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Introduction

- For hundreds of years, the many facets of number theory have fascinated mathemati-
cians. One particularly old topic of interest is that of perfect numbers. Since the name
may be misleading, a definition is in order. A mathematically perfect number is one
whose factors add up to twice itself. For example, 6 is the first perfect number, since
6 + 3 + 2 + 1 = 12.

Euler and Euclid have completely classified all possible even perfect numbers. Any even
perfect number Pp must be of the form

Pp = 1
2
(Mp + 1)Mp = 2p−1 ∗ (2p − 1)

where Mp is the p-th Mersenne prime (see [EUL]). Euclid showed that any number of
that form is an even perfect number.

However, the question

Are there any odd perfect numbers?

remains an open problem. For the entirety of this paper, let us assume that N is an
odd perfect number, i.e. σ(N) = 2N , where σ is the sum of divisors function. We will
contradict this under a variety of conditions.

We start with a result showing most odd cubes cannot be perfect numbers (see Theorem
1). Then we give a new proof of a special case of a result of Iannucci (see [IAN]) that
shows that none of the even exponents in N ’s prime factorization can be congruent to 4
(mod 5) if 3|N (Theorem 2). We then extend that result by proving that certain sets of
small primes, when taken to a large power, cannot divide an odd perfect number. This
generates an upper bound on the number of small primes dividing certain odd perfect
numbers (see Theorem 3-4 and Proposition 1).

Finally, we will prove that under certain conditions specific ’small’ primes must be in
N for it to be OP, which generates a lower bound on the number of small primes in
certain odd perfect numbers (specifically, those divisible by 3) (see Theorem 5).
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Historical Background

Over the years, many necessary conditions have been proven in order for N to be odd
perfect (hereafter OP). A very famous result, originally proved by Euler (see [EUL]), is
that all odd perfect numbers N must be of the form

N = qe ∗ a2B1
1 ∗ ... ∗ a2Bn

n

where q and the ai are distinct odd primes, e,Bi ∈ Z+, and q ≡ e ≡ 1 (mod 4). The
proof revolves almost entirely around considering σ(N) (mod 4). To compute σ(N)
we will use the fact that σ is multiplicative, i.e. σ(

∏
(pei

i )) =
∏

(σ(pei
i )), and that

σ(pk) = pk + pk−1 + ... + p + 1 = pk+1−1
p−1

.

To prove Euler’s result, we first prove a Lemma.

Lemma: If N is OP, then N must have exactly one prime to an odd power in its prime factor-
ization.

Proof. Suppose for the purpose of finding a contradiction that N has either two or more
primes to an odd power, or none such.

We have N = ph1
1 ∗ ph2

2 ∗ ... ∗ phn
n where pi are distinct (odd) primes, and hi ∈ Z+. For

an arbitrary prime pi in N ’s prime factorization, note that

σ(phi
i ) := phi

i + phi−1
i + ... + pi + 1.

First, suppose that all the hi are even. Then σ(phi
i ) is a sum of hi+1 odd terms. So σ(phi

i )
is odd. Thus σ(N) =

∏
(σ(phi

i )) is odd. This contradicts the fact that σ(N) = 2N .

Secondly, suppose hj and hk are both odd, with j 6= k. Then σ(N) = σ(
∏

(phi
i )) =

σ(p
hj

j ) ∗ σ(phk
k ) ∗ σ(

∏
(phi

i )) where the product is over all i with i 6= j, i 6= k. But since

both σ(p
hj

j ) and σ(phk
k ) are even, this means that σ(N) is divisible by 4, which once

again contradicts the fact that σ(N) = 2N .

This finishes the proof of the Lemma.

We now prove Euler’s result. This requires just a few more steps.

Theorem : (Euler) If N is OP, then N = qe ∗ a2B1
1 ∗ ... ∗ a2Bn

n , where q and the ai are distinct odd
primes, e,Bi ∈ Z+, and q ≡ e ≡ 1 (mod 4).

Proof. Let N be an odd perfect number, so that σ(N) = 2N .

By the Lemma, we know that N = qe ∗ a2B1
1 ∗ ... ∗ a2Bn

n , where q and the ai are distinct
odd primes and e is odd. It remains to show that q and e are both ≡ 1 (mod 4). Since
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both q and e are odd, it is sufficient to show that neither can be ≡ 3 (mod 4).

Note that (q + 1)|σ(qe) because σ(qe) := qe + ... + q + 1 = (q + 1)(qe−1 + qe−3 + ... + 1).

First suppose that q ≡ 3 (mod 4). This means that (q + 1)|σ(qe)|σ(N). This is a
contradiction, as 4 cannot divide σ(N).

Now suppose e ≡ 3 (mod 4). Then σ(qe) ≡ qe + qe−1 + ... + q + 1 ≡ 1 + 1 + ... + 1 + 1 ≡
e + 1 ≡ 0 (mod 4).

This contradicts 2N = σ(N) and ends the proof.

The majority of additional advances in the study of OP numbers can be divided up into
three main categories.

1) Obtaining bounds for the minimal number and size of prime factors that are required
to be in an OP number. The current best result is that there must be a minimum of
37 prime factors of any OP number ([IAN]), at least 8 distinct factors if 3|N (Hagis
[HAG2], Chein [CHE]), and at least 11 distinct primes if N is not divisible by 3. (Hagis
[HAG1], Kishore [KIS]).

It is also interesting to note that modern computers have proved via exhaustion that
there are no odd perfect numbers smaller than 10300 (see [BRE]).

2) Proving that no OP numbers can exist in the form N = qe ∗ a2B1
1 ... ∗ a2Bn

n , with all
of the Bi’s in the same congruence class. McDaniel proved ([MCD2]) that having all of
the Bi’s ≡ 1 (mod 3) is sufficient for N not to be OP. Iannucci added onto this result
([IAN]) by proving that if each Bi is either ≡ 1 (mod 3) or ≡ 2 (mod 5) then N is not
OP. The proofs of these results are quite extensive, and thus are beyond the scope of
this paper. However, a new proof of a special case of Iannucci’s result is provided below
(Theorem 2).

Kanold proved that if all the Bi’s = 2, then N is not OP [KAN1]. Hagis and McDaniel
proved that the Bi’s cannot all = 3 [HAG3]. Cohen proved that if all the Bi’s are equal
to 6, 8, 11, 14, or 18, then N is not OP ([COH1]). It is also known that Bi cannot be
congruent to 17 (mod 35) for all i if N is OP [MCD].

3) Proving that no OP number can exist in the form N = qe ∗ s2k ∗ a2B1
1 ∗ ... ∗ a2Bn

n ,
where the Bi’s are all equal (usually with 3|N). Even with just two primes (q and s)
allowed to vary freely these proofs are surprisingly involved. It is known that k cannot
equal 2 ([BRA]) or 3 ([KAN3]). Cohen and Williams ([COH1]) proved that k cannot
equal 5 or 6 when all Bi = 1.

Several results which do not fit under the umbrella of any of these three categories
are also worth mentioning. Cohen ([COH2]) independently proved that if B1 = 3 and

3



B2 = 2 with the rest of the Bi’s equal to 1, then N is not OP. Also, Kanold showed
that if e = 5, and the Bi’s are any combination of 1’s or 2’s, then N is not OP ([KAN2]).

This historical section will end with a new proof of the nonexistence of OP numbers of
the form N = qe ∗ a2

1 ∗ ... ∗ a2
n. This result is originally due to Steuerwald ([STE]), but

is presented here due to its relative simplicity, and as an illustration to the technique.
It also serves as a good starting point for both the second and third types of analysis
of OP numbers mentioned above.

We begin with the Rule of 3’s (the Lemma below used in proving this Theorem 0).

Rule of 3’s: If N = qe ∗ a2
1 ∗ ... ∗ a2

n with q, ai distinct primes, q, e ≡ 1 (mod 4) and if 3|N , then N
is not OP.

Proof. Suppose for the purpose of contradiction that N is OP and 3|N . Then since
q 6= 3, σ(32) = 13|N . If we assume that q is not in the set {13, 61, 97} then in turn
σ(132) = 3 ∗ 61|N, σ(612) = 3 ∗ 13 ∗ 97|N, and σ(972) = 3 ∗ 3169|N .

But here σ(132) ≡ σ(612) ≡ σ(972) ≡ 0 (mod 3). This gives too many 3’s in N , since
33 - N .

It remains to show: q 6= 13, 61, or 97.
Note that (q + 1)|σ(qe), as shown in the middle of the Theorem, above.

Suppose q = 13: Then in turn (q+1)
2

= 7|N, σ(72) = 3 ∗ 19|N, σ(192) = 3 ∗ 127|N, and
σ(1272) = 3 ∗ 5419|N . This gives too many 3’s.

Suppose q = 61: We already have 3|σ(132)|N . Also, in turn (q+1)
2

= 31|N, σ(312) =
3 ∗ 331|N, and σ(3312) = 3 ∗ 7 ∗ 5233|N . This gives too many 3’s.

Finally suppose q = 97. Then (q+1)
2

= 72|N . Follow case q = 13 above. This gives too
many 3’s, and ends the proof.

Theorem 0: (Steuerwald) If N = qe ∗ a2
1 ∗ ... ∗ a2

n with q, ai distinct primes, and q, e ≡ 1 (mod 4),
then N is not OP.

Proof. By the rule of 3’s, it remains to show the case where 3 does not divide N . So for
the purpose of finding a contradiction, suppose N is OP and not divisible by 3. This
means that no ai can be ≡ 0 (mod 3). Also note that σ(a2

i ) = a2
i + ai + 1, so no ai can

be ≡ 1 (mod 3).

Similarly, q cannot be ≡ 2 (mod 3), since (q +1)|σ(qe)|N . So since q > 3, q is ≡ 1 (mod
12).

Let a1 be the smallest ai.

Then σ(a2
1) = a2

1 + a1 + 1 < (a1 + 1)(a1 + 1) < a2
2, which shows that σ(a2

1) is divisible
by at most one ai.

This leaves 2 cases. Either σ(a2
1) = qw, with 1 ≤ w ≤ e, or σ(a2

1) = qw ∗ aj with
0 ≤ w ≤ e.
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Case 1: σ(a2
1) = qw ∗ aj with 0 ≤ w ≤ e.

We already have ai ≡ 2 (mod 3) and q ≡ 1 (mod 3). This shows that σ(a2
1) is ≡

22 + 2 + 1 ≡ 1(mod 3), and qw ∗ aj ≡ 1w ∗ 2 ≡ 2 (mod 3). This is a contradiction.

Case 2: σ(a2
1) = qw, with 1 ≤ w ≤ e.

Here σ(a2
1) = a2

1 + a1 + 1 = qw. This is impossible for any w > 1, by a result of Brauer
(see [BRA], Lemma 1).

Thus w must = 1, and we have σ(a2
1) = q.

Let h = q+1
2

≡ 1 (mod 3), so h is a product of ai’s. If h were prime, then for some
i, h = ai. But then h would be ≡ 2 (mod 3), which is false. Therefore h has at

least two prime factors, the smallest of which must be ≤
√

h. Thus a1 ≤
√

h. Thus

q = a2
1 + a1 + 1 ≤ h +

√
h + 1 = q+3

2
+

√
q+1
2

, so q−3
2
≤

√
q+1
2

. This forces q ≤ 7, which

contradicts the fact that q ≡ 1 (mod 12).

For an additional application of the Rule of 3’s, see Theorem 5 in the Theorems section.

Preliminary Lemmas

The following Lemmas are helpful for proving Theorems 1− 5 in this paper.

Lemma A: σ(g6t) ≡ 1 (mod 3) for g prime, t ∈ Z+.

Proof. Here we will use the facts that g must be congruent to 0, 1 or 2 (mod 3), and
that σ(pt) := pt + pt−1 + ... + p + 1.

Case g ≡ 0 (mod 3): σ(g6t) ≡ 0 + 0 + ... + 0 + 1 ≡ 1 (mod 3).

Case g ≡ 1 (mod 3): σ(g6t) ≡ 1 + 1 + ... + 1 + 1 ≡ 6t + 1 ≡ 1 (mod 3).

Case g ≡ 2 (mod 3): σ(g6t) = g6t+1−1
g−1

≡ −16t+1−1
−1−1

≡ −2
−2

≡ 1 (mod 3).

Lemma B: σ(q3t) ≡ 0 (mod 3) for prime q ≡ 2 (mod 3), and t odd ∈ Z+.

Proof. σ(q3t) = q3t+1−1
q−1

≡ 1−1
2−1

≡ 0 (mod 3).

Lemma C: σ(pk)
pk is monotonically increasing in k and decreasing in p.
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Proof. σ(pk)
pk = pk+1−1

(p−1)pk =
p− 1

pk

(p−1)
.

We will show that σ(pn)
pn ≥ σ(pm)

pm ≥ σ(qm)
qm if n ≥ m and q ≥ p.

As m increases, 1
pm decreases, thereby increasing the entire fraction σ(pm)

pm . This proves

the first inequality. The second inequality follows as
x− 1

xm

x−1
is a decreasing function of x

for x ≥ 2. This exercise is left for the reader.

Lemma D: σ(sf )|σ(sf+(f+1)m) for all prime s and all m, f ∈ Z+.

Proof. σ(sf ) = s(f+1)−1
s−1

, and σ(sf+(f+1)m) = sf+1+(f+1)m−1
s−1

= s(f+1)(1+m)−1
s−1

. Here the

result follows after multiplication by s− 1, since (y− 1)|(yk − 1) for all y, k ∈ Z+, with
y 6= 1.

Lemma E: Suppose N = qe ∗
∏

a2Bi
i is OP with all Bi ≡ 2 (mod 5), and 3|N . Additionally suppose

that tei
i with 1 ≤ i ≤ m are prime powers such that

∏ σ(t
ei
i )

t
ei
i

> 2, where the product

is over i from 1 to m. If sci
i are prime powers which divide N such that si ≤ ti, and

ci ≥ ei, then N is not OP.

Proof. We have 2 = σ(N)
N

>
∏ σ(s

ci
i )

s
ci
i

≥
∏ σ(t

ei
i )

t
ei
i

, where the last inequality follows from

Lemma C. By hypothesis,
∏ σ(t

ei
i )

t
ei
i

> 2. This is a contradiction.

Theorems

We will start first with an elementary Theorem which provides necessary conditions for
cubes to be OP.

Theorem 1: Cube Rule: If N is a cube, and q ≡ 1 (mod 3) or 3 - N , then N is not an odd perfect
number.

Proof. Suppose N is a OP and a cube, which implies N = m3 for some m ∈ Z+. Then

(1) σ(N) = 2N = 2(q3t ∗ p6h1
1 ∗ p6h2

2 ∗ ... ∗ p6hk
k ), for distinct primes pi and q, with t odd.

Note that the power of each odd prime factor of σ(N) is ≡ 0 (mod 3).

By Lemma A, this means that the σ(N) is the product of σ(q3t) times factors congruent
to 1 (mod 3). So σ(N) is ≡ σ(q3t) (mod 3) for some odd e.

First assume that q ≡ 1 (mod 3). We know the σ(N) ≡ 3t + 1 ≡ 1 (mod 3), which
implies that the RHS of (1) must also be ≡ 1 (mod 3). So far this gives us
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2(q3t ∗ p6h1
1 ∗ p6h2

2 ∗ ... ∗ p6hk
k ) ≡ 1 (mod 3). Divide through by 2 to get

(2) q3t ∗ p6h1
1 ∗ p6h2

2 ∗ ... ∗ p6hk
k ≡ 2 (mod 3).

Since q ≡ 1 (mod 3), q3t ≡ 1 (mod 3) as well. So by (2), at least one of the p6hi
i must

be ≡ 2 (mod 3). That is impossible since 2 is not a square (mod 3).

Now we will assume that 3 - N (with q ≡ 2 (mod 3)). This implies that 3 - σ(q3t), since
σ(q3t)|N . This contradicts Lemma B and finishes the proof.

Theorem 2: If 3|N , N = qe ∗ a2B1
1 ∗ a2B2

2 ∗ ... ∗ a2Bn
n with q and ai distinct primes, B1 ≡ B2 ≡ ... ≡

Bn ≡ 2 (mod 5), q ≡ e ≡ 1 (mod 4), and e,Bi ∈ Z+, then N is not an odd perfect
number.

Proof. Suppose 3|N with N OP. By Lemma D (with f = 4),

σ(a4
i )|σ(a2Bi

i ) for all i with 1 ≤ i ≤ n.

In 1941, Kanold ([KAN1]) proved that the 4th power of any common factor of 2Bi + 1
for all 1 ≤ i ≤ n divides N . By this result, 54|N .

By hypothesis, 34|N , since q 6= 3. Therefore, σ(34) = 112|N , or 114|N , since q 6= 11.
But this means that (by Lemma C)
σ(N)

N
> σ(34)

34 ∗ σ(54)
54 ∗ σ(114)

114 = 121
34 ∗ 781

54 ∗ 16105
114 = 1521938605

741200625
= 2.053342 > 2.

This contradicts σ(N) = 2N .

Theorem 3: If 3|N , N = qe ∗ a2B1
1 ∗ a2B2

2 ∗ ... ∗ a2Bn
n with q and ai distinct primes, B1 ≡ B2 ≡ ... ≡

Bn ≡ 38 (mod 77) and q ≡ e ≡ 1 (mod 4), Bi ∈ Z+, then N is not an odd perfect
number.

Proof. Suppose N is OP and 3|N . In 1941, Kanold ([KAN1]) proved that the 4th power
of any common factor of 2Bi + 1 for all 1 ≤ i ≤ n divides N . In addition, by Lemma D
(f = 76) we know that σ(a76

i )|σ(a2Bi
i )|N .

By Kanold, we know that 7 and 11|N . By hypothesis, we know 3|N . Since q is not in
the set {3, 7, 11, 23} (as q ≡ 1 (mod 4)), we note that σ(376) = 23 ∗ 1093 ∗ 3851 ∗C2|N ,
for some large pseudo-prime C2. Most importantly, this means that 234|N , since it is
by hypothesis one of the ai. This in turn means that by Lemma D (with f = 76),
(3 ∗ 7 ∗ 11 ∗ 23)76|N .

Let T1 = {3, 7, 11, 23}. Then σ(N)
N

>
Q

(σ(t4))Q
(t4)

where the product is over t ∈ T1. So (by

Lemma C)

σ(N)
N

≥ σ(34)
34 ∗ σ(74)

74 ∗ σ(114)
114 ∗ σ(234)

234 = 121
81
∗ 2801

2401
∗ 16105

14641
∗ 292561

279841
= 2.004086 > 2.
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Theorem 4: If 3|N , N = qe ∗ a2B1
1 ∗ a2B2

2 ∗ ... ∗ a2Bn
n with q and ai distinct primes, B1 ≡ B2 ≡ ... ≡

Bn ≡ (7∗11∗k−1)
2

(mod 7 ∗ 11 ∗ k) and e,Bi, k ∈ Z+, and with q ≡ e ≡ 1 (mod 4), then
N is not an odd perfect number.

Proof. Suppose N is OP, 3|N and all Bi ≡ 77k−1
2

mod (77k).

Then all Bi ≡ 38 (mod 77) because

2 ∗Bi (for all i from 1 to n) ≡ 2 ∗ 77k−1
2

≡ 77k − 1 ≡ 76 (mod 77).

Therefore the result follows from Theorem 3.

This method gives a contradiction whenever a product p4
1 ∗ p4

2 ∗ ... ∗ p4
k which divides N

generates a value of σ(N)
N

> 2. Such products include:

(3) (3 ∗ 5 ∗ 13)4,

(4) (3 ∗ 5 ∗ 17 ∗ 113)4,

(5) (3 ∗ 5 ∗ 19 ∗ 67)4,

(6) (3 ∗ 7 ∗ 13 ∗ 17)4,

(7) (3 ∗ 7 ∗ 11 ∗ 23)4,

(8) (3 ∗ 11 ∗ 13 ∗ ∗17 ∗ 19 ∗ 563)4, and

(9) (5 ∗ 7 ∗ 11 ∗ 13 ∗ 19 ∗ 37)4.

Many more examples can be obtained from (3)− (9) through application of Lemma C.
For example, (3 ∗ 5 ∗ 7)4 and (3 ∗ 5 ∗ 11)4 follow from (3), and (3 ∗ 5 ∗ 17 ∗ 19)4 follows
from (4). Some more examples are provided in the proposition below.

The following proposition shows that no odd perfect number can contain five small
primes that include 3 and 5 (with all primes to the 4th or higher power).

Proposition: Small Primes Rule: If 34, 54, p4
1, p4

2, and p4
3|N with pi distinct primes between 6 and 46,

then N is not odd perfect.

Proof. As in the proof of Theorem 4,

σ(N)
N

> σ(34)
34 ∗ σ(54)

54 ∗ σ(434)
434 ∗ σ(414)

414 ∗ σ(374)
374 = 121

81
∗ 781

625
∗ 3500201

3418801
∗ 2896405

2825761
∗ 1926221

1874161
= 2.013323 > 2,

so N cannot be OP. This follows by Lemma C.

In summary, we have the following generalization of Theorem 4:

If N = qe ∗ a2B1
1 ∗ a2B2

2 ∗ ... ∗ a2Bn
n with q and ai distinct primes, B1 ≡ B2 ≡ ... ≡ Bn ≡

1
2
∗ (p1 ∗ p2 ∗ ... ∗ pj ∗ k − 1) (mod p1 ∗ p2... ∗ pj ∗ k) and e, Bi, k ∈ Z+ q ≡ e ≡ 1 (mod
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4), and
∏

(pi) is a product of primes such as those in (3)− (9) s.t.
σ(
Q

p4
i )

Q
p4

i
> 2, then N

is not an odd perfect number.

This paper will conclude with a strengthening of ’The Rule of 3’s’ (originally proved in
the historical section).

Theorem 5: If 3|N , and if the power of the prime 3 in N is exactly 2, and if the powers of 13, 61,
and 97 (if they appear) are ≡ 2 (mod 3), then N is not an odd perfect number.

Proof. Suppose for the purpose of finding a contradiction that N is OP and 3|N . By
hypothesis, this means 32||N , and therefore σ(32) = 13|N .

Note that N = qe ∗ a2B1
1 ∗ a2B2

2 ∗ ... ∗ a2Bn
n with q and ai distinct primes, q ≡ e ≡ 1 (mod

4), and all Bi ∈ Z+.

In the following lines we will be using Lemma D (with f = 2).

Note that σ(132)|σ(132B1)|N , where 132B1||N (for some B1 ∈ Z+). This implies that
σ(132) = 3 ∗ 61|N .

Similarly, σ(612)|σ(612B2)|N , where 612B2||N (for some B2 ∈ Z+). This means that
σ(612) = 3 ∗ 13 ∗ 97|N .

Finally, σ(972)|σ(972B3)|N with 972B3||N (for some B3 ∈ Z+). This implies that
σ(972) = 3 ∗ 3169|N .

This means that σ(972B3) ≡ σ(612B2) ≡ σ(132B1) ≡ 0 (mod 3), and thus 33|N . This is
a contradiction.

This result provides a lower bound when the powers of 3, 13, 61, and 97 (in an integer
N) are exactly 2. In this case, N cannot be odd perfect by Theorem 5. So if N is OP
with 3|N either:

A) 32||N and the power of one of 13, 61, and 97 must be 3 or higher, or

B) 34|N (since q cannot be 3 since q ≡ 1 (mod 4), and q is the only prime that can be
taken to an odd power).

References

1. (BRA) Brauer, A. On the non-existence of odd perfect numbers of the form pa ∗ q2
1 ∗

q2
2... ∗ q2

t−1 ∗ q4
t . Bull Amer. Math. Soc. 49 (1943) 712-718.

2. (BRE) Brent, R. P.; Cohen, G. L.; te Riele, H. J. J. Improved techniques for lower
bounds for odd perfect numbers. Math. Comp. 57 (1991) no. 196, 857-868.

3. (CHE) Chein, E.Z. Ph.D. Thesis, Pennsylvania State University (1979).

9



4. (COH1) Cohen, G.L. and Williams, R.J. Extensions of some results concerning odd
perfect numbers. J. Fibonacci Quart. 23 (1985) 70-76.

5. (COH2) Cohen, G.L. On the total number of prime factors of an odd perfect number.
Appendix A.3, Ph.D. Thesis, University of New South Wales (1982).

6. (EUL) Euler, L. Commentationes arithmeticae collectae, vol. 2, Tractatus de nu-
merorum doctrina. 1849, p514; Opera postuma, vol. 1, (1862) pp 14-15.

7. (HAG1) Hagis P. Jr., Sketch of a proof that every odd perfect number relatively
prime to three has at least eleven prime factors. Math. Comp. 40 (1983) 399-404.

8. (HAG2) Hagis P. Jr., Outline of a proof that every odd perfect number has at least
eight prime factors. Math. Comp. 35 (1980) 1027-1032.

9. (HAG3) Hagis P. Jr., W. L. McDaniel. A new result concerning the structure of odd
perfect numbers. Proc. Amer. Math. Soc. 32 (1972) 13-15.

10. (IAN) Iannucci, D.E.; Sorli, R.M. On the total number of prime factors of an odd
perfect number. Math. Comp. 72 (2003) no. 244, 2078-2084.

11. (KAN1) Kanold, Hans Joachim. Untersuchungen ueber ungerade vollkommene
Zahlen. J. Reine Angew. Math. 193 (1941) 98-109.

12. (KAN2) Kanold, Hans Joachim. Einige neuere Bedingungen fuer die Existenz
ungerader vollkommene Zahlen. J. Reine Angew. Math 192 (1953) 24-34.

13. (KAN3) Kanold, Hans Joachim. Saetze ueber Kreisteilungspolynome und ihre An-
wendungen auf einige zahlentheoretische Probleme, II. J. Reine Angew. Math. 188
(1950) 129-46.

14. (KIS) Kishore, M. Odd perfect numbers not divisible by three are divisible by at
least eleven distinct primes. Math. Comp. 40 (1983) 405-411.

15. (MCD) McDaniel, W.L.; Hagis, P. Jr. Some results concerning nonexistence of odd
perfect numbers of the form pa ∗m2B. The J. Fibonnacci Quart. 13 No 1. (1975) 25-28.

16. [MCD2] McDaniel, W.L. The non-existence of odd perfect numbers of a certain
form. Arch. Math. 21 (1970) 52-53.

17. (MCC) McCarthy, Paul J.. Remarks concerning the non-existence of odd perfect
numbers. American Mathematical Monthly (1957) 257-258.

10



18. (STE) Steuerwald, R. Verschaerfung einer notwendigen Bedingung fuer die Existenz
einer ungeraden vollkommenen Zahl. S.-B Math.-Nat. Kl. Bayer. Akad. Wiss., (1937)
68-73.

11


