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1 Introduction

This paper is presented as an undergraduate honors thesis by Christopher Sev-
ers under the supervision of Professor Jeffrey Remmel at UCSD. The aim of
the project was to read material about permutation statistics and generating
functions for the ring of symmetric functions and then address a problem not
covered in the literature to date. In working on this project the author gained
a much better understanding of this particular area of mathematics and some
insight into how the process of research and writing works.

The main goal of this paper is find generating functions for some new per-
mutation statistics on certain subsets of the symmetric group Sn by defining an
appropriate homomorphism of the ring of symmetric functions and then apply-
ing that homomorphism to a simple symmetric function identity. This idea was
first introduced by Brenti [4].

In [4], Brenti introduces a homomorphism from the ring of symmetric func-
tions to polynomials in a single variable that demonstrates a remarkable connec-
tion between permutation enumeration and symmetric functions. Specifically,
if Λ is the ring of symmetric functions and ek is the kth elementary symmetric
function, Brenti defines ξ : Λ→ Q[x] by

ξ(ek) =
(x− 1)k−1

k!

where ξ(e0) = 1. Now let hk be the kth complete homogenous symmetric
function and pk the kth power sum symmetric function. Also, for a permutation
σ in the symmetric group Sn, let des(σ) and exc(σ) denote the number of
descents and excedances of σ, respectively. Then Brenti shows

n!ξ(hn) =
∑

σ∈Sn

xdes(σ)

n!

zλ

ξ(pλ) =
∑

σ∈Sn(λ)

xexc(σ) (1)
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where if λ = (1m1 , 2m2 , . . . , nmn) is a partition of n, then Sn(λ) is the set of
permutations in Sn with cycle type λ, and zλ =

∏n
i=1 imimi!.

Brenti’s proofs of are mainly algebraic. In [2], Beck and Remmel give com-
binatorial proofs that allow them to give interesting q-analogues. Beck and
Remmel define a homomorphism ξq : Λ→ Q(q)[x] by

ξq(ek) =
(x− 1)k−1q(

k

2)

[k]!

where for a positive integer k, [k] = 1+ q + · · ·+ qk−1 and [k]! = [k][k−1] · · · [1].
They prove that

[n]!ξq(hn) =
∑

σ∈Sn

xdes(σ)qinv(σ)

[n]!ξq(pn) =
∑

σ∈Sn

xrise(σ)−f(σ)+1qcoinv(σ)
(

xf(σ) − (x− 1)f(σ)
)

(2)

where rise(σ) and coinv(σ) are the number of rises and coinversions of σ, re-
spectively, and f(σ) is the length of the last increasing sequence of σ when σ is
written in one-line notation.

It is this combinatorial approach of Beck and Remmel that we will exploit in
this paper. We should note that there has been a whole series of papers that that
have used this approach to find generating functions for various permuations
statistics on the symmetric group, the hyperoctahedaral group Bn, and various
wreath products of the form G ≀ Sn. These include

• Beck’s thesis together with two follow-up papers, one of which was the
paper co-authored with Remmel described in detail in the previous section
[1, 2, 3],

• a paper by Ram, Remmel, and Whitehead [12],

• Wagner’s thesis together with a follow-up paper [13, 14],

• Langley’s thesis together with a follow-up paper, [7, 8], and

• a paper by Langley and Remmel [9].

In Section 2 we will present the necessary background material required to
arrive at the new Distance 2 results. In this section we also give an example of a
combinatorial proof from Mendes and Remmel [11] which the proofs in Section
3 are modeled after.

Section 3 contains the new definitions for the Distance 2 statistics as well
as new identities and the generating functions that follow from those identities.
We give combinatorial proofs of the identities as well as some q-analogues and
n-tuple cases.
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2 Background

In this section we present the machinery needed to talk about the results ob-
tained during the course of the project. As such the majority of this section is
borrowed from a work by Prof. Remmel and Tony Mendes [11], which was used
as a primer on the material covered during the project.

2.1 Symmetric Functions

We must begin with some background information on symmetric functions.
Let Sn be the symmetric group. This group is the set of all permutations on
{1, 2, . . . , n} where each σ in Sn is a mapping, σ : {1, . . . , n} → {1, . . . , n}. We
can write a permutation σ ∈ Sn in three different ways:

1. Two line notation, where we see where each integer from 1, . . . , n is mapped

1 2 3 4 5
4 1 2 3 5

In this example we see that σ(1) = 4, σ(2) = 1, etc.

2. We can also write the above permutation just in one line notation

4 1 2 3 5

In this case the top line from the two line notation is omitted but we still
interpret this one line notation in the same fashion.

3. We can also write the permutation in cycle notation

(1, 4, 3, 2)(5)

If we start with 1 we see that 1 goes to 4. Then 2 goes to 1, etc.

Let σ ∈ Sn and P (x1, . . . , xn) be a polynomial on n variables. Then σP (x1, · · · , xn) =
P (xσ1 , . . . , xσn

). We call P symmetric if and only if, ∀σ ∈ Sn, σP (x1, · · · , xn) =
P (xσ1 , . . . , xσn

) = P (x1, . . . , xn). What this means is that we can permute the
variables x1, . . . , xn and not change P itself.
Two examples:

1. x1x
2
2 + x2x

2
1 + x3 is not symmetric since if we apply (1, 3) to the indices

we get a different function.

2. x1x
2
2 + x1x

2
3 + x2x

2
1 + x2x

2
3 + x3x

2
1 + x3x

2
2 is symmetric.

Let ΛN be the ring of symmetric polynomials in x1, . . . , xN and ΛN
n be the

subset of ΛN containing the homogeneous elements of degree n. Using the
surjective ring homomorphism from ΛN+1

n to ΛN
n defined by taking xN+1 = 0,

let Λn = lim
←−N

ΛN
n for each n ≥ 0. Define Λ =

⊕

n≥0 Λn to be the ring of
symmetric functions. This technical definition of the ring of symmetric functions
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is needed to ensure the validity of taking an infinite series of monomials in an
infinite number of variables. For λ ⊢ n, the monomial symmetric function mλ

is the element in Λn given by the sum of all monomials where the exponents on
the powers of xi give a rearrangement of the parts of λ. For example, m(2,1) in
3 variables (meaning that x4 = x5 = · · · = 0) is given below:

m(1,2)(x1, x2, x3) = x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2.

It is not difficult to see that any symmetric function where every term is of degree
n must be a sum of monomial symmetric functions; therefore, {mλ : λ ⊢ n} is a
basis for Λn. This implies that the dimension of Λn is the number of partitions
of n.

The elementary symmetric function en may be defined by using a formal
power series in Λ[[t]]. Let

∞
∑

n=0

entn =
∏

i

(1 + xit). (3)

Let E(t) be the sum on the left hand side of the above equation. Since only
one power of xi may contribute to the coefficient of tn on the left hand side
of (3) for every i, en is the sum of all square free monomials in the variables
x1, . . . , xN . For example,

e3(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4.

The homogeneous symmetric function hn is defined such that

∞
∑

n=0

hntn =
∏

i

1

1− xit
. (4)

Let H(t) be the sum on the left hand side of the above equation. For example,
h3 in 3 variables is given below:

h3(x1, x2, x3) = x1x2x3 +x2
1x2 +x2

1x3 +x2
2x1 +x2

2x3 +x2
3x1 +x2

3x2 +x3
1 +x3

2+x3
3.

The definitions of the homogeneous and elementary symmetric functions give

∞
∑

n=0

hntn = H(t) = (E(−t))
−1

=

(

∞
∑

n=0

en(−t)n

)−1

. (5)

It is primarily this identity that we will use to construct our new generating
functions.

Another basic fact as a result of these definitions is Lemma 1 below.

Lemma 1. For n ≥ 1,
n
∑

i=0

(−1)ieihn−i = 0.
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Proof 1. Compare the coefficient of tn on both sides of

1 = H(t)E(−t) =

(

∞
∑

n=0

hntn

)(

∞
∑

i=0

(−1)ieit
i

)

=

∞
∑

n=0

(

n
∑

i=0

(−1)ieihn−i

)

tn.

If λ = (λ1, . . . , λk) is a partition of n, i.e. if n =
∑k

i=1 λi, then we write
λ ⊢ n and we let ℓ(λ) = k, the number of parts of λ. We also define

hλ = hλ1 · · ·hλk
and

eλ = eλ1 · · · eλk
.

This given, we have the following well known result, see [10].

Theorem 2. 1. {mλ : λ ⊢ n} is a basis for Λn.

2. {eλ : λ ⊢ n} is a basis for Λn.

3. {hλ : λ ⊢ n} is a basis for Λn.

4. e0, e1, . . . are algebraically independent and they generate Λ.

Given two bases {aλ : λ ⊢ n} and {bλ : λ ⊢ n} of Λn, we define M(a, b)λ,µ,
for all partitions λ and µ of n, by

bλ =
∑

µ⊢n

aµM(a, b)µ,λ. (6)

Thus if 〈aλ〉λ⊢n and 〈bλ〉λ⊢n as row vectors, then the matrix M(a, b) = ||M(a, b)λ,µ||
is the transition matrix between that bases {aλ : λ ⊢ n} and {bλ : λ ⊢ n}, that
is,

〈bλ〉λ⊢n = 〈aλ〉λ⊢nM(a, b). (7)

An important ingredient in our results will be an explicit combinatorial
interpretation of the elements of the transition matrix M(e, h) between the basis
{eλ : λ ⊢ n} and {hλ : λ ⊢ n}. That is, we want a combinatorial interpretation
for M(e, h)λ,µ where

hλ =
∑

µ⊢n

eµM(a, b)µ,λ. (8)

Given two partitions λ and µ, let us define a object known as a brick tabloid
of shape µ and type λ. The set of all such objects will be denoted by Bλ,µ. A
T ∈ Bλ,µ is formed by partitioning the rows of the Ferrers diagram of λ into
“bricks” such that the lengths of the bricks induce the partition µ. For example,
we now show all possible brick tabloids of shape (2, 3, 5) and type (12, 22, 4):

5



Theorem 3. For µ ⊢ n,

hµ =
∑

λ⊢n

(−1)n−ℓ(λ)|Bλ,µ|eλ.

Proof. To unclutter notation, let M(e, h)λ,µ = Mλ,µ be the coefficient of eλ in
hµ for the remainder of this proof. If λ ⊢ n, let λ \ i be the partition λ with a
part of size i removed. In the case where λ does not have a part of this size,
λ \ i is undefined and Mλ\i,µ = 0 by convention.

First, we will show that the numbers Mλ,µ satisfy the following:

1. M(n),(n) = (−1)n−1,

2. Mλ,(n) =
∑n−1

i=1 (−1)i−1Mλ\i,(n−i) for λ a partition of n with more than
one part, and

3. Mλ,µ =
∑

Mα,(µ1)Mβ,µ\µ1
where the sum runs over all possible partitions

α ⊢ µ1 and β ⊢ n− µ1 such that the multiset union of the parts of α and
β is equal to λ (written α + β = λ) and µ is a partition of n with more
than one part.

Lemma 1 may be rewritten to read

hn = (−1)n−1en +

n−1
∑

i=1

(−1)i−1eihn−i. (9)

The right hand side of (9) is equal to

(−1)n−1en +
n−1
∑

i=1

(−1)i−1ei

∑

α⊢n−i

Mα,(n−i)eα

= (−1)n−1en +
∑

λ⊢n

(

n−1
∑

i=1

(−1)i−1Mλ\i,(n−i)

)

eλ.

Picking the coefficient of en on the right hand side of the above equation,
M(n),(n) = (−1)n−1. Moreover, Mλ,(n) =

∑n−1
i=1 (−1)i−1Mλ\i,(n−i). This ver-

ifies items 1 and 2 on our list. As for item 3, consider

∑

λ⊢n

Mλ,µeλ = h(µ1)hµ\µ1

=
∑

α⊢µ1

Mα,(µ1)eα

∑

β⊢n−µ1

Mβ,µ\µ1
eβ

=
∑

α⊢µ1

β⊢n−µ1

Mα,(µ1)Mβ,µ\µ1
eαeβ. (10)

Comparing the coefficient on both sides of (10) shows item 3.
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The list items 1–3 completely determine the numbers Mλ,µ recursively. To
complete the proof of the theorem, it remains to be shown that (−1)n−ℓ(λ)|Bλ,µ|
satisfy the same three identities.

There is only one brick tabloid of shape (n) and type (n)—the brick tabloid
consisting of one brick of length n inside one row of length n. Therefore, when
λ, µ = (n), (−1)n−ℓ(λ)|Bλ,µ| = (−1)n−1, verifying item 1.

Item 2 is found by sorting brick tabloids of shape (n) according to the length
of the first brick. Suppose λ 6= (n) and i is a part of λ. Let Bλ,(n),i be the set
of T ∈ Bλ,(n) where the first brick in T has length i. It follows that |Bλ,(n),i| =
|Bλ\i,(n−i)|. Thus,

(−1)n−ℓ(λ)|Bλ,(n)| = (−1)n−ℓ(λ)
n−1
∑

i=1

|Bλ,(n),i|

=

n−1
∑

i=1

(−1)i−1
(

(−1)(n−i)−(ℓ(λ)−1)|Bλ\i,(n−i)|
)

,

verifying item 2.
Finally, item 3 is found by sorting brick tabloids of shape µ according to

the bricks found in the top row. Suppose Bλ,µ,α is the set of all T ∈ Bλ,µ

where the first row in T has bricks which induce the partition α. It follows that
|Bλ,µ,α| = |Bα,(µ1)||Bβ,µ\µ1

| where β = λ− α and therefore

(−1)n−ℓ(λ)|Bλ,µ| =
∑

α⊢µ1, β⊢n−µ1

α+β=λ

(−1)µ1−ℓ(α)|Bα,(µ1)|(−1)(n−µ1)−ℓ(β)|Bβ,µ\µ1
|.

This checks item 3 and completes the proof of the theorem.

One can find the transition matrix M(h, e) is a similar fashion. Indeed, by
the symmetry of the relation between the h’s and e’s in Lemma 1, it is easy to
see that M(h, e) = M(e, h).

2.2 Previous Results

We list here some results from the literature which follow from the same simple
identity as the distance 2 results we will present. We state first some identities
that are needed to understand the results.
Let σ = σ1 . . . σn ∈ Sn, then

Des(σ) = {i : σi > σi+1} Rise(σ) = {i : σi < σi+1}
des(σ) = |Des(σ)| rise(σ) = |Rise(σ)|
maj(σ) =

∑

i∈Des(σ) i comaj(σ) =
∑

i∈Rise(σ) i

rlmaj(σ) =
∑

i∈Des(σ) n− i rlcomaj(σ) =
∑

i∈Rise(σ) n− i

inv(σ) =
∑

i<j χ(σi > σj) coinv(σ) =
∑

i<j χ(σi < σj)

exc(σ) = |{i : i < σi}| dec(σ) = |{i : i > σi}|
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where for any statement A, χ(A) = 1 if A is true and χ(A) = 0 if A is false. Also

if α1, . . . , αk ∈ Sn, then we shall write comdes(α1, . . . , αk) = |
⋂k

i=1 Des(αi)|.
Some identities needed for the q-analogues:
[n]q = 1 + q + · · ·+ qn−1 = 1−qn

1−q

[n]q! = [n]q[n− 1]q · · · [1]q

[

n
k

]

=
[n]q !

[k]q ![n−k]q !

[

n
λ1,...,λℓ

]

=
[n]q !

[λ1]q !···[λℓ]q!

[n]p,q = pn−1 + pn−2q + · · ·+ p1qn−2 + qn−1 = pn−qn

p−q
.

Using these facts the following results have been shown:

1.
∑∞

n=0
un

n!

∑

σ∈Sn
xdes(σ) = 1−x

−x+eu(x−1)

2. (Carlitz 1970)
∑∞

n=0
un

(n!)2

∑

(σ,τ)∈Sn×Sn
xcomdes(σ,τ) = 1−x

−x+J(u(x−1)) .

3. (Stanley 1979)
∑∞

n=0
un

[n]!

∑

σ∈Sn
xdes(σ)qinv(σ) = 1−x

−x+eq(u(x−1)) .

4. (Stanley 1979)
∑∞

n=0
un

[n]!

∑

σ∈Sn
xdes(σ)qcoinv(σ) = 1−x

−x+Eq(u(x−1)) .

5. (Fedou and Rawlings 1995)
∑∞

n=0
un

[n]q ![n]p!

∑

(σ,τ)∈Sn×Sn
xcomdes(σ,τ)qinv(σ)pinv(τ) = 1−x

−x+Jq,p(u(x−1)) .

J(u) =
∑

n≥0
un

n!n! , eq(u) =
∞
∑

n=0

un

[n]q !q
(n

2),

Eq(u) =
∞
∑

n=0

un

[n]q ! , and Jq,p(u) =
∞
∑

n=0

un

[n]q![n]p!q
(n

2)p(n

2).

6. Foata-Han (1997)
Let (x, q)0 = 1 and (x, q)n = (1 − x)(1 − qx) · · · (1− qn−1x) for n > 0.

Cn(z, x, q, y, p) =
∑

(σ,τ)∈Sn×Sn

zcomdes(σ−1,τ−1)xdes(σ)qrlmaj(σ)yrise(τ)prlcomaj(τ).
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∑

n≥0

tn
Cn(z, x, q, y, p)

(x, q)n+1(y, p)n+1
=
∑

i,j≥0

xiyj

1 +
∑

n≥1(t(z − 1))n−1

[

i + 1
n

]

q

[

j + n

n

]

p

.

7. Remmel-Mendes
Rn(z, x, q, y, p, Q, P ) =
∑

(α,β,γ,δ)∈S4
n

zcomdes(α−1,β−1,γ,δ)xdes(α)qrlmaj(α)yrise(β)prlcomaj(β)Qinv(γ)P coinv(δ)

and set

F i,j(t, q, p, Q, P ) =
∑

n≥0

tn
q(

n

2)Q(n

2)
[

i + 1
n

]

q

[

j + n

n

]

p

[n]Q![n]P !
.

We end this section with an example borrowed from Mendes and Remmel
[11] which show how we can apply a ring homormorphism ξf1 from Λ into the
polynomial ring Q[x] over the rationals Q to a simple symmetric function iden-
tity to produce generating functions for permutation statistics. Since e0, e1, . . .

are algebraically independent and generate Λ, we can define our homorphism
ξf1 by simply giving the values of ξf1(en) for each n.

Let f1 be a function on the nonnegative integers such that f1(n) = 1 if
n = 0 and f1(n) = −y(x − y)n−1 if n ≥ 1 and define a ring homomorphism
ξf1 : Λn → Q[x, y] such that for n ≥ 1,

ξf1(en) =
(−1)n

n!
f1(n) (11)

This definition uniquely extends to all of Λ because products of elementary sym-
metric functions are a basis. This homomorphism and its relationship to The-
orem 4 below are due to Brenti; however, the proof hinges on ideas established
by Beck and Remmel when they reproved the results of Brenti combinatorially
[1, 3, 4, 5]. Our entire development of finding generating functions will come
from these ideas.

Given σ = σ1 · · ·σn ∈ Sn, let the rise statistic, ris(σ), count the number of
times σi < σi+1. By convention, let σn+1 = n + 1 so that σn always registers a
rise.

Theorem 4.
†

∞
∑

n=0

tn

n!

∑

σ∈Sn

xdes(σ)yris(σ) =
x− y

x− yet(x−y)
.

†A boldface e is used to distinguish the exponential function from the elementary sym-
metric function.
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Proof. First it will be shown that

n!ξf1(hn) =
∑

σ∈Sn

xdes(σ)yris(σ)

after which the statement of the theorem follows shortly. To evaluate ξf1 on
n!hn, write hn in terms of the elementary symmetric functions via Theorem 3:

n!ξf1(hn) = n!
∑

λ⊢n

(−1)n−ℓ(λ)|Bλ,(n)|

ℓ(λ)
∏

i=1

ξf1(eλi
)

= n!
∑

λ⊢n

(−1)n−ℓ(λ)|Bλ,(n)|

ℓ(λ)
∏

i=1

(−1)λi

λi!
f1(λi)

=
∑

λ⊢n

(

n

λ

)

|Bλ,(n)|y
ℓ(λ)(x− y)n−ℓ(λ) (12)

where if λ = (λ1, . . . , λℓ),
(

n

λ

)

=

(

n

λ1, . . . , λℓ

)

=
n!

λ1! · · ·λℓ!

is the usual multinomial coefficient.
(12) will be interpreted as a signed, weighted sum of objects on which a

sign-reversing, weight-preserving involution will be performed. The fixed points
under the involution will correspond to elements in Sn with the weights on the
fixed point giving the number of descents and rises in the permutation.

The sum in (12) selects λ ⊢ n. Use the |Bλ,(n)| term in (12) to select a
brick tabloid of shape (n) filled with bricks forming the partition λ. With the
multinomial coefficient, select λ1 integers from 1, . . . , n to place in a brick of
length λ1 in decreasing order, λ2 of the remaining integers to place in a brick
of length λ2 in decreasing order, etc., so that each brick contains a decreasing
sequence and each integer in 1, . . . , n appears once. The (x − y)n−ℓ(λ) term in
the sum in (12) is used to label each cell not terminating a brick with either x

or −y. Finally, place a y in each terminal cell in a brick. The set of all such
objects able to be formed in this way will be denoted Tξf1 . An example of one
such T ∈ Tξf1 may be found below.

561728

x y y x y yx−y −y −yy

312

x

10 11 9 4

Define the weight of T ∈ Tξf1 , w(T ), to be the product of the x,−y, and y

labels in T . The above example has weight (−1)3x4y8. We have accounted for
every term in (12); therefore,

n!ξf1(hn) =
∑

T∈T
ξf1

w(T ).
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At this point, a sign-reversing, weight-preserving involution Iξf1 will be de-
fined on Tξf1 to leave a set of fixed points with positive sign. Let T ∈ Tξf1 .
Scan T from left to right looking for the first of the following two occurrences:

1. a cell labeled with −y, or

2. two consecutive bricks with a decrease in the labeling between them.

If situation 1 appears first, break the brick containing the −y into two bricks
immediately after the violation and change the −y to a y. If situation 2 appears
first, combine the two consecutive bricks and change the y now in the middle
of the brick to a −y. This process is the involution Iξf1 —it does not alter any
cells labeled with x but does flip the sign on T . The image of the object found
earlier in this proof under Iξf1 is displayed below.

561728

x y y x y yx−y −yy y

312

x

10 11 9 4

Let Fξf1 be the set of fixed points under the involution Iξf1 consisting of
those T ∈ Tξf1 where there are no −y’s and there are no decreases between two
bricks. An example of T ∈ Fξf1 may be found below.

1728

x y y x y yxx x y

53

x

612

x

10 11 9 4

The row of integers on a fixed point can be read as an element of the symmetric
group Sn written in one line notation. When this is done, there is an x label
above an integer if and only if that integer registers a descent and a y label
above an integer if and only if that integer registers a rise. The above fixed
point corresponds to 12 10 8 2 7 1 6 3 5 11 9 4 ∈ S12 with seven descents and
five rises. The involution Iξf1 implies

n!ξf1(hn) =
∑

T∈T
ξf1

w(T ) =
∑

T∈F
ξf1

w(T ) =
∑

σ∈Sn

xdes(σ)yris(σ).

We have

∞
∑

n=0

tn

n!

∑

σ∈Sn

xdes(σ)yris(σ) =

∞
∑

n=0

tnξf1(hn)

= ξf1

(

∞
∑

n=0

hntn

)

= ξf1

(

∞
∑

n=0

en(−t)n

)−1

11



where the last equality comes from (5). Continuing this string of equalities, we
have

1

1 +
∑∞

n=1(−t)n(−1)n −y(x−y)n−1

n!

=
x− y

x− y − y
∑∞

n=1
tn(x−y)n

n!

=
x− y

x− yet(x−y)
.

3 Statistics on pairs

This section covers the new results obtained during the course of the project.

3.1 des(2)(σ)

In this section we wish to consider permutation statistics on pairs of elements.
More specifically, if σ ∈ Sn and σ = σ1σ2...σn then we want to look at the
relation between {σi−1, σi} and {σi+1, σi+2}. To do this we must first define
the set of σ ∈ Sn that we will work on.

Definition 1.

E2n = {σ ∈ S2n : maximal descent blocks are even}

This gives us a set of σ that are of even length and can be split into blocks
of even length.
Next we must define a new permutation statistic on E2n by comparing descents
on pairs of σi for σ ∈ E2n in the following way:

Definition 2. Des(2)(σ) = {i : σi > σi+2 andσi−1 > σi+1}

As an example consider τ = 8 6 4 3 2 9 10 7 5 1. Then Des(2)(τ) = {2, 8}. As
before we primarily wish to consider the cardinality of Des(2)(σ).

Definition 3. des(2)(σ) = |Des(2)(σ)|

Using the same τ from before we have des(2)(τ) = 2.
Finally we introduce a new homomorphism, ϕ(2) : Λn → Q[x] such that

ϕ(2)(e0) = 1

ϕ(2)(e2n) =
(−1)n(1− x)n−1

2n!

(

2n

n

)

=
−(x− 1)n−1

n!n!

ϕ(2)(e2n+1) = 0

We use these definitions and homomorphism to show the following:

Theorem 5.

(2n)! ϕ(2)(h2n) =
∑

σ∈E2n

xdes(2)(σ)

12



Proof. First, by Theorem 3 we can write

n!ϕ(2)(hn) = n!
∑

µ⊢n

(−1)n−ℓ(µ)|Bµ,n|ϕ
(2)(eµ). (13)

Since ϕ(2)(e2n+1) = 0, it is easy to see that if µ has an odd part, then ϕ(2)(eµ) =
0. It follows that ϕ(2)(h2n+1) = 0 for all n ≥ 0. Similarly, the only µ that can
contribute the sum in (13) when n is even are the partitions µ which consist
entirely of even parts. If µ = (µ1, . . . , µk) is a partition of n, then we write 2µ

for the partition (2µ1, . . . , 2µk). It is then easy to see that

(2n)! ϕ(2)(h2n) = (2n)!
∑

µ⊢n

(−1)2n−ℓ(µ)|B2µ,(2n)|ϕ
(2)(e2µ).

Using the definition of ϕ(2) we then have

(2n)! ϕ(2)(h2n) = (2n)!
∑

µ⊢n

(−1)2n−ℓ(µ)|B2µ,(2n)|

ℓ(µ)
∏

i=1

−(x− 1)µi−1

2µi!

(

2µi

µi

)

= (2n)!
∑

µ⊢n

(−1)2n−ℓ(µ)|B2µ,(2n)|(−1)ℓ(µ)(x− 1)n−ℓ(µ) 1

2µ1!2µ2!...2µℓ(µ)!

ℓ(µ)
∏

i=1

(

2µi

µi

)

=
∑

µ⊢n

|B2µ,(2n)|

(

2n

2µ12µ2...2µℓ(µ)

)

(x− 1)n−ℓ(µ)

ℓ(µ)
∏

i=1

(

2µi

µi

)

(14)

We can now interpret (14) above as a combinatorial object starting with B2µ,(2n).
We use this to construct bricks of length 2n and shape µ with each partition
inside the brick of size 2µi where µ = (µ1 µ2 ...µℓ(µ)). An example of such a
brick is given below for n = 4 and µ = (2, 1, 1).

Next, we interpret (x − 1)n−ℓ(µ) by putting a −1 or an x over each pair of
parts of a brick up to the last pair of the brick. We fill a 1 at the end of each
brick. Our brick from above now looks like this:

x 1 −1 1

13



We interpret
(

2n
2µ12µ2...2µℓ(µ)

)

by choosing sets of length 2µi from [2n] =

{1, ..., 2n}. Continuing the example from above our sets might look something
like {1, 3, 4, 8}, {2, 5}, {6, 7}. For each i we intepret

(

2µi

µi

)

by choosing half of the
numbers out of each set we have. We color these with blue to denote they have
been chosen. So now we have the sets {1, 3, 4, 8}, {2, 5}, {6, 7}. Starting with
the blue numbers we fill in every other open portion of the brick in descending
order. We then fill in the regular numbers in descending order in the remaining
spaces. Our object now looks like this:

x 1 −1 1

4 8 3 1 5 2 6 7

Call this object T and let Tϕ be the set of all such objects. The weight of
T , w(T ), is the product of the row of x’s and 1’s above the brick. We can also
read off the numbers inside the brick from left to right to form a permutation
σ = 4 8 3 1 5 2 6 7. We are interested in

∑

T w(T ) so we will use an involution I

to get rid of the T with negative weight. The involution I works similar to the
one used before. First we scan from left to right looking for either a −1 or a pair
descent between bricks. If we find a −1 then split the brick at the rightmost
element of the pair under the −1 and change the −1 to 1. If we encounter a
pair descent first then join the two bricks and change the trailing 1 of the first
brick to a −1. As an example we use the following object T :

1x −1 1

8 5 7 3 4 2 9 10 6 1

−1

Applying I gives us T ′:

1x 1

8 5 7 3 4 2 9 10 6 1

−1 1

Applying I to T ′ gives us back T since there is a pair descent between 7 3
and 4 2 which means that I will join the bricks and change the sign of the 1.

14



The weight of T is x · −1 · 1 · −1 · 1 = x. The weight of T ′ is x · 1 · 1 · −1 · 1 =
−x. So our involution I is sign reversing and for T not a fixed point we have
w(T ) = −w(I(T )). From this we can see that

∑

T∈Tϕ

w(T ) =
∑

T a fixed point of I∈Tϕ

w(T )

A fixed point of I must have no −1’s and no pair descents between bricks. An
example of a fixed point is given here:

xx 1

8 5 7 3 4 2 9 10 6 1

1x

Fixed points then have an x everywhere except the last pair of a brick and
have no pair descents between bricks. If we read off the numbers of the fixed
point from left to right we get a permutation σ = 8 5 7 3 4 2 9 10 6 1. We can
observe then that on our object the x’s correspond to the pairs where a pair
descent is registered and the 1’s to a pair where no pair descent exists. It follows
then that

∑

T a fixed point of I∈Tϕ

w(T ) = (2n)! ϕ(2)(h2n)

and from above,

∑

T a fixed point of I

w(T ) =
∑

σ∈E2n

xdes(2)(σ)

So we have shown that Theorem 5 is true.

Next we use this result to show a new generating function. Start by letting
J(u) =

∑

n≥0
un

n!n! . Because ϕ(2)(h2n+1) = 0 for all n, it follows that

ϕ(2)





∑

n≥0

hntn



 = ϕ(2)





∑

n≥0

h2nt2n





=
∑

n≥0

t2n

2n!

∑

σ∈E2n

xdes(2)(σ).
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Thus

∑

n≥0

t2n

2n!

∑

σ∈E2n

xdes(2)(σ) = ϕ(2)





∑

n≥0

hntn





= ϕ(2)

(

1
∑

n≥0 en(−t)n

)

=
1

1 +
∑

n≥1
−(x−1)n−1

n!n! (t)2n

=
−1

−1 +
∑

n≥1
(x−1)n−1

n!n! (t)2n

=
−(x− 1)

−(x− 1) +
∑

n≥1
(x−1)n

n!n! (t)2n

=
−(x− 1)

−(x− 1) + (J((x − 1)t2)− 1)

=
(1 − x)

−x + J((x − 1)t2)

3.2 des(2)(σ)

In the previous section we considered the case where there was a descent reg-
istered between two pairs of elements in some σ ∈ E2n. We can also however
consider what happens when we count descents between only the elements that
have an odd or even position. To do this we introduce first a new set of permu-
tations that we will use.

Definition 4.

F2n = {σ ∈ S2n : maximal descent blocks on even elements are even}

Then as before we will define a new statistic on this set F2n.

Definition 5. Des(2)(σ) = {i : i odd and σi > σi+2}

As an example let σ = 10 5 7 2, 8 9 4 3 1 6. Then Des(2)(σ) = {1, 5, 7}. Note
that we can easily modify this definition to count descents between σi where i

is even. Again we will concern ourselves with the cardinality of this set.

Definition 6. des(2)(σ) = |Des(2)(σ)|

The homomorphism we use is very similar to the one before however we now
must account for all the different ways in which we can order the set of numbers,
in this case those in even places, that we are not concerned with statistics on. We
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call this new homomorphism Ψ(2) and define Ψ(2) : Λn → Q[x] in the following
way:

Ψ(2)(e0) = 1

Ψ(2)(e2n) = (−1)n(1−x)n−1

2n!

(

2n
n

)

n! =
−(x− 1)n−1

n!

Ψ(2)(e2n+1) = 0

We now put all of this together by again stating a new theorem and proving it.

Theorem 6.

(2n)! Ψ(2)(h2n) =
∑

σ∈F2n

xdes(2)(σ)

Proof. Using the same argument as in Theorem 5 we can write:

(2n)! Ψ(2)(h2n) = 2n!
∑

µ⊢n

(−1)(2n−ℓ(µ))|B2µ,(2n)|Ψ
(2)(e2n)

= 2n!
∑

µ⊢n

(−1)ℓ(µ)|B2µ,(2n)|

ℓ(µ)
∏

i=1

(−1)(x− 1)µi−1

2µi!

(

2µi

µi

)

µi!

=
∑

µ⊢n

|B2µ,(2n)|(x− 1)n−ℓ(µ)

(

2n

2µi...2µℓ(µ)

) ℓ(µ)
∏

i=1

(

2µi

µi

)

µi!

We now will construct a set of objects TΨ. First we build a set of bricks of
length 2n and shape µ with each section being of size 2µi. If we have µ = (2, 3)
then the corresponding brick is:

We now interpret (x − 1)n−ℓ(µ) as before; by placing either an x or a −1
above each pair of boxes in the brick up to the last pair in the section. An
example of placements is given below:

x 1 −1 x 1
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Next we choose sets of length 2µi from [2n]. Using µ = (2, 3) our sets might
be {5, 3, 8, 10}, {1, 2, 7, 4, 6, 9}. In each set we pick a new sequence of length µi

and color them blue. The sets we picked now look like this: {5, 3, 8, 10}, {1, 2, 7, 4, 6, 9}.
We can fill in the bricks now starting with the blue numbers in descending order
in the odd places. After this is done we fill in the black numbers in any order,
with the term µi! accounting for the possible ways to fill in the black numbers
in each section of the brick. A filled brick looks like this:

x 1 x 1

5 10 3 8 6 1 4 9 2 7

x

We will call this object T and let TΨ be the set of all such objects constructed
in this manner.
As before we define the weight of an object T , w(T ) as the product of the x’s
and −1’s above it. We then use the same involution I to get rid of all the
negative weights in the sum

∑

T∈TΨ
w(T ). As before I works in the following

manner:

1. Scan the bricks from left to right for a −1 or a descent between two odds
in consecutive bricks

2. If a −1 is encountered, break the brick at the second box below the −1
and change the −1 to a 1.

3. If a descent between two odds in consecutive bricks is found, join the bricks
and change the trailing 1 of the first brick to a −1.

As before this process is reversible, sign changing and weight preserving. After
applying I we see that

∑

T∈TΨ
w(T ) =

∑

T a fixed point in TΨ
w(T ). In this case

fixed points are those objects with an x above every pair of boxes except the
last in a brick and no descents between odd places of consecutive bricks. An
example of such an object is this:

x 1 x 1

5 10 3 8 6 1 4 9 2 7

x

We have now shown that

(2n)! Ψ(2)(h2n) =
∑

T a fixed point in TΨ

w(T )
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If we then look at a fixed point in TΨ such as the one above we can also read off a

permutation σ. In this case σ = 5 10 3 8 6 1 4 9 2 7. We can see that Des(2)(σ) =
{1, 5, 7} which correspond to the odd boxes with an x above them in our object
T so we have:

∑

T a fixed point in TΨ

w(T ) =
∑

σ∈F2n

xdes(2)(σ)

Which then implies

(2n)! Ψ(2)(h2n) =
∑

σ∈F2n

xdes(2)(σ)

So we have proved Theorem 6.

Again we use this result to show a new generating function. Since ϕ(2)(h2n+1) =
0 for all n, it follows that

Ψ(2)





∑

n≥0

hntn



 = Ψ(2)





∑

n≥0

h2nt2n





=
∑

n≥0

t2n

2n!

∑

σ∈F2n

xdes(2)(σ).

And so we can write:

∑

n≥0

t2n

2n!

∑

σ∈F2n

xdes(2)(σ) = Ψ(2)





∑

n≥0

hntn





= Ψ(2)

(

1

1 +
∑

n≥1 en(−t)n

)

=
1

1 +
∑

n≥1
−(x−1)(n−1)

n! (−t)2n

=
−1

−1 +
∑

n≥1
(x−1)(n−1)

n! (t)2n

=
−(x− 1)

−(x−)1 +
∑

n≥1
(x−1)n

n! (t)2n

=
1− x

−x + et(x−y)(x−1)t2

3.3 q-analogue of des(2)(σ)

In this section we extend the previous result using des(2)(σ) to one with q-
analogues. To do this we need to define a new statistic that will count inversions
on every other object.
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Definition 7.

inv(2)(σ) =
∑

0≤i<j≤n

χ(σ2i > σ2j) + χ(σ2i+1 > σ2j+1)

As an example consider σ = 10 5 7 2, 8 9 4 3 1 6. We see then that inv(2)(σ) =
4 + 2 + 2 + 1 = 9.

We also will make use of the following identities:

[n]q = 1 + q + · · ·+ qn−1 =
1− qn

1− q

[n]q! = [n]q[n− 1]q · · · [1]q

[

n

k

]

q

=
[n]q!

[k]q![n− k]q!

[

n

λ1, . . . , λℓ

]

q

=
[n]q!

[λ1]q! · · · [λℓ]q!

[n]p,q = pn−1 + pn−2q + · · ·+ p1qn−2 + qn−1 =
pn − qn

p− q

Using these identities we now define a new homormorphism ϕ
(2)
q Λn → Q[x, q]:

ϕ(2)
q (e0) = 1

ϕ(2)
q (e2n+1 = 0

ϕ(2)
q (e2n) =

(−1)n(1− x)n−1

[2n]q

[

2n

n

]

q2(n
2) =

−(x− 1)n−1

[n]q![n]q!
q2(n

2)

Using this homomorphism we will prove the following theorem:

Theorem 7.

(

2n

n

)

[2n]q!
2ϕ(2)

q (h2n) =
∑

σ∈E2n

xdes(2)(σ)qinv(2)(σ)

Proof. Let R(1µ1 , · · · , ℓµℓ) be the set of rearrangements of µ1 1’s, µ2 2’s, ...
Then a theorem due to Carlitz [6] gives us:

[

n

µ1, · · · , µℓ

]

q

=
∑

r∈R(1µ1 ,··· ,ℓµℓ )

qinv(r)

From this we arrive at the following result:
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Theorem 8. Let T be a brick tabloid of shape µ and size n. Then Sn, T is the
set of all σ in Sn that are the result of placing decreasing sequences of integers
in the brick of T , and

∑

σ∈Sn,T

qinv(σ) =

[

n

µ1 · · ·µℓ

]

q

q
P

i (
µi
2 )

To show this we start by taking an r ∈ R(1µ1 , · · · , ℓµℓ). As an example let
µ = (2, 3, 3) and r = 2 1 2 2 3 1 3 3. We can see that inv(r) = 5 in this example.
Now we proceed by filling in the 1’s of r from right to left with numbers from 1
to n, in our example 8, until we have no 1’s left. We then do the same for the
2’s, filling them in right to left with numbers from µ1 to n, etc. When we have
filled in all of the numbers we call this σ(r).

r = 2 1 2 2 3 1 3 3

σ(r) = 5 2 4 3 8 1 7 6

σ(r)−1 = 6 2 4 3 1 8 7 5

We see then that every time an inversion was registered in r it is registered
in σ(r). We have new inversions as well. Due to the way we filled in the
numbers, within each block of µi’s in r we also generate (µi − 1) + (µi − 2) +
... + (µi − (µi − 2) + 1 =

(

µi

2

)

new inversions. Putting this together we have

inv(σ(r)) = inv(r) +
∑

i

(

µi

2

)

. We also know that inv(σ) = inv(σ)−1 and since
σ(r)−1 is in decreasing blocks of length µi we can write:

[

n

µ1, · · · , µℓ

]

q

q
P

i (
µi
2 ) = q

P

i (
µi
2 )

∑

r∈R(1µ1 ,··· ,ℓµℓ )

qinv(r)

=
∑

σ∈Sn,T

qinv(σ)

which proves Theorem 8.
We proceed now by following the same method used for the proof of Theorem
5. First, we use Theorem 3 to set the left hand side equal to something we can
interpret:
(

2n

n

)

[2n]q!
2ϕ(2)

q (h2n) =

(

2n

n

)

[2n]q!
2
∑

µ⊢n

(−1)2n−ℓ(µ)Bµ,(2n)ϕ
(2)
q (e2n)

=

(

2n

n

)

[n]q!
2
∑

µ⊢n

(−1)2n−ℓ(µ)Bµ,(2n)

ℓ(µ)
∏

i=1

−(x− 1)µi−1

[µi]q![µi]q!
q2(µi

2 )

=
∑

µ⊢n

Bµ,(2n)(x− 1)n−1

(

2n

n

)[

n

µ1, · · · , µℓ(µ)

]2

q

q2
Pℓ(µ)

i=1 (µi
2 )

To interpret the RHS we start with µ ⊢ n. For an example let us use µ = (2, 3, 1).
From this we then set out a brick of shape 2µ = (4, 6, 2) and size 2n = 12.
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This takes care of the term B2µ,(2n). Next we use the term
(

2n
n

)

to choose
a sequence of n integers from [2n] and color them blue. As an example we will
use {6, 4, 3, 11, 8, 9}. The remaining numbers are then {1, 2, 5, 7, 10, 12}. Next

we use each
[

n
µ1,··· ,µℓ(µ)

]

q
q

Pℓ(µ)
i=1 (µi

2 ) term to fill in every other space in each brick

with integers in descending order and q’s as per Theorem 8. We do this first
with the blue numbers and then with the black numbers. When we are done we
have something like this:

11 4 9 8 3 610 5 12 7 1 2
q q q q q q q q q qq5 4 1 2 3 2 2 0 0 0 0q3

Finally we fill in the x’s and −1’s as before:

11 4 9 8 3 610 5 12 7 1 2
q q q q q q q q q qq5 4 1 2 3 2 2 0 0 0 0q3

x 1 −1 x 1 1

Applying the same involution I as before gives us fixed points like this:

11 4 9 8 3 610 5 12 7 1 2
q q q q q q q q q qq5 4 1 2 3 2 2 0 0 0 0q3

x 1 x 1 1x

where there are x’s each time a des(2) is registered and a 1 over the last pair
of a brick. We are also left with two sequences of integers that descend inside
each brick with a rise between bricks and inversions labelled. We see then that
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the sum of the inversions of the two sequences is the definition of inv(2)(σ) and
so we have that

(

2n

n

)

[2n]q!
2ϕ(2)

q (h2n) =
∑

T a fixed point of I∈Tϕq

w(T )

=
∑

σ∈E2n

xdes(2)(σ)qinv(2)(σ)

Which proves Theorem 7.

We use this now to show another new generating function. We again use the

same argument as in Theorem 5. Let Jq(u) =
∑

n≥0
un

[n]q ![n]q!q
2(n

2). Then

∑

n≥0

t2n

[2n]q!2
(

2n
n

)

∑

σ∈E2n

xdes(2)(σ)qinv(2)(σ) = ϕ(2)
q





∑

n≥0

hntn





= ϕ(2)
q

(

1
∑

n≥0 en(−t)n

)

=
1

1 +
∑

n≥1
−(x−1)n−1

[n]q![n]q ! q2(n

2)(t)2n

=
−1

−1 +
∑

n≥1
(x−1)n−1

[n]q ![n]q! q2(n
2)(t)2n

=
−(x− 1)

−(x− 1) +
∑

n≥1
(x−1)n

[n]q![n]q !q
2(n

2)(t)2n

=
−(x− 1)

−(x− 1) + (Jq((x − 1)t2)− 1)

=
(1− x)

−x + Jq((x − 1)t2)

Using the same method of proof and inv(2) we can also q-analogue des(2)(σ).

3.4 n-tuples

In this section we will look at places that register a des(2)(σ) across multiple
permutations. Let σ = {σ1, σ2, · · · , σm}. Then, comdes(2)(σ) = the number of
times σ

j
i > σ

j
i + 2 and σ

j
i + 1 > σ

j
i + 3 for all j. If

σ1 = 12 10 6 4 3 9 2 11 5 8 1 7

σ2 = 11 5 10 2 6 1 7 4 12 9 8 3

σ3 = 12 6 6 1 4 9 3 10 11 8 2 7
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then comdes(2)(σ) = 2. We also must define a new homomorphism, ϕ
(2)
m : Λn →

Q[x]

ϕ(2)(e0) = 1

ϕ(2)(e2n) =
(−1)n(1− x)n−1

(2n!)m

(

2n

n

)m

=
−(x− 1)n−1

(n!n!)m

ϕ(2)(e2n+1) = 0

We use these to show the following theorem:

Theorem 9.

(2n!)m ϕ(2)(h2n) =
∑

σ∈Em
2n

xcomdes(2)(σ)

Proof. As before we want to change the LHS into something we can intepret:

(2n!)m ϕ(2)(h2n) = (2n!)m
∑

µ⊢n

(−1)n−ℓ(µ)|B2µ,(2n)|

ℓ(µ)
∏

i=1

−(x− 1)µi−1

(2µi!)m

(

2µi

µi

)m

= (2n!)m
∑

µ⊢n

(−1)2n−ℓ(µ)|B2µ,(2n)|(−1)ℓ(µ)(x− 1)n−ℓ(µ)

×
1

(2µ1!)m(2µ2!)m...(2µℓ(µ)!)m

ℓ(µ)
∏

i=1

(

2µi

µi

)m

=
∑

µ⊢n

|B2µ,(2n)|

(

2n

2µ12µ2...2µℓ(µ)

)m

(x− 1)n−ℓ(µ)

ℓ(µ)
∏

i=1

(

2µi

µi

)m

We now interpret this starting with B2µ,(2n) which we use to create a brick
tabloid of shape 2µ and size 2n. For this example let µ = (2, 2, 1).

We use the term
(

2n
2µ12µ2...2µℓ(µ)

)m
to choose sets of length 2µi out of [2n].

We do this m times. Next, we use
(

2µi

µi

)

to color half of the numbers in each 2µi

set blue and fill in the bricks in descending order with the blue numbers first,
every other space in each 2µi brick. After the blue numbers we do the black.
Again we do this m times. For m = 2 such a brick will look like this:

48 110
8 4

6
39

9
7 5

7 3
6 1

5
10
2

2
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Finally we put an x or −1 above each pair, with a 1 above the last pair in
each brick.

1
8
10

9
8

4
1

3
6

7
9

5
7

6
3

1
5

10
2

2
4

x 1 −1 1

We apply the involution I as normal with the difference that we are not going
to combine two bricks if only some of the m sequences show a des(2) between
two bricks. We only combine if a comdes(2) is registered between two bricks.
As an example if we have

18
10

9
8

4
1

3
6 9

5
7 3 5 2 4

x 1 1 1
710 6

x
2

then applying I gets us

−1
8
10

9
8

4
1

3
6 9

5
7 3 5 2 4

x 1 1
710 6

x
2 1

We can see that if we apply I again we will get what we started with. Fixed
points then are those T that have an x above every pair except the last pair in
a brick and have no common descents between bricks in all of the m sequences.
An example of a fixed point is:

x
8
10

9
8

4
1

3
6 9

5
7 3 5 2 4

x 1 1
710 6

x
2 1
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We have then each x of a fixed point registering a comdes(2) so the weight
of our collection of objects, Tϕm

, is

∑

T a fixed point of I∈Tϕm

w(T ) =
∑

σ∈Em
2n

xcomdes(2)(σ)

so Theorem 9 is proved.

This of course will give us another generating function. Let Jm(u) =
∑

n≥0
un

(n!n!)m . Proceeding as we did in Theorem 5 again we see that:

∑

n≥0

t2n

(2n!)m

∑

σ∈Em
2n

xcomdes(2)(σ) = ϕ(2)
m





∑

n≥0

hntn





= ϕ(2)
m

(

1
∑

n≥0 en(−t)n

)

=
1

1 +
∑

n≥1
−(x−1)n−1

(n!n!)m (t)2n

=
−1

−1 +
∑

n≥1
(x−1)n−1

(n!n!)m (t)2n

=
−(x− 1)

−(x− 1) +
∑

n≥1
(x−1)n

(n!n!)m (t)2n

=
−(x− 1)

−(x− 1) + (Jm((x − 1)t2)− 1)

=
(1− x)

−x + Jm((x − 1)t2)

It is also noted that we can combine the q-analogue and n-tuple results.
We state here the results obtained but omit the proof as it follows an identical
method as before.

Theorem.

(

2n

n

)m

[2n]q!
2mϕ(2)

q (h2n) =
∑

σ∈Em
2n

xcomdes(2)(σ)q
Pm

i=1 inv(2)(σi)

If we let Jm
q (u) =

∑

n≥0
un

([n]q ![n]q!)m q2m(n
2) this gives rise to the generating

function:

∑

n≥0

t2n

[2n]q!2m
(

2n
n

)m

∑

σ∈Em
2n

xcomdes(2)(σ)q
Pm

i=1 inv(2)(σi) =
(1− x)

−x + Jm
q ((x − 1)t2)
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