g∈G |Xg|.
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1.2 Actions of finite p-groups and the Sylow theorems

1. Suppose a finite group P is of order pk where p is prime and P ↷ X where
X is a finite set. Then |X| ≡ |XP | (mod p).

2. Cauchy’s theorem. If p is a prime factor of the order of a group G, then
G has an element of order p.

3. The first Sylow theorem. If pn||G| and |P | = pi, then there are subgroups
P1, . . . , Pn of G such that

(a) P1 ⊆ · · · ⊆ Pn and Pi = P .

(b) |Pj | = pj for all 1 ≤ j ≤ n.

4. The second Sylow theorem. G ↷ Sylp(G) by conjugation and this action
is transitive.

5. The third Sylow theorem. |Sylp(G)| ≡ 1 (mod p).

6. For every P ∈ Sylp(G), Sylp(NG(P )) = {P} and deduce that

NG(NG(P )) = NG(P ).

7. Frattini’s argument. Suppose N ⊴G and P ∈ Sylp(G). Then

G = NG(P )N.

8. Structure of groups of order pq if p < q are primes and p ∤ q − 1.

9. Consequences of Sylow’s theorems for groups of order p(p − 1), p(p + 1),
p2q, pqℓ, etc.

1.3 Short exact sequences and semi-direct product

1. Every SES is isomorphic to a standard SES.

2. A SES 1 → G1 → G2 → G3 → 1 splits if and only if there is an isomor-
phism (idG1 , ϕ, idG3) to the SES

1→ G1 → G1 ⋊θ G3 → G3 → 1

for some θ : G3 → Aut(G1).

3. Structure of groups of order pq.

4. Suppose θ1, θ2 ∈ Hom(H,Aut(N)) are in the same Aut(H)-orbit. Then
H ⋉θ1 N ≃ H ⋉θ2 N .

5. The Schur-Zassenhaus theorem. If gcd(|N |, |H|) = 1, a SES of the form
1→ N → G→ H → 1 splits .

2



1.4 Symmetric and alternating groups

1. Cycle decomposition. Cycle type and conjugacy classes in a symmetric
group.

2. Transpositions and parity of permutations.

3. Z(Sn) = 1 if n ≥ 3.

4. 3-cycles generated the alternating group An if n ≥ 3.

5. An is simple if n ≥ 5.

6. Aut(Sn) = Inn(Sn) if n ≥ 7.

7. Outer automorphism of S6.

8. Sign of the permutation induced by the action of g on G by left multi-
plication and using it to show: if |G| = 2m and m is odd, then G has a
characteristic subgroup of order m.

1.5 Composition factors and solvable groups

1. The Jordan-Hölder theorem: for finite groups. For every finite group G,
there are subgroups {Gi}i such that

1 = G0 ⊴G1 ⊴ . . .⊴Gk = G

and Gi/Gi−1 is a simple group for every i = 1..k. Up to reordering
and isomorphisms, the quotients {Gi/Gi−1}ki=1 are unique and called the
composition factors.

2. Derived subgroup series and solvable groups.

3. G/N is abelian if and only if N ⊇ [G,G].

4. A finite group G is solvable if and only if all the composition factors are
cyclic groups of prime order.

5. Important examples of solvable groups: dihedral groups and upper-triangular
invertible n-by-n matrices.

1.6 Nilpotent groups

1. The lower and upper central series; denoted by γi(G) and Zi(G), respec-
tively.

2. Zc(G) = G if and only if γc+1(G) = 1.

3. Every finite p-group is nilpotent.
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4. Suppose G is nilpotent and N is a non-trivial normal subgroup. Then

Z(G) ∩N ̸= 1.

5. Important example for an infinite nilpotent group: group of unipotent
upper-triangular matrices.

6. Suppose G is a finite group. Then the following are equivalent.

(a) G is nilpotent.

(b) All the Sylow subgroups of G are normal.

(c) G ≃
∏n

i=1 Pi where Pi is a finite pi-group.

(d) All the maximal subgroups of G are normal.

7. Frattini subgroup and its properties. Let Φ(G) be the intersection of all
the maximal subgroups of G. Suppose G is a finite group. Then

(a) ⟨S⟩ = G if and only if ⟨π(S)⟩ = G/Φ(G) where π : G → G/Φ(G) is
the natural quotient map.

(b) Φ(G) is nilpotent.

(c) G is nilpotent if and only if G/Φ(G) is nilpotent.

(d) If G is a finite p-group, then Φ(G) = [G,G]Gp.

1.7 Free products, free groups, and ping-pong lemma

1. Free product of a family of groups and its universal property.

2. Free group and its universal property.

3. Presentation of a group. Important examples: dihedral and symmetric
groups.

4. Ping-pong lemma and its applications:

(a)

(
1 2
0 1

)
and

(
1 0
2 1

)
freely generate a free group.

(b)

〈
±
(

0 1
−1 0

)
,±

(
1 1
0 1

)〉
≃ (Z/2Z) ∗ Z.

(c) Free groups are residually finite: if w ∈ F2\{1}, then F2 has a normal
subgroup N of finite index such that w ̸∈ N .
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2 Ring theory

2.1 Ring of polynomials

1. Evaluation map. Leading term, leading coefficient, and degree.

2. Zero-divisors, units, integral domains, and fields.

3. Long division algorithm. Suppose A is a unital commutative ring, f, g ∈
A[x], and the leading coefficient of g is a unit. Then there is a unique pair
(q, r) ∈ A[x] such that f = gq + r and deg r < deg g.

4. Remainder and factor theorems. For every f ∈ A[x] and a ∈ A, f(x) =
q(x)(x− a) + f(a); a is a zero of f if and only if x− a|f in A[x].

5. Generalized factor theorem. If D is an integral domain, f ∈ D[x], and
a1, . . . , an ∈ D are distinct zeros of f in D, then

f(x) = (x− a1) · · · (x− an)q(x)

for some q ∈ D[x].

2.2 Euclidean domains, PID, and UFD

1. Euclidean domain implies PID.

2. Z,Z[i],Z[ω], and F [t] are Euclidean domains where ω is a primitive third
root of unity and F is a field.

3. Primes and irreducible elements.

4. Prime and maximal ideals. An ideal p of A is prime if and only if A/p is
an integral domain. An ideal m of A is maximal if and only if A/m is a
field. Hence

Max(A) ⊆ Spec(A).

5. Prime implies irreducible.

6. In an integral domain D and a ̸= 0, a is prime if and only if ⟨a⟩ is a prime
ideal; a is irreducible if and only if ⟨a⟩ is maximal among the principal
ideals.

7. In a Noetherian integral domain, every non-zero non-unit element can be
written as a product of irreducibles.

8. Suppose in an integral domain D, every non-zero non-unit element can
be written as a product of irreducibles. Then D is a UFD if and only if
irreducible and prime elements are the same.

9. PID implies UFD.
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2.3 Prime and maximal ideals, and localization

For an ideal a, let V (a) be the set of prime divisors of a; that means

V (a) := {p ∈ Spec(A) | a ⊆ p}.

1. Zorn’s lemma.

2. Suppose S is a multiplicatively closed subset, a⊴A, and S ∩ a = ∅. Then
there exists p ∈ V (a) such that p ∩ S = ∅.

3. For every proper ideal a, V (a) ∩Max(A) ̸= ∅.

4. Let Nil(A) := {a ∈ A | ∃n ∈ Z+, an = 0}. Then Nil(A) =
⋂

p∈Spec(A) p.

5. Nil(A[x]) = Nil(A)[x] and

A[x]× = {
n∑

i=0

aix
i | a0 ∈ A×, a1, . . . , an ∈ Nil(A)}.

6. Using A[x]/a[x] ≃ (A/a)[x] to deduce

{p[x] | p ∈ Spec(A)} ⊆ Spec(A[x]).

7. If D is a PID, then Spec(D) = {0} ∪Max(D); as an application A[x] is a
PID if and only if A is a field.

8. Suppose S is multiplicatively closed. Then the following is a bijection:

{p ∈ Spec(A) | p ∩ S = ∅} → Spec(S−1A), p 7→ S−1p.

9. For every p ∈ Spec(A), Sp := A \ p is multiplicatively closed, and S−1
p A

is denoted by Ap. We have Max(Ap) = {S−1
p p}; in particular, it is a local

ring.

2.4 Noetherian rings and Hilbert’s basis theorem

1. Noetherian rings. For every unital commutative ring A, the following
properties are equivalent.

(a) Every non-empty chain of ideals has a maximal element.

(b) Every non-empty family of ideals has a maximal element.

(c) Ascending chain condition (acc). If a1 ⊆ a2 ⊆ · · · is a chain of ideals
of A, then there exists n0 such that an0

= an0+1 = · · · .
(d) Every ideal of A is finitely generated.

2. Cohen’s theorem. A is Noetherian if and only if every prime ideal of A is
finitely generated.

3. If A is Noetherian, then every quotient of A is Noetherian.

4. Hilbert’s basis theorem. If A is Noetherian, then A[x] is Noetherian.

5. Every finitely generated ring is Noetherian.
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2.5 Gauss’s lemma

Suppose D is a UFD and F is a field of fractions of D.

1. Define p-valuations vp and gcd. Basic properties of vp and gcd.

2. The content c(f) of a non-zero polynomial f ∈ D[x]. Primitive polynomi-
als. For every non-zero polynomial f ∈ D[x], we have

f = c(f)fprim,

where fprim is a primitive polynomial.

3. Gauss’s lemma, version 1. Product of two primitive polynomials is prim-
itive.

4. Gauss’s lemma, version 2. c(fg) = c(f)c(g) for f, g ∈ D[x] \ {0}.

5. Gauss’s lemma, version 3. Suppose f ∈ D[x], f1, . . . , fn ∈ F [x] such
that f =

∏n
i=1 fi. Then there exist ci ∈ F such that cifi ∈ D[x] and

f =
∏n

i=1(cifi).

6. Suppose f is a non-constant primitive polynomial in D[x]; then f is irre-
ducible in D[x] if and only if it is irreducible in F [x].

7. For a ∈ D, we have a is irreducible (prime) in D if and only if a is
irreducible (prime) in D[x].

8. If D is a UFD, then D[x] is a UFD.

3 Module and category theory

3.1 General theory of modules

1. There is a bijection between the possible A-module structures on an
abelian group M and Hom(A,End(M)).

2. For a field F , F -modules are precisely F -vector spaces.

3. Suppose M is an A-module. For a multiplicatively closed set S, S−1M is
a S−1A-module. For p ∈ Spec(A), S−1

p M is denoted by Mp.

4. Annahilator of an element and a module. An A-module M can be viewed
as an A/Ann(M)-module, and this process does not change the POSet of
submodules.

5. Quotient of modules and the isomorphism theorems.

6. Direct sum and direct product of modules, and their universal properties.
Free A-modules.
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7. Internal direct sum of submodules.

8. Noetherian modules. The following properties are equivalent.

(a) Every non-empty chain of submodules of M has a maximal element.

(b) Every non-empty family of submodules of M has a maximal element.

(c) Ascending chain condition (acc). If M1 ⊆ M2 ⊆ · · · is a chain of
submodules ofM , then there exists n0 such thatMn0

= Mn0+1 = · · · .
(d) Every submodule of M is finitely generated.

9. An epimorphism of a Noetherian module is an automorphism.

10. rank(M) is the maximum number of A-linearly independent elements of
M and d(M) is the minimum number of generators of M . Then, for a
finitely generated A-module M , the following hold.

(a) rank(M) ≤ d(M).

(b) rank(M) = d(M) if and only if M is a free A-module.

3.2 Finitely generated modules over a PID

Suppose D is a PID.

1. Submodules of a free module. Suppose M is a submodule of Dn. There
are a1, . . . , am ∈ D \ {0} and v1 . . . , vn ∈ Dn such that

(a) Dn =
⊕n

i=1 Dvi.

(b) a1| · · · |am and M =
⊕m

i=1 aiDvi.

2. Fundamental theorem of f.g. modules over a PID. Suppose M is a f.g. D-
module. Then there are non-negative integer r and a1, . . . , am ∈ D \ {0}
such that

(a) a1| · · · |am,

(b) M ≃ Dr ⊕
⊕m

i=1 D/⟨ai⟩,
(c) r = rank(M),

(d) Tor(M) ≃
⊕m

i=1 D/⟨ai⟩.

Moreover, ⟨ai⟩’s are unique.

3. Smith normal form. Suppose x ∈ Mn,m(D). Then there are γ1 ∈ GLn(D),
γ2 ∈ GLm(D), and d1| · · · |dr such that

x = γ1aγ2,

where aii = di and aij = 0 if (i, j) ̸∈ {(1, 1), . . . , (r, r)}.

4. Application of Smith normal form in understanding the structure of the
co-kernel of a D-module homomorphism from Dn to Dm.
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3.3 Applications to linear algebra

Suppose F is a field and a ∈ Mn(F ). Let Va := Fn be the F [x]-module such
that f(x) · v = f(a)v for every column vector v ∈ Fn.

1. For a, b ∈ Mn(F ), a ∼ b (that mean a is similar to b) if and only if Va ≃ Vb.

2. For every monic polynomial f ∈ F [x], F [x]/⟨f⟩ ≃ Vc(f) where c(f) is the
companion matrix of f .

3. Rational canonical form. For every a ∈ Mn(F ), there are unique monic
polynomials f1, . . . , fm such that f1| · · · |fm and

a ∼ diag(c(f1), . . . , c(fm)).

These polynomials are called the invariant factors of a.

4. Suppose f1| · · · |fm are the invariant factors of a. Then fm is the minimal
polynomial of a and f1 · · · fm is the characteristic polynomial of a. In
particular,

(a) The Cayley-Hamilton Theorem. fa(a) = 0 where fa(t) := det(tI−a)
is the characteristic polynomial of a.

(b) The characteristic polynomial and the minimal polynomial of a have
the same irreducible factors.

5. Jordan form. Suppose all the eigenvalues of f are in F . Then there are
unique up to reordering pairs (ni, λi) such that

a ∼ diag(Jn1(λ1), . . . , Jnk
(λk)),

where Jm(λ) = λIm + c(xm).

6. Two nilpotent matrices x, x′ ∈ Mn(F ) are similar if and only if

dimkerxk = dimkerx′k

for every k = 1..(n− 1).

7. Suppose all the eigenvalues of a are in F . Then a is diagonalizable if and
only if its minimal polynomial does not have a multiple zero.

8. The Smith form of xI−a is of the form γ1 diag(1, . . . , 1, f1, . . . , fr)γ2 such
that γ1, γ2 ∈ GLn(F [x]) and f1| · · · |fr are invariant factors of a.

3.4 A bit more general theory of modules

1. Nakayama’s lemma, version 1. Suppose A is a local ring, Max(A) = {m},
and M is a finitely generated A-module. If mM = M , then M = 0.
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2. Nakayama’s lemma, version 2. Suppose A is a local ring, Max(A) = {m},
and M is a finitely generated ring. Then d(M) = dimA/m(M/mM).

3. Every SES is isomorphic to a standard SES.

4. Suppose 0 → M1 → M2 → M3 → 0 is a SES. Then M2 is Noetherian if
and only if M1 and M3 are Noetherian.

5. Short five lemma. Suppose (θ1, θ2, θ3) is a homomorphism of SESs; then
the following holds.

(a) θ1, θ3 are surjective if and only if θ2 is surjective.

(b) θ1, θ3 are injective if and only if θ2 is injective.

(c) θ1, θ3 are isomorphisms if and only if θ2 is an isomorphism.

6. Splitting SES. Suppose 0 → M1
f1−→ M2

f2−→ M3 → 0 is a SES. Then the
following statements are equivalent.

(a) There exists a submodule N2 of M2 such that N2 ⊕ f1(M1) = M2.

(b) There exists g1 : M2 →M1 such that g1 ◦ f1 = idM1
(the left margin

to the center and come back).

(c) There exists θ : M2 → M1 ⊕ M3 such that (idM1
, θ, idM3

) is an
isomorphism of SESs between 0 → M1 → M2 → M3 → 0 and
0→M1 →M1 ⊕M3 →M3 → 0.

(d) There exists g2 : M3 →M2 such that f2◦g2 = idM3 (the right margin
to the center and come back).

7. Suppose M is an A-module. Then the following are equivalent.

(a) M = 0.

(b) For all p ∈ Spec(A), Mp = 0.

(c) For all m ∈ Max(A), Mm = 0.

8. Suppose f : M → N is an A-module homomorphism. Then the following
are equivalent.

(a) f is injective.

(b) For all p ∈ Spec(A), fp : Mp → Np is injective.

(c) For all m ∈ Max(A), fm : Mm → Nm is injective.

9. Suppose f : M → N is an A-module homomorphism. Then the following
are equivalent.

(a) f is surjective.

(b) For all p ∈ Spec(A), fp : Mp → Np is surjective.

(c) For all m ∈ Max(A), fm : Mm → Nm is surjective.

10. Suppose ⟨a1, . . . , am⟩ = A and M is an A-module. Then M is a finitely
generated A-module if and only if S−1

ai
M is a finitely generated S−1

ai
A-

module for i = 1..m.
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3.5 A bit of category theory

1. What a category is. Important examples: Set (sets), Gp (groups), Ab
(abelian groups), A-mod (A-modules), Rng (unital commutative rings),
etc.

2. What a functor is. Examples:

(a) Forgetful functor. F : Gp→ Set, F : Ab→ Gp, etc.

(b) Zeros of a family of polynomials. Suppose {fi}i∈I ⊆ Z[x1, . . . , xn].
Then

V{fi} : Rng→ Set, V{fi}(A) := {a ∈ An | ∀i ∈ I, fi(a) = 0}.

(c) Group schemes. GLn : Rng→ Gp, SLn : Rng→ Gp.

(d) Representable functor. Suppose HomC(a, b) is a set for all objects a
and b in C. Then for all a ∈ Ob(C),

ha : C → Set, ha(b) := HomC(a, b),

and

ha(b1
f−→ b2) : HomC(a, b1)→ HomC(a, b2)

given by composition defines a functor.

3. What a natural transformation is. Examples:

(a) Homomorphisms between group schemes. det : GLn → GL1 and
inclusion map ι : SLn → GLn.

(b) η : GL1 → Vxy−1 such that ηA(u) := (u, u−1).

4. Yoneda’s lemma. Suppose F : C → Set is a functor and HomC(a, b) is a
set for all objects a and b in C. Let Nat(ha, F ) be the class of all natural
transformations from the representable functor ha to F . Then there is a
(natural) bijection between Nat(ha, F ) and F (a).

3.6 Representable functors, projective modules, and ten-
sor product

1. For a unital commutative ring A, the representable functor hM can be
upgraded to a functor from A-mod to A-mod.

2. The contravariant representable functor, hM can be enriched to a con-
travariant functor from A-mod to A-mod.

3. hM is right-exact; that means if 0 → N1
f1−→ N2

f2−→ N3 → 0 is a SES,
then

0→ hM (N1)
hM (f1)−−−−−→ hM (N2)

hM (f2)−−−−−→ hM (N3)

is exact.
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4. hM is right-exact; that means 0→ N1
f1−→ N2

f2−→ N3 → 0 is a SES, then

hM (N1)
hM (f1)←−−−−− hM (N2)

hM (f2)←−−−−− hM (N3)← 0

is exact.

5. (Detecting exactness using observers-1) N1
f1−→ f2−→ N3 is exact if for all

A-modules M , hM (N1)
hM (f1)−−−−−→ hM (N2)

hM (f2)−−−−−→ hM (N3) is exact.

6. (Detecting exactness using observers-2) N1
f1−→ f2−→ N3 is exact if for all

A-modules M , hM (N1)
hM (f1)←−−−−− hM (N2)

hM (f2)←−−−−− hM (N3) is exact.

7. Projective modules. For an A-module P the following are equivalent.

(a) hP is an exact functor.

(b) For every surjective A-module homomorphism f , hP (f) is surjective.

(c) (Existence of a lift) Suppose f : N1 → N2 is a surjective A-module
homomorphism. Then for every g ∈ HomA(P,N2), there exists ĝ ∈
HomA(P,N1) such that g = f ◦ ĝ.

(d) Every SES of the form 0→M1 →M2 → P → 0 splits.

(e) P is a direct summand of a free A-module.

8. Suppose D is an integral domain. Then a finitely generated ideal a of D
is a projective D-module if and only if there exists a finitely generated
D-submodule b of a field of fractions Q(D) of D such that ab = D.

9. Functor of bilinear maps. Suppose M1 and M2 are two A-modules. Then
there exists a natural isomorphism between the composite of representable
functors hM1

and hM2
, and the functor bM1,M2

such that

bM1,M2(N) := {f : M1 ×M2 → N | f is A-bilinear}.

10. Tensor product. hM1
◦hM2

is a representable functor; that means there is
a natural isomorphism

hM1 ◦ hM2 ≃ hM1⊗AM2 .

11. Universal property of tensor product. hM1⊗AM2
≃ bM1,M2

is equivalent
to saying that for every A-bilinear f : M1 ×M2 → N , there is a unique
A-module homomorphism f̂ : M1 ⊗A M2 → N such that

f̂(x1 ⊗ x2) = f(x1, x2).

12. Tensor-Hom adjunction. hM1 ◦ hM2 ≃ hM1⊗AM2 is equivalent to saying
that there is a natural isomorphism

HomA(M1,HomA(M2, N)) ≃ HomA(M1 ⊗A M2, N).
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13. Tensor product of two projective modules is projective.

14. Distribution of tensor. There is a natural isomorphism

(
⊕
i∈I

Mi)⊗A N ≃
⊕
i∈I

(Mi ⊗A N).

15. A key isomorphism. There is a natural isomorphism

(A/a)⊗A M ≃M/aM,

where a is an ideal of A.

3.7 Tensor functor and flat modules

1. Existence of an A-module homomorphism f ⊗ g : M1 ⊗A N1 → M2 ⊗N2

such that (f ⊗ g)(x ⊗ y) = f(x) ⊗ g(y), where f ∈ HomA(M1,M2) and
g ∈ HomA(N1, N2).

2. For every A-module M , TM (N) := M ⊗A N and TM (f) := idM ⊗ f
is a functor from A-mod to itself. When M is a (B,A)-bimodule (it is
customary to write BMA), then TM is also a functor from A-mod to B-
mod.

3. TM is a left adjoint of hM ; that means that for every A-modules N and
K, there is a natural isomorphism

HomA(TM (N),K) ≃ HomA(N,hM (K)).

4. Suppose F ,G are two functors from A-mod to itself. Suppose F is the left
adjoint of G. Then F is right-exact and G is left-exact.

5. TM is always right-exact.

6. Flat modules. The following statements are equivalent.

(a) TM is an exact functor.

(b) If f : N1 → N2 is injective, then idM ⊗ f : M ⊗A N1 →M ⊗A N2 is
injective.

7. Tensor associativity. TM1
◦ TM2

≃ TM1⊗AM2
, and similar version for bi-

modules; this is equivalent to saying that there is a natural isomorphism

M1 ⊗A (M2 ⊗A N) ≃ (M1 ⊗A M2)⊗A N.

8. Tensor product of two flat modules is flat.

9. T⊕
i∈I Mi

≃
⊕

i∈I TMi
; and so

⊕
i∈I Mi is flat if and only if for all i ∈ I,

Mi is flat.
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10. Projective implies flat.

11. Locally flat if and only if flat; that means Mp is a flat Ap-module for every
p ∈ Spec(A) if and only if M is a flat A-module.

12. Suppose D is an integral domain. Then flat implies torsion free.

13. Suppose 0 → M1 → M2 → M3 → 0 is a SES and M3 is flat. Then M1 is
flat if and only if M2 is flat.

14. (Equation criterion) Suppose M is a flat A-module. Then if for some
m ∈ Mn,1(M) and a ∈ M1,n(A), we have

am = 0,

then there are B ∈ Mn,m(A) and y ∈ Mm,1(M) such that

aB = 0 and By = m.

15. The localization functor S−1 : A-mod→ S−1A-mod is exact.

16. (Commuting localization and representable functors (and tensor))

S−1 ◦ hM ≃ hS−1M ◦ S−1 and S−1 ◦ TM ≃ TS−1M ◦ S−1.

17. Suppose M is a finitely presented A-module. Then M is flat if and only
if it is locally free.

3.8 Tensor product and algebras

1. What an A-algebra is. Suppose B is a unital commutative ring. Then the
following statements are equivalent.

(a) There is a ring homomorphism f : A→ B such that f(1A) = 1B .

(b) B has an A-module structure which is compatible with its ring struc-
ture.

2. Suppose B is an A-algebra; then TB is a functor from A-mod to B-mod,
and it is called a base change.

3. If B1 and B2 are two A-algebras, then the following product makes B1⊗A

B2 an A-algebra:

(b1 ⊗ b2)(b
′
1 ⊗ b′2) = (b1b

′
1)⊗ (b2b

′
2).

4. A key isomorphism. Suppose ϕ : A → B is a ring homomorphism which
makes B an A-algebra and a is an ideal of A[x]. Then

B ⊗A (A[x]/a) ≃ B[x]/Bϕ(a)
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as B-algebras. In particular,

B ⊗A (A[x]/⟨g1, . . . , gn⟩) ≃ B[x]/⟨ϕ(g1), . . . , ϕ(gn)⟩,

as B-algebras.

5. Chinese Remainder Theorem. Suppose a1, . . . , an are pairwise coprime
ideals; that means ai + aj = A if i ̸= j. Then

A

/( n⋂
i=1

ai

)
→

n⊕
i=1

A/ai, x+

( n⋂
i=1

ai

)
7→ (x+ a1, . . . , x+ an)

is an A-algebra isomorphism.

6. If E/F is a field extension, f ∈ F [x] factors into degree 1 polynomials
over E, and it does not have multiple zeros, then

E ⊗F (F [x]/⟨f⟩) ≃ E ⊕ · · · ⊕ E︸ ︷︷ ︸
deg f-times

,

as E-algebras.

4 Field theory

4.1 Basic properties of algebraic elements

1. Algebraic and transcendental elements in a field extension.

2. Suppose E/F is a field extension and α ∈ E is algebraic over F . Then
the following statements hold.

(a) Minimal polynomial. There is a unique monic polynomial mα,F ∈
F [x] such that for f ∈ F [x], f(α) = 0 precisely when mα,F |f .

(b) mα,F is irreducible in F [x]. Conversely, if p ∈ F [x] is irreducible,
monic, and p(α) = 0, then p = mα,F .

(c) The F -algebra generated by α is a field and F [α] ≃ F [x]/⟨mα,F ⟩.
(d) (1, α, . . . , αd−1) is an F -basis of F [α], where d = degmα,F ; in par-

ticular
[F [α] : F ] = degmα,F .

4.2 Finding zeros in a field extension

1. Existence – one root. Suppose f ∈ F [x] is irreducible. Then there exists
a pair (E,α) such that E = F [α] is a field and f(α) = 0.
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2. Isomorphism extension (uniqueness) – one root. Suppose θ : F → F ′

is a field isomorphism, f ∈ F [x] is irreducible, (E,α), and (E′, α′) are
two pairs such that E = F [α], E′ = F ′[α′], f(α) = 0, and fθ(α′) = 0.

Then there is an isomorphism θ̂ : E → E′ which is an extension of θ and
θ̂(α) = α′.

E E′

F F ′

θ̂

θ

3. Existence – splitting field. Suppose f ∈ F [x]. Then there exist a field
extension E/F , α1, . . . , αn ∈ E such that

f(x) = c(x− α1) · · · (x− αn)

and
E = F [α1, . . . , αn].

4. Isomorphism extension (generalized uniqueness) – splitting field. Suppose
θ : F → F ′ is a field isomorphism, f ∈ F [x], E is a splitting field of f over
F , and E′ is a splitting field of fθ over F ′. Then there is an isomorphism
θ̂ : E → E′ which is an extension of θ.

E E′

F F ′

θ̂

θ

Such an isomorphism θ̂ is called a θ-isomorphism, and the set of all θ-
isomorphisms is denoted by Isomθ(E,E′). So Isomθ(E,E′) ̸= ∅.

4.3 Basics of finite fields

1. If F is a finite field, then char(F ) = p > 0 and F is a vector space over
Z/pZ.

2. Every finite field is of order pn for some prime p and positive number n.

3. If F is a finite field, then F× is cyclic.

4. For a prime power q = pn, there is a unique up to an isomorphism field
Fq of order q which is a splitting field of xq − x over Fp.

5. xq − x =
∏

α∈Fq
(x− α).
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4.4 Separable polynomials

Separable polynomials. We say a polynomial f ∈ F [x] is separable if f does
not have multiple zeros in its splitting field over F .

1. f is separable if and only if gcd(f, f ′) = 1.

2. If f ∈ F [x] is irreducible and f ′ ̸= 0, then f is separable. In particular, in
the characteristic zero case, all irreducible polynomials are separable.

3. If f ∈ F [x] and char(F ) = p > 0, then f(x) = fsep(x
pk

) for some non-
negative integer k and separable polynomial fsep ∈ F [x].

4.5 Finite Galois extensions

1. Tower formula. Suppose K is an intermediate subfield of E/F . Then

[E : F ] = [E : K][K : F ].

In particular, E/F is a finite extension if and only if both E/K and K/F
are finite extensions.

2. A key theorem. Suppose θ : F → F ′ is a field isomorphism, f ∈ F [x], E is
a splitting field of f over F , and E′ is a splitting field of fθ over F ′. Then

|Isomθ(E,E′)| ≤ [E : F ],

and equality holds if all the irreducible factors of f are separable.

3. Suppose E/F and E/F ′ are field extensions and θ : F → F ′ is an isomor-
phism. Then

|Isomθ(E,E)| ≤ [E : F ].

In particular, |AutF (E)| ≤ [E : F ] for every finite field extensionE/F .

4. Normal extension. An algebraic extension E/F is called a normal exten-
sion if for every α ∈ E, mα,F factors into degree 1 polynomials in E[x].

5. Separable extension. An algebraic extension E/F is called a separable
extension if for every α ∈ E, mα,F is a separable polynomial.

6. Galois extension. An algebraic extension E/F is called a Galois exten-
sion if it is both normal and separable. For Galois extensions, we write
Gal(E/F ) instead of AutF (E).

7. A key theorem. Suppose E/F is a finite extension. Then the following
statements are equivalent.

(a) There exists a polynomial f ∈ F [x] with separable irreducible factors
such that E is a splitting field of f over F .

(b) |AutF (E)| = [E : F ].
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(c) E/F is a Galois extension.

8. For every field extension E/F and f ∈ F [x], AutF (E) acts on the set
Zf (E) of zeros of f in E. If E/F is a finite Galois extension and f ∈ F [x]
is irreducible, then the action of Gal(E/F ) on Zf (E) is transitive and the
stabilizer of α ∈ Zf (E) is Gal(E/F [α]).

9. If E is a splitting field of f over F , then AutF (E) can be embedded in the
symmetric group of Zf (E).

10. Fundamental theorem of Galois theory – finite degree case. Suppose E/F
is a finite Galois extension. Let Int(E/F ) be the set of intermediate sub-
fields and Sub(Gal(E/F )) be the set of all subgroups of Gal(E/F ). Let

Φ : Int(E/F )→ Sub(Gal(E/F )), Φ(K) := Gal(E/K),

and
Ψ : Sub(Gal(E/F ))→ Int(E/F ), Ψ(H) := Fix(H).

Then the following statements hold.

(a) Φ and Ψ are well-defined, and they are inverse of each other; that
means

i. E/Fix(H) is Galois and Gal(E/Fix(H)) = H,

ii. G/K is Galois and Fix(Gal(E/K)) = K.

(b) Φ and Ψ are order-reversing.

(c) Φ and Ψ induce bijections between intermediate normal extensions
and normal subgroups; that means

i. E/Fix(N) is a normal extension if and only if N ⊴Gal(E/F ).

ii. Gal(E/K)⊴Gal(E/F ) if and only if K/F is a normal extension.

iii. If K/F is a normal extension, then the following is a SES

1→ Gal(E/K)→ Gal(E/F )
rE,K−−−→ Gal(K/F )→ 1,

where rE,K is induced by restriction.

11. Normal extension criterion – weak version. Suppose E/F is a finite Galois
extension and K is an intermediate subfield. Then the following state-
ments are equivalent.

(a) K/F is normal.

(b) For every θ ∈ Gal(E/F ), θ(K) = K.

(c) K is a splitting field of a polynomial f ∈ F [x] over F .
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4.6 Important examples of Galois extensions

1. Finite fields.

(a) Fpn/Fp is a Galois extension.

(b) Gal(Fpn/Fp) = ⟨σp⟩, where σp : Fpn → Fpn , σp(a) := ap is the Frobe-
nius endomorphism. In particular, Gal(Fpn/Fp) ≃ Z/nZ.

(c) The following maps are bijections:

Int(Fpn/Fp) Sub(⟨σp⟩) D(n)

Fpm = Fix(σm
p ) Gal(Fpn/Fpm) = ⟨σm

p ⟩ |⟨σm
p ⟩| = n/m

where D(n) is the set of positive divisors of n.

2. Cyclic Kummer extensions. Suppose F is a field and ζ ∈ F has multiplica-
tive order n. Suppose a ∈ F×. Let E be a splitting field of xn− a over F .
Suppose n

√
a ∈ E is a zero of xn − a. Then the following statements hold.

(a) E = F [ n
√
a] and E/F is Galois.

(b) Gal(F [ n
√
a]/F ) → ⟨ζ⟩, θ 7→ θ( n

√
a)

n
√
a

is a well-defined injective group

homomorphism. In particular, Gal(F [ n
√
a]/F ) is cyclic, and its order

is a divisor of n.

(c) Gal(F [ n
√
a]/F ) ≃ ⟨a(F×)n⟩.

3. General cyclotomic extensions. Suppose n ≥ 2 is an integer and F is a
field such that the characteristic of F is either 0 or a prime number which
does not divide n. Let E be a splitting field of xn − 1 over F .

(a) The set of solutions of xn − 1 = 0 in E is a cyclic group of order n;
say ζ ∈ E× is of multiplicative order n. Then E = F [ζ].

(b) F [ζ]/F is a Galois extension and for every θ ∈ Gal(F [ζ]/F ), θ(ζ) is
a zero of xn − 1 and so it is in ⟨ζ⟩.

(c) Restricting elements of the Galois group to the cyclic group ⟨ζ⟩ gives
us an injective group homomorphism Gal(F [ζ]/F )→ Aut(⟨ζ⟩). This
implies that Gal(F [ζ]/F ) can be embedded into (Z/nZ)×; in partic-
ular, Gal(F [ζ]/F ) is abelian.

4. Cyclotomic extensions. Let ζn := e2πi/n. Then Q[ζn] is a splitting field
of xn − 1 over Q. Let Φn(x) :=

∏
i∈(Z/nZ)×(x − ζin); it is called the n-th

cyclotomic polynomial.

(a)
∏

d|n Φd(x) = xn − 1.

(b) Φn(x) ∈ Z[x].
(c) Φn(x) is irreducible in Q[x], and so mζn,Q(x) = Φn(x).
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(d) [Q[ζn] : Q] = |(Z/nZ)×|, and so Gal(Q[ζn]/Q) ≃ (Z/nZ)×.

5. Using permutations. Suppose f ∈ Q[x] is an irreducible polynomial of
degree p, where p is a prime more than 3. Suppose f has exactly two
non-real roots. Let E ⊆ C be a splitting field of f over Q. Then

Gal(E/Q) ≃ Sp.

4.7 Algebraic closure of a field

1. Suppose E/F is a field extension. Then

{α ∈ E | α is algebraic over F}

is a subfield of E. It is called the algebraic closure of F in E.

2. Algebraically closed field. For a field F the following properties are equiv-
alent.

(a) Every non-constant polynomial in F [x] has a zero in F .

(b) Every non-constant polynomial in F [x] factors as a product of degree
1 polynomials.

(c) Every irreducible polynomial in F [x] is of degree 1.

(d) If E/F is an algebraic extension, then E = F .

3. Suppose E/F is a field extension and E is algebraically closed. Then the
algebraic closure of F in E is an algebraically closed field.

4. Algebraic closure. For every field F , there exists an algebraically closed
field F such that F/F is an algebraic extension.

5. Isomorphism extension. Suppose θ : F → F ′ is a field isomorphism.

Suppose F is an algebraic closure of F , and F
′
is an algebraic closure of

F ′. Then there exists an isomorphism θ̂ : F → F
′
which is an extension

of θ.

F F
′

F F ′

θ̂

θ

4.8 Simple extensions

A field extension E/F is called a simple extension if there exists α ∈ E such
that E = F [α].

1. Suppose E/F is a finite field extension. Then E/F is a simple extension if
and only if there are only finitely many intermediate subfields; that means
|Int(E/F )| <∞.
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2. Galois closure and primitive element theorem. If E/F is a finite separable
extension, then there exists a finite Galois extension K/F such that E ⊆
K. This implies that

|Int(E/F )| ≤ |Int(K/F )| = |Sub(Gal(K/F ))| <∞.

Hence every finite separable extension is a simple extension.

4.9 Further results on separable extensions

1. Perfect fields. For a field F the following statements are equivalent.

(a) Every algebraic extension E/F is separable.

(b) Either the characteristic of F is zero or char(F ) = p > 0 and F p = F .

2. Purely inseparable extensions. Suppose E/F is a finite extension and
char(F ) = p > 0. Then the following statements are equivalent.

(a) For every α ∈ E, mα,F (x) = xpn − a for some n ∈ Z+ and a ∈ F .

(b) E×/F× is a p-group.

3. If E/F is a finite purely inseparable extension and char(F ) = p > 0, then
[E : F ] = pn for some n ∈ Z+.

4. Separable closure. Suppose E/F is a finite extension. Then

Esep := {α ∈ E | mα,F is separable}

is a field and E/Esep is purely inseparable.

5. Tower of separable extensions. Suppose E/F is an algebraic extension and
K is an intermediate field. Then E/F is separable if and only if E/K and
K/F are separable.

4.10 Solvability by radicals

1. Dirichlet’s independence of characters. Suppose E is a field and G is a
group. Suppose χ1, . . . , χn : G → E× are non-trivial group homomor-
phisms. Then χi’s are E-linearly independent.

2. Hilbert’s theorem 90. Suppose Gal(E/F ) = ⟨σ⟩. Then NE/F (a) = 1 if
and only if there exists b ∈ E such that a = σ(b)/b.

3. Suppose char(F ) = 0 and f ∈ F [x]. Let E be a splitting field of f over F .
Then f is solvable by radicals if and only if Gal(E/F ) is a solvable group.
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