Name: ______
PID: _____

Question	Points	Score
1	5	
2	8	
3	8	
4	5	
5	5	
6	6	
7	8	
Total:	45	

- 1. Write your name on the front page of your exam.
- 2. Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem to prove a later part, even if you have not completed the earlier part.

1. (5 points) Suppose $p < q < \ell$ are distinct primes. Prove that there is no simple group of order $pq\ell.$

2. Suppose N is a normal subgroup of G and P is a Sylow p-subgroup of N. (a) (2 points) Prove that there exists $Q \in \text{Syl}_p(G)$ such that $P = Q \cap N$.

(b) (2 points) Prove that $N_G(Q) \subseteq N_G(P)$.

(c) (4 points) Prove that $g \in \langle N_G(P) \cup gN_G(P)g^{-1} \rangle$ for every $g \in G$.

3. Suppose F is a field. Let $m \leq n$ be two positive integers and

$$M_{m,n} := F[x]/\langle x^n \rangle \otimes_F F[x]/\langle x^m \rangle.$$

Notice that $M_{m,n}$ is an F[x]-module where

$$x \cdot (\overline{a(x)} \otimes \overline{b(x)}) = \overline{xa(x)} \otimes \overline{xb(x)}$$

and $\overline{\bullet}$ denotes the corresponding coset. (Let's emphasize that the tensor is over F, and not over F[x].)

(a) (2 points) Prove that $\operatorname{Ann}(M_{m,n}) = \langle x^m \rangle$.

(b) (3 points) Let $d(M_{m,n})$ be the minimum number of generators of $M_{m,n}$ as an F[x]-module. Prove that $d(M_{m,n}) = \dim_F(M_{m,n}/xM_{m,n}) = m+n-1$.

(This question has three parts.)

(c) (3 points) Find the multiplicity of x^m among the invariant factors of $M_{m,n}$.

4. (5 points) Let A be a unital commutative ring. Suppose M and N are two finitely generated projective A-modules. Prove that $\text{Hom}_A(M, N)$ is a projective A-module.

5. (5 points) Suppose A is a unital commutative ring and $\langle a_1, \ldots, a_n \rangle = A$. Suppose M is an A-module and $S_{a_i} := \{1, a_i, a_i^2, \ldots\}$. Suppose that $S_{a_i}^{-1}M = 0$ for all i. Prove that M = 0.

(**Hint.** For $x \in M$, consider the annihilator $\operatorname{ann}(x)$ of x.)

6. (6 points) Suppose p is an odd prime. Let E be a splitting field of $x^p - 2x - 1$ over \mathbb{F}_p . Prove that

 $\operatorname{Gal}(E/\mathbb{F}_p) \simeq \langle 2 + p\mathbb{Z} \rangle \subseteq (\mathbb{Z}/p\mathbb{Z})^{\times}.$

7. Let p be prime and F_0 a field of characteristic zero. Suppose F_0 satisfies the following property.

If K/F_0 is a finite field extension and $K \neq F_0$, then $p \mid [K : F_0]$.

(a) (4 points) Prove that for every finite Galois extension K/F₀, the Galois group Gal(K/F₀) is a p-group.
(Hint. Consider a Sylow p-subgroup of Gal(K/F₀).)

(b) (4 points) Suppose F_1/F_0 is a field extension, $[F_1 : F_0] = p$, and F_1 has no field extension of degree p. Prove that F_1 is algebraically closed.

(Empty page)

Page 10

(Empty page)

Good Luck!

(Empty page)