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Abstract 

For my project I simulated a quantum random walk in one plus one dimensions 

with a ratcheting potential applied.  The particle begins at the origin and after running the 

simulation for one hundred time steps the most probable final position was calculated and 

then graphed according to its initial condition.  These results were analyzed to determine 

the dependence on initial condition of final position. 

Introduction 

The quantum random walk has been studied by mathematicians, primarily by David 

Meyer.  They have been found to be discrete models for such physical processes as the 

Dirac equation. [1]   In this project we hoped to learn the effect of the initial condition on 



a given set of potentials.  This simulation was first conducted by David Meyer with 

potentials that created a Parrondo game [3].  However in his simulation only one initial 

condition was used.  Here I am interested in the affect of the initial condition on the 

simulation, primarily on the expected position. 

Background: Quantum random walk versus classical random walk 

Classical Random Walk 

In a classical random walk in one plus one dimensions (one position dimension 

and one time dimension) we deal with a single particle with a velocity in only one 

dimension.  The particle first goes through an advection stage where it moves left or right 

according to its velocity and then goes through a scattering stage in which the velocity 

either stays the same or switches according to some respective probabilities.  This process 

is then repeated for a given number of time steps.  It should be noted that here both time 

and position are quantized and velocity = 1± .  A particle can only move an integer 

number of units left or right and time goes by in units or ‘ticks’.   



 

Quantum Random Walk 

 Before we begin discussing a quantum random walk we must introduce some key 

ideas.  In quantum mechanics, particles are represented by state vectors, ),( txψ .  In our 

simulation the state vectors take the form ( )∑
∞

−∞=
←+→=

x
xtxbxtxatx ,),(,),(),(ψ .  Here 

),( txa and ),( txb are complex numbers and →,x , ←,x  are an orthonormal basis for a 

Hilbert space where x represents the position and the arrows represent the direction of the 

velocity.  The state vectors are normalized such that ( ) 1),(),( 22 =+∑
∞

−∞=x
txbtxa .  The 

probability for our particle to be at a position x at time t is given by 22 ),(),( txbtxa + .  

Therefore the expected position of our particle is given by ( )∑
∞

−∞=

+∗
x

txbtxax 22 ),(),( . The 

state vectors contain all the information of our system. 
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Also unitary matrices are used in our discussion and therefore must be explained.  

A unitary matrix is one whose hermitian conjugate is its inverse.  The general 2x2 unitary 

matrix has the form ( ) 








− −− θθ
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αβγγ
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cossin
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ii
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ee
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.  In quantum mechanics each time step 

is done by multiplying one or more unitary operators to the state vector.  We now have 

everything we need to begin our discussion of quantum random walks. 

In our simulation, the particle starts localized at the origin and therefore the state 

vector has the form ←+→ ,0)0,0(,0)0,0( ba .  Since 1)0,0()0,0( 22 =+ ba we see our 

particle begins with a probability of one to be at the origin at this time.  Now each time 

step consists of three parts which can be expressed as unitary matrices.  The first of these 

is the advection stage.  The advection stage is defined by the following 

action: )1,1(),( −−= txatxa , )1,1(),( −+= txbtxb , which is unitary and preserves the 

normalization since it simply reassigns the coefficient values without changing them. 

Next we have the scattering stage.  The scattering stage is represented by a 2x2 

unitary matrix where α =0 and
2

, πγβ = .  The reason for this choice is that in this form 

our unitary matrix is invariant under parity, something that a scattering stage is required 

to be[2].  In this form the matrix represents a scattering such that the particle has  θ2cos  

probability to keep the same velocity or a θ2sin probability for it’s velocity to flip, that 

is ←+→⇒←+→ ,),(,),(,),(,),( xtxaxtxbxtxbxtxa . One important aspect of 

quantum mechanics that can be seen from the advection and scattering stages is that the 

overall phase of the state vector does not matter; only the relative phase.  So multiplying 

all ),( txa and ),( txb  by some φie  will not affect any computed probability.  Let us look 



at a very simple simulation.  We will begin with our particle localized at the origin and 

our scattering matrix will have 4
πθ = . 

 

As the above simple simulation shows the relative phases of the state-vector affect 

the probabilities.  If they were eliminated we would lose conservation of probability.  For 

example at t=1 after the scattering stage if we eliminate the phases then our probability to 

be at x=-1 is ¼ and the probability to be at x=1 is ¼.  But it is also clear that if our entire 

state vector were multiplied by some phase then that would not affect any probability.  To 
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give an example of this we will compute the probabilities of our particle to be -1 and 1 at 

the second time step and then multiply by a phase and recalculate them. 
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It is clear from the example that multiplying our entire vector by some overall phase does 

not affect the probability to be at a given location.  This will help us to simplify our 

simulation as we will see later on. 

Now along with the advection and scattering stages at each time step we can also 

introduce a potential to our walk.  A potential in a quantum random walk is a position-

dependent phase multiplication.  We can see this by solving the Schrödinger equation 

analytically: 
( )
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The last step comes from the Taylor series expansion of xe−  neglecting 

the )( 2to ∆ term.  We will set 1=h and we now have that a potential V(x) is applied by 

)(xiVe− [2].  This potential will be applied after the scattering stage and is the final part of 



each time step.  It should be noted that the H term is our advection and scattering stages.  

Physically a potential represents a force V∇− applied to a particle. )(xVF ′−= . 

Set-up 

To begin, our scattering matrix is fixed for the entire simulation.  Our potential is a 

ratcheting potential (more detail to come).  Our simulation is started from many different 

initial conditions, all of which begin localized at the origin.  The initial conditions are 

different choices of a(0,0) and b(0,0).  These can be represented by 

letting 2sin)0,0(2cos)0,0( θθ γφ ii ebandea == .  The overall phase of our a and b do 

not matter as we demonstrated above, only the relative phase so we can let them take the 

form 2sin)0,0(2cos)0,0( θθ φiebanda == .  They can be represented by positions on a 

unit sphere where θ ranges from 0 to π  and φ  ranges from 0 to 2π .  This unit sphere is 

called a Bloch sphere.  After the simulation is run the most probable final position is 

calculated and color coded at its appropriate place on the Bloch sphere. 

 

Potentials 

There are two different potentials used in this simulation.  The first potential, which we 

will call xxVa 5000
2)( π=  is a simple linear potential with a positive slope.  The second is 

a saw tooth potential which we will call
2

3mod
33

)()( xxVxV ab
ππ −+= .   These 

potentials are applied in the repeating order of baaaa VVVVV ,,,,  on consecutive time 

steps.[1,2] 



The reason for these potentials is that when applied to the initial condition where 

4/Pi=θ and 0=φ these create a quantum Parrondo game [3, 4]. 

 

 

 

Parrondo Games 

A Parrondo game is one in which two losing games are combined to make a winning 

game.  In our case if only potential a is applied then the expected position is slightly 

negative, same for potential b.  But when the above pattern is applied the expected 

position is positive.  We will see later that our simulation is a Parrondo game for some 

positions but not all.  Below we have three graphs that demonstrate this aspect of our 

simulation.  The graphs represent the expected position as a function of time.  As the 

graphs show the expected position of the pattern baaaa VVVVV ,,,,  is positive, while the 

expected position from either potential alone is negative. 

A graph of the potential )(xVa
 A graph of the potential )(xVb
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The Simulation 

Our simulation was run using the above potentials for a total of one hundred time steps. 

The θ  and φ  were done in steps of π /80.  This gave us a resolution of the Bloch sphere 

with 3200 different positions. Below a graph of the results can be seen.  The image is 

color coded such that blue represents the maximum expected position and red represents 

the minimum expected position.  On top of the color coded image is the same image with 

the z-axis representing the expected position.  We can see from the image that the 

expected position gradually changes from positive to negative as a function of θ  and φ .  

The maximum and minimum can be seen in the table below.  

Above we see why our simulation is a Parrondo game for some initial 
conditions.  The Individual potentials both drive the particles expected 
positions negative while the alternating pattern of them drives the 
expected position positive 

T 

T 



 

 

 

Maximum 
Expected 
Position 

φ  at max θ  at max Minimum 
Expected 
Position 

φ  at min θ  at min 

29.4677 37 π  /80 59 π /80 -28.3845 117 π /80 21 π /80 

 

Before we begin to analyze our results let’s compare them to the simulation where only 

one of our two potentials is applied.  If we only apply xxVa 5000
2)( π= , we get the results 

seen at the right.  If we only apply 
2

3mod
33

)()( xxVxV ab
ππ −+= then we get the results 

on the left.   

Phi 

Theta 

Above we have a color coded graph of our initial 
conditions versus expected final position 

Results from simulation 



 

 

The first thing one will notice is the similarity to our result when the alternating pattern of 

potentials is applied.  The other interesting observation is that our simulation is not a 

Parrondo game for all initial conditions.  In fact for most initial conditions all three 

simulations had similar expected positions.  These graphs are only shown for comparison 

and for the rest of the paper we will only be working with our original simulation. 

 

Analysis 

A few interesting facts can be seen from the maximum and minimum expected positions.  

First is that our expected position can be both positive and negative.  It also appears that 

On the left we have the results of a simulation using only the potential )(xVa and on the right we have the results from only 

using )(xVb .  The similarity to the simulation using the alternating potentials is quite obvious. 
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we have an equal number of initial conditions that give us positive expected positions as 

negative expected positions.  It is also seen that that the initial conditions that give us the 

maximum and minimum expected positions are diametrically opposite.  We see that the 

φ  where the maximum and minimum expected position occur are out of phase by π  and 

the θ s add up toπ . 

With this sort of symmetry we would expect our maximum and minimum expected 

position to have equal magnitude but we see that this is not the case.  Now this could be 

attributed to round-off error since our simulation doesn’t keep exact answers because of 

the time and size costs but this is very unlikely because of the accuracy that is still kept 

by Mathematica.   It could also be attributed to the fact that the above positions aren’t the 

exact locations of the absolute maximum and minimum expected positions because only 

a grid of discrete θ  and φ  values were used.  It can be seen that the θ s are very close to 

π /4 and 3 π /4 for example.  Therefore a more finely meshed set of data was taken around 

these locations to see if it would lead to new points and if it would give maximum and 

minimum expected positions of equal magnitude.  We will discuss these results in a 

following section. 

A functional fit to the results would be very beneficial to have in order to infer some 

relation to the potentials and number of time steps so some significant effort was devoted 

to finding a fitting function. 

 

A Functional Fit 

Visual observation of the shape of the expected position versus initial condition graph 

suggest a basic function consisting of sines and cosines of θ  and φ .  Therefore several 



attempts were made to guess the general functional form of the fit.  Two separate 

approaches were used to find the fit of our results.  The first was to use the FindFit 

function in Mathematica.  With this function a general equation is entered as a potential 

guess and the program finds the best coefficients to fit our guess to the actual results.  

Our second method was very similar but instead a general equation is entered into the 

formula for a chi-square test ( ( )∑∑ −=
θ φ φθ

φθφθχ
),(

),(),( 2
2

E
fE , ),( φθE is our test equation 

and ),( φθf is our results) and then the coefficients that minimized the chi-square value 

were found using a minimization function built into Mathematica. The FindFit proved to 

be quicker and produce better results so it was used primarily.  However the chi-square 

values of the fit determined by FindFit were computed along with the graph as a test of 

the goodness of the fit.  A table containing some of these fits can be seen below.  It is 

clear from the table that none of these fits does a good job of fitting the results.  Many of 

the functions only capture one aspect or another of the actual results.  This attempt was 

abandoned for a more systematic approach. 

 

 

 

 

 

 

 

 



Test Function Coefficients Chi-Square Value Graph 

efdgcba ++∗++∗∗ )*cos()sin( φθ  a=0.9932 
b=1.0217 
c=1.0023 
d=1.0021 
e=0.9954 
f=1.0142 
g=0.9925 

-

3.44823*10^13

 

hgfedcba +∗+∗++∗+∗∗ φθφθ )*cos()sin(  a=9.2614 
b=0.9058 
c=3.5775 
d=1.9777 
e=-.51884 
f=0.95003 
g=0.37891 
h=12.9113 

102958 

fedcbg ++∗+∗∗ )*cos()sin( φθ  a→1 
b→1 
c→3.26874 
d→1 
e→-1.5708 
f→0.541595 
g→-20.719 

-69533.7 

 

 

 

 

The result of our simulation for comparison 



Since it appears that the function would consist primarily of sines and cosines, the 

discrete Fourier coefficients were computed.  It would appear the Fourier series would be 

the best way to analytically determine such a function but this approach also did not work.  

The problem with this approach is that the Fourier series is for solutions on a torus.  If 

our θ  and φ  were to both run from 0 to 2 π  then this approach would have been correct 

and hopefully provided some meaningful results but as the case is it is not correct and did 

not produce meaningful results. 

In the spirit of the Fourier series it was decided to find the spherical harmonic series that 

would approximate our result.  This seemed like a good choice since spherical harmonics 

form an orthonormal basis on a sphere. The following formula was used to determine the 

coefficients of the series: AYfc l
mml ∆=∑∑ *

, ),(),( φθφθ
φ θ

.  In the above formula 

),( φθf is the expected position from our simulation for a given θ  and φ , l
mY is the 

spherical harmonic and A∆  is the segment of area surrounding the given point.  After the 

coefficients were calculated the following series was 

constructed: ),(),( , φθφθ ∑∑=
l m

l
mml Ycg .  This did produce a fit to our simulation results 

but it was not exact.  For this fit we allowed the l and m to range from -10 to 10.  Below 

we have the values of the l=0 row as an example.  The chi-square value of this fit was 

1743.34.  This was much better than our other attempts but still quite large.   We are left 

with no good functional formula for the results of our simulation.  Even without a good 

formula to work with it is still possible to do some further analysis of the results. 



 

Maximum 
Expected 
Position 

φ  at max θ  at max Minimum 
Expected 
Position 

φ  at min θ  at min 

58.965 37 π  /80 59 π /80 -56.7975 117 π /80 21 π /80 

 

For the l=0 state here are the coefficients from m=-10 to 10:  

{-0.0411,-0.1594,-0.0362,-0.3198,-0.0308,-0.853,-0.0244,-5.0903,-20.6827,19.1735,19.1735,-20.6827,-

5.0903,-0.0244,-0.853,-0.0308,-0.3198,-0.0362,-0.1594,-0.0411,-0.0924} 
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The graph of the spherical harmonic fit to our 
function.  This fit captures some key aspects of 
the results but it is not as close as we would like 
to the original on the right.  



Absolute Maximum and Minimum Expected Position 

In the graph below we see an enlarged and more refined look at the location of the 

maximum and minimum expected positions.  It turns out that our original guess of the θ s 

being equal to π /4 and 3 π /4 were correct.  The φ s did turn out to be near 
2

3π  and 
2
π but 

different.  The initial conditions that give the maximum and minimum expected position 

are still diametrically opposite.  In the end the maximum and minimum expected 

positions did not have equal magnitude but very close to it.  It is most likely that it is a 

real difference.  At first glance this result seemed promising since the π /4 result would 

seem to imply that the initial condition with equal of a and b is most affected by the 

potentials.  However this is not the case.  Because of how our initial conditions are 

described π /4 does not represent that at all.  π /2 would represent the initial condition 

with equal magnitudes since 2sin)0,0(2cos)0,0( θθ γφ ii ebandea == .  So no obvious 

reason for this position to be the maximum expected position seems to exist.  Similarly a 

φ  = π /2 was tried since it is very close the where the maximum and minimum φ  are 

located but unfortunately they not the real max or min.  So we are not able to fully 

explain the initial condition resulting in the max or min position.    



 

 

 

Phi 

Theta 

Above we have a color coded graph of our initial 
conditions versus expected final position  

In this image we see an enlarged and more refined look at the location of the maximum and minimum expected position.  The colors in the enlarged 
graphs are reset to help show the features of the areas.  The graph runs from, 

100
35

100
15 πθπ ≤≤ ,

100
160

100
140 πφπ ≤≤ for the top right graph and 

100
85

100
65 πθπ ≤≤ ,

100
60

100
40 πφπ ≤≤ for the bottom right graph, both in increments of

100
π .  The inverted, yet nearly identical look to these enlarged 

graphs shows the symmetry that is prominent in our simulation. 
 
 

Figure 7 



 

 

Maximum 
Expected 
Position 

Max φ  Max θ  Minimum 
Expected 
Position 

Min φ  Min θ  

29.4763 23 π /50 3 π / 4 -28.3931 73 π /50 π /4 
 

Conclusion 

 This simulation provided some interesting results that turned out to be quite a challenge 

to analyze.  This simulation really shows the unique and complicated behavior that 

quantum random walks have. 

This project has given endless angles that can be explored and many new variations of 

the simulation that could be tried.  Simple things like changing the pattern of the 

potentials would undoubtedly give completely different results as would simply 

increasing the number of time steps.  More than one particle could have been simulated 

and different scattering matrices could have been used.  More dimensions could have 

been added or a more refined Bloch sphere used for the initial conditions.  Endless 

possibilities but unfortunately factors such as computing power, computing time and 

human time are the biggest restraints. 

Given more time I would have like to further explore the spherical harmonic series to try 

to find one that gives a better fit to our results.  Also I could have tried to derive the 

functional form of the results perturbatively if time allowed.  I found myself continually 

finding new things to try even as I wrote this paper.  I am disappointed that I was not able 

to find a good functional form of the results since that would have allowed for a whole 

new angle of analysis. 

Results from refined simulation 



I also can not here describe the code used for this simulation, modified from the original 

written by Professor David Meyer, or the many modules and smaller programs that I 

wrote and used in the long analysis portion of this project.  I feel that as much of the 

learning process took place not only in learning the math and physics behind the 

simulation but in creating the code and learning Mathematica to the degree needed to do 

this project.  During the writing process I found myself beginning to really have a firm 

grip on the basic components of the quantum random walk and the basic quantum 

mechanics behind it because it is not until you try to explain something to someone else 

that you really grasp the knowledge. 
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