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ABSTRACT

This paper will treat three topics motivated by chemical reaction networks with mass-
action kinetics; they are commonly referred to as deficiency, determinant expansions, and
sign patterns. The dynamics of a chemical reaction network are governed by a non-linear
system of ordinary differential equations

dx

dt
= f(x),

and what is observed in experiments is often equilibria states, {x : f(x) = 0} of this
differential equation.

A major issue is counting the number of equilibria, and in particular determining if
there is a unique equilibrium. There are two main hypotheses which insure that a chem-
ical reaction has a unique equilibrium. The most classical one is known as the deficiency
0 condition, while more recently a condition on the determinant of the Jacobian of f
has been fruitful. Since either of these conditions on f separately imply that there is
a unique equilibria, it is natural to ask: does one condition imply the other? In this
thesis we demonstrate that the answer is no. Indeed we give concrete examples showing
that the ”deficiency” and key properties of the Jacobian’s determinant expansion have
no simple bearing on each other.

The thesis also contains a study of the two standard ways of representing f for a
chemical reaction network; we refer to them as the Stoichiometric Representation and
the Complexes Representation. We show that a system which has one of these repre-
sentations also has the other and we layout precisely the correspondence between them.
At some level this is in the chemistry literature, but we could not find a reference which
did this thoroughly at a high level of generality.

The thesis concludes with another topic, that of ”sign patterns” of the Jacobian of f .
Through various examples, we show sign patterns also have no relation to the deficiency
of a chemical network. Additionally, we extend some known theoretical results on sign
patterns of Jacobians and give an approach and results showing how to proceed on
networks which fail to have a sign pattern.
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1. Introduction

This paper will treat three topics motivated by chemical reaction networks with mass-
action kinetics; these are commonly known as deficiency, determinant expansions, and
sign patterns. The dynamics of a chemical reaction network are governed by a non-linear
system of ordinary differential equations

dx

dt
= f(x).

First, we study chemical reaction networks and the two standard ways of representing
f for a chemical reaction network, which we call the Stoichiometric Representation and
the Complexes Representation, and layout precisely the correspondence between the two
systems. A major issue is counting the number of equilibria of the differential equation,
and in particular determining if there is a unique equilibrium. There are two main
hypotheses which insure that a chemical reaction has a unique equilibrium. The most
classical one is known as the deficiency 0 condition, while more recently a condition on
the determinant of the Jacobian of f has been fruitful. Since either of these conditions
on f separately imply that there is a unique equilibria, it is natural to ask: does one
condition imply the other? We demonstrate that the answer is no. Lastly, we extend
some theoretical results on ”sign patterns” of the Jacobian of f , and then show that
sign patterns have no relation to the deficiency of a chemical network.

Remark 1.1. Throughout this work, whenever we refer to a chemical reaction network,
we always assume it has mass-action kinetics (see [CHWprept]) without explicitly
saying so. Mass-action kinetics is motivated by chemistry considerations, and a full
discussion of it is beyond the scope of this work. We refer the reader to [F79] for a
comprehensive account of mass-action kinetics.

1.1. Differential Equations of Chemical Reaction Networks. Our main objective
in each section is to analyze systems of differential equations associated to chemical
reaction networks. To this end, we first consider differential equations that act on the
non-negative orthant, Rd

≥0 in Rd:

(1.1)
dx

dt
= f(x),

where f : Rd
≥0 → Rd. The differential equations we will study are when (1.1) has a

special form, and differential equations of this form can be written two different ways
which we now present.

1.1.1. Stoichiometric Representation of a Chemical Reaction Network. A special form
of equation (1.1) above is

(1.2)
dx

dt
= f(x) = Sv(x)

where S is an integer d× d′ matrix (commonly referred to as the Stoichiometric ma-
trix), x ∈ Rd

≥0, and v(x) = v : Rd
≥0 → Rd′

≥0 is a vector consisting of d′ strictly mono-
tonically increasing, smooth functions. Now let U = U(x) := Jacobian(v(x)) = v′(x), a
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matrix-valued function of partial derivatives of the entries of v(x). In other words, if we
write v(x) = (v1(x), . . . , vd′(x))T ∈ Rd′

, then U is a matrix function such that,

(1.3) Uij = Uij(x) =
∂vi

∂xj

where Uij denotes the entry of U appearing in row i and column j.

For our purposes, we are only interested in the non-zero entries of matrix U . Thus,
we will write the entry of U appearing in row i and column j as Uij iff ∂vi

∂xj
6= 0 and 0

otherwise.

By the linearity of the derivative, we see that in the equation (1.2),

(1.4) f ′(x) = (Sv(x))′ = Sv′(x) = SU

Of particular interest is when the equation in (1.2) has Reaction Form (RF). This
means:

Sij ≥ 0 iff Uji = 0 and Sij < 0 iff Uji > 0,

where Uji > 0 means
∂vj

∂xi
(x) > 0 for each x ∈ Rd

>0. Sometimes we will say that the
Stoichiometric matrix S is RF because the entries of U depend entirely on the ma-
trix S. Notice that the RF condition implies each entry of U is non-negative on the
non-negative orthant Rd

≥0 in Rd. RF differential equations arise naturally in chemical
reactions as we discuss in Section 2 and give examples. When RF differential equations
do arise from a chemical reaction network, we call this system of differential equations
the Stoichiometric Representation of a reaction network (see §2.2).

We now turn to a different representation of RF differential equations that is commonly
studied in relation to chemical reaction networks.

1.1.2. Complexes Representation of a Chemical Reaction Network. In addition to the
Stoichiometric Representation of a chemical network, another common way of writing
differential equations associated to a chemical network is

(1.5)
dx

dt
= Y AκΨ(x), x ∈ Rd

≥0

where Y is a d×n matrix of integers, Aκ is a n×n constant matrix such that the entries
in each of its columns sum to 0, and Ψ(x) is a vector consisting of n monomials. We
call this system of differential equation the Complexes Representation of a chemical
network (see §2.3).

In Theorem 2.8 and Proposition 2.9 we show that the Stoichiometric Representation
and the Complexes Representation represent the exact same system of differential equa-
tions, and we provide an algorithm for decomposing the Stoichiometric Representation
dx
dt

= Sv(x) into the Complexes Representation dx
dt

= Y AκΨ(x), and vice versa. Thus, we
are justified in our earlier statement that the Complexes Representation is another way
of writing RF differential equations when such equations arise from a chemical reaction
network. Of particular interest is the number and type of equilibria for these differential
equations. The deficiency 0 method (see §3) is used to analyze equilibria for the Com-
plex Representation, while the core determinant method (see §3) is used to analyze
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equilibria of the Stoichiometric Representation. We now give a brief introduction to
these two methods.

1.2. Deficiency versus Determinant of the Jacobian f’(x)= SU. Two powerful
tools used to analyze equilibria for RF differential equations arising from a chemical reac-
tion network are the deficiency and the core determinant associated to the network.
We now provide some brief definitions and motivation for these two concepts.

Definition 1.2. For the Complex Representation in (1.5) corresponding to a chemical
reaction network, the deficiency of the network is defined to be

dim(kerY ∩ ImAκ).

Definition 1.3. For the matrices S ∈ Rd×d′
, U ∈ Rd′×d described in §1.1.1, with r :=

rank(S), the core determinant is defined to be

(1.6) cd(S) := lim
t→0

1

td−r
det(SU − tI).

Since S is a constant matrix, the expression cd(S) is a polynomial in the functions Uij(x),
which are the entries of the matrix function U(x) = v′(x) as described in §1.1.1. Hence,
it makes sense to write cd(S) = cd(S)(x) for x ∈ Rd

≥0. Also, we will say that cd(S) has a
Determinant Sign (DetSign) iff all the terms in the determinant expansion have the
same sign. Notice that since each entry Uij(x) of matrix U is a non-negative function
on the positive orthant Rd

≥0, the core determinant having a DetSign implies cd(S)(x) is

sign invariant for each x ∈ Rd
≥0.

Definition 1.4. Let S be the d×d′ Stoichiometric matrix defined in §1.1.1. A (positive)
stoichiometric compatibility class is a nonempty set of the form Rd

≥0 ∩ (ImS + c)

for some c ∈ Rd
≥0.

There are two important results regarding the equilibria of a chemical network when
the deficiency of the network is 0 or cd(S) has a DetSign. One of the results introduces
a concept called weak reversibility of a reaction network, which we refer the reader to
[G03] for a full discussion. We state both of these results in the following two theorems.

Theorem 1.5. A weakly reversible mass-action chemical reaction network with defi-
ciency 0 contains one unique equilibrium point in each positive stoichiometric compati-
bility class.

Theorem 1.6. Suppose dx
dt

= fb(x) := Svb(x) has reaction form with vb(x) once con-
tinuously differentiable in x and depending continuously on a parameter 0 ≤ b ≤ 1.
Suppose each component vb

j(x) is monotone nondecreasing. Suppose M is a compact,
positive stoichiometric compatibility class. Suppose cd(S) has a Determinant Sign.

If there are no zeros fb(x) = 0 for any b and any x on the boundary of M , then the
number of zeros for fb in the interior of M is independent of b.

Theorem 1.5 (see [G03]) and Theorem 1.6 (see [HKG08]) reveal that a network hav-
ing 0 deficiency or the core determinant having a DetSign imply similar strong results
regarding the uniqueness of equilibria for the chemical network.
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A natural question to ask is whether the deficiency of a chemical network correlates
to the core determinant having a DetSign; in other words, is there any overlap between
the deficiency 0 condition and the DetSign condition? Surprisingly, the answer is no.
We show that a network having 0 deficiency has no correlation to whether the core
determinant has a Determinant Sign (§3 Example 3.8 and 3.9). In the same section, we
also compare deficiency to other determinant variations.

1.3. Sign Pattern of SU = f ′(x). The final topic presented in this thesis, see §4,
concerns when the matrix SU described in §1.1.1 is a sign definite matrix [BS95]. The
subject of sign definite matrices considers classes of matrices having a fixed sign pattern
(two matrices are in a given class iff each of their entries has the same sign (or is 0)),
then one studies determinants. In the case of RF differential equations, one approach
to analyzing equilibria for the system is to study the core determinant expansion of SU
described earlier (see [HKG08]). In general, one could use sign definite matrix theory
to analyze the determinant of a matrix, but in the case of RF differential equations, the
matrix SU is defined to be a matrix-valued function, and hence, will often not be sign
definite. Nevertheless, we may extend the definition of a fixed sign pattern to the matrix
SU so that sign definite matrix theory would apply. This will be the motivation behind
the next set of definitions.

Definition 1.7. With the notation in (1.3) and (1.4) in §1.1.1, we will say that an entry
of the matrix SU in row i and column j,

(SU)ij =
d′∑

k=1

SikUkj

has a sign if Sik ≤ 0, ∀k ∈ {1, . . . , d′} or Sik ≥ 0, ∀k ∈ {1, . . . , d′}; i.e., (SU)ij has a
sign means that it is a non-negative or non-positive linear combination of the entries of
matrix U. The matrix SU is said to have a sign pattern (SP) if each entry of SU has
a sign. Thus, saying that SU has a sign pattern means that every entry of the matrix
SU is a positive or negative linear combination of the entries of matrix U . If an entry
does have a sign, we will say that the sign of that entry is minus (-) if it is a negative
linear combination, plus (+) if it is a positive linear combination, and 0 otherwise. If
an entry happens to be constant, we will still say that the entry has a sign, and it will
be plus, minus, or 0 depending on whether the entry is positive, negative or 0. If two
matrices have a sign pattern, they are said to have the same sign pattern iff every entry
of one matrix has the same sign as the corresponding entry of the other matrix. Here
are a few examples.

Example 1.8. Consider:

(1.7) SU =

[
−U11 − 2U21 U12 + 4U22

U11 + U21 0

]
This matrix has as a sign pattern since the sign of (SU)11 is minus, the sign of (SU)21

is plus, the sign of (SU)12 is plus, and the sign of (SU)22 is 0. Now consider:

(1.8) S̃Ũ =

[
−Ũ11 + 2Ũ21 Ũ12 + 4Ũ22

Ũ11 + Ũ21 0

]
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Since entry (S̃Ũ)11 is neither a positive nor negative linear combination of the entries of
U, it does not have a sign, and hence, S̃Ũ does not have a sign pattern. With all these
definitions, the matrix in (1.7) has the same sign pattern as:[

−1 +1
+1 0

]
�

In §4 Corollary 4.2, we extend results in [HKG08] to determine necessary and sufficient
conditions for an entry of SU to have a sign. We also show how under certain conditions,
that sign pattern analysis may still apply to SU even if it does not have a sign pattern.
Finally, we show that deficiency 0 and having a sign pattern are not correlated (see §4.2
Example 4.6 and 4.7).

2. Chemical Reaction Networks

The goal of this section is to provide the necessary background and theoretical results
for comparing deficiency and determinant expansions, which we do in §3.

This section first introduces the basic setup and definitions, accompanied by examples,
of chemical reaction networks. We then study the two standard ways of representing
differential equations arising from a chemical reaction network; we refer to them as
the Stoichiometric Representation and the Complexes Representation. We show that a
system which has one of these representations also has the other, and we layout precisely
the correspondence between them. Also, we provide an algorithm in Proposition 2.4
of how to construct chemical reaction networks when starting with a certain type of
matrix; we use this result repeatedly in §3 when we analyze deficiency versus determinant
expansions.

2.1. Basic Setup of Chemical Reaction Networks. As previously mentioned, cer-
tain classes of chemical reaction networks are modeled naturally by RF systems of dif-
ferential equations. A comprehensive and intuitive account of how differential equations
are built from chemical reaction networks can be found in [F79]. In this paper, we will
be content with only a formal mathematical treatment of chemical reaction networks
and the differential equations associated to them.

Suppose we are given a certain set of chemical reactions R with |R| < ∞. Set

S = {S1, S2, ..., Sn},
the ordered set of all species which occur in all elements (i.e. chemical reactions) in R.
By definition, r ∈ R means

(2.1) r =
n∑

i=1

aiSi →
n∑

i=1

biSi,

with a1, a2, . . . , an, b1, . . . , bn ∈ R≥0 and satisfy ai 6= 0 ⇒ bi = 0 and bj 6= 0 ⇒ aj = 0
for any i, j ∈ {1, . . . , n}. Each reaction has exactly one input and exactly one output,
which we call the complexes. Thus, a complex is just a non-negative, integer linear



9

combination of species, and we may think of a reaction as a relation on 2 complexes that
is given by an arrow (→). Indeed, the input of a reaction is the complex on the left side
of the arrow, and the output to a reaction is the complex on the right side of the arrow.
In reaction r of (2.1), we have complexes,

∑n
i=1 aiSi, and

∑n
i=1 biSi. We will denote C

as the set of all such complexes. Indeed, since each reaction has exactly one input and
one output, and each complex must contain at least one species, we have the relation,
|S| ≤ |C| ≤ 2|R|. There is a natural injective, map, ϕ : C → Zn

≥0 defined by

ϕ(
n∑

i=1

aiSi) = (a1, . . . , an)T

From now on we will identify a complex with its image under ϕ; i.e., a complex will be a
vector of non-negative integers determined by its representation as a linear combination
of species. To proceed, let

C = {y1, y2, . . . , yk}
be some ordering of the complexes. Also, for each reaction yi → yj ∈ R, i, j ∈ {1, . . . , k},
we associate a positive rate constant κi→j ∈ R>0. Sometimes, we shall write κyi→yj

instead of κi→j whenever it is more convenient. Let

K = {κi→j ∈ R>0 : yi → yj ∈ R}
be the set of all reaction rate constants. Thus, |K| = |R| by construction. We will also
insist on two more special properties of R:

(1) y → y 6∈ R for any y ∈ C

(2) For every yi ∈ C, there exists yj ∈ C such that yi → yj ∈ R or yi → yj ∈ R

To formalize this setup, we define a chemical reaction network where d species and
n complexes participate in d′ chemical reactions as a quadruple (S, C,R,K) of ordered
species (S), ordered complexes C, reactions (R), and reaction rate constants (K). As
just described, S, C,R, and K are given by

S = {S1, S2, ..., Sd}
C = {y1, y2, . . . , yk}, yi ∈ Zd

≥0, i = 1, . . . , k

R = {yi1 → yj1 , . . . , yid′ → yjd
}, where yis , yjt ∈ C for s, t = 1, . . . , d

K = {κi→j ∈ R>0 : yi → yj ∈ R}.
�

We now present an example of a chemical reaction network.

Example 2.1. Suppose we had the set of reactions,

A + C � 2D

2D → B + E

B + E → A + C

Then we let our set of species be,

S = {S1, S2, S3, S4, S5}
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with S1 = A, S2 = B, S3 = C, S4 = D, and S5 = E. Notice that we have 3 complexes,
y1 = S1 + S3 ∼ (1, 0, 1, 0, 0)T , y2 = 2S4 ∼ (0, 0, 0, 2, 0)T , y3 = S2 + S5 ∼ (0, 1, 0, 0, 1)T ,
so that our set of complexes is

C = {y1, y2, y3}.
We can write our set of reactions as,

R = {y1 → y2, y2 → y1, y2 → y3, y3 → y1}.
This means we will only have rate constants κ1→2, κ2→1, κ2→3, and κ3→1. Thus,

K = {κ1→2, κ2→1, κ2→3, κ3→1}.
�

Now that we have the basic setup, we want to analyze systems of differential equations
associated to a given chemical reaction network. There are two common ways to describe
such differential equations, and we shall present each of these ways in the following two
subsections.

2.2. The Stoichiometric Representation dx
dt

= Sv(x). Let (S, C,R,K) be an arbi-
trary chemical reaction network, as introduced in §2.1, where we have

|S| = d, |C| = k, |R| = |K| = d′

Let us write our set of reactions as

R = {yi1 → yj1 , . . . , yid′ → yjd′}, where yis , yjt ∈ C for s, t = 1, . . . , d′.

We set S to be the d× d′ stoichiometric matrix:

S =

 | | |
yj1 − yi1 yj2 − yi2 . . . yjd′ − yjd′

| | |


where the t’th column of S is yjt−yit , a vector with d components obtained by subtracting
the vectors yjt and yit .

Before proceeding, let us introduce some convenient notation. For x = (x1, . . . , xd)
T ∈

Rd and w = (w1, . . . , wd)
T ∈ Rd, we denote,

xw :=
d∏

i=1

xwi
i

With this new notation, let v : Rd → Rd′
be a vector of monomials with rate constants

given by:

v(x) =


κi1→j1x

yi1

κi2→j2x
yi2

...
κid′→jd′x

yid′

 .

By writing v(x) = (v1(x), . . . , vd′(x))T , we see that each monomial vt(x) is corresponding
to the reaction yit → yjt and depends only on the input yit of the reaction. Also, if we
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write S = (Sij), then the entries of v(x) are completely determined by the entries of S
since a quick observation reveals that we have,

(2.2) vt(x) = κit→jt

d∏
n=1

x|min{0,Snt}|
n = κit→jtx

yit for t = 1, . . . , d′.

The differential equations that we associate to this network of chemical reactions are
precisely,

(2.3)
dx

dt
= Sv(x), x ∈ Rd

≥0

Differential equations that arise from a chemical reaction network, and are written in
the form of (2.3) are said to be in Stoichiometric Form. The differential equations
dx
dt

= Sv(x) are said to be the Stoichiometric Representation of the chemical reaction
network. An immediate consequence is that this construction actually gives us an RF
system of differential equations.

Proposition 2.2. The Stoichiometric Representation dx
dt

= Sv(x) in (2.3) is RF.

Proof. Formal differentiation of formula (2.2) using the power rule (although with a
slight abuse of notation) gives,

Utj =
∂vt

∂xj

= κit→jt|min{0, Sjt}|
∏d

n=1 x
|min{0,Snt}|
n

xj

Hence, Utj = 0 iff Sjt ≥ 0 and Utj 6= 0 iff Sjt < 0. This is precisely the definition of an
RF system.

�

Example 2.3. We now present a concrete example taken from [CF06] of writing the
Stoichiometric Representation of a chemical reaction network.

Consider the chemical network of reactions among species A, B, M, N, R, X, Y, and Z :

(2.4) A + M � X, B + N � Y → 2A + N, B + X � Z → R + M

Our ordered set of species (S), complexes (C), and reactions (R) are precisely

S = {A, B, M, N,R, X, Y, Z}
C = {y1, y2, . . . , y8} with

y1 = A + M ∼ (1, 0, 1, 0, 0, 0, 0, 0)T , y2 = X ∼ (0, 0, 0, 0, 0, 1, 0, 0)T

y3 = B + N ∼ (0, 1, 0, 1, 0, 0, 0, 0)T , y4 = Y ∼ (0, 0, 0, 0, 0, 0, 1, 0)T

y5 = 2A + N ∼ (2, 0, 0, 1, 0, 0, 0, 0)T , y6 = B + X ∼ (0, 1, 0, 0, 0, 1, 0, 0)T

y7 = Z ∼ (0, 0, 0, 0, 0, 0, 0, 1)T , y8 = R + M ∼ (0, 0, 0, 0, 1, 0, 1, 0)T

R = {y1 � y2, y3 � y4, y4 → y5, y6 � y7, y7 → y8}
where ∼ denotes the image of a complex under the map φ in §2.1. Direct computation
shows that our Stoichiometric matrix S is

S =

 | | | | | | | |
y2 − y1 y1 − y2 y4 − y3 y3 − y4 y5 − y4 y7 − y6 y6 − y7 y8 − y7

| | | | | | | |
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=



−1 1 0 0 2 0 0 0
0 0 −1 1 0 −1 1 0
−1 1 0 0 0 0 0 0
0 0 −1 1 1 0 0 0
0 0 0 0 0 0 0 1
1 −1 0 0 0 −1 1 0
0 0 1 −1 −1 0 0 1
0 0 0 0 0 1 −1 −1


,

and our vector v(x) with x = (x1, . . . , x8)
T is given by

v(x) =



κA+M→Xxy1

κX→A+Mxy2

κB+N→Y xy3

κY→B+Nxy4

κY→2A+Nxy4

κB+X→Zxy6

κZ→B+Xxy7

κZ→R+Mxy7


=



κA+M→Xx1x3

κX→A+Mx6

κB+N→Y x2x4

κY→B+Nx7

κY→2A+Nx7

κB+X→Zx2x6

κZ→B+Xx8

κZ→R+Mx8


.

The differential equations in Stoichiometric Form associated to this chemical network
are precisely dx

dt
= Sv(x).

�

In fact, we actually have a converse to Proposition 2.2 that will allow us to construct
numerous RF systems of differential equations that correspond to chemical reaction
networks when we start with a certain type of matrix.

Proposition 2.4. Let S ∈ Zd×d′
, a d×d′ matrix over the integers such that each column

of S contains at least one positive and one negative entry. Then there exists a vector
valued function v : Rd

≥0 → Rd′
such that the system of differential equations,

dx

dt
= Sv(x)

is RF and is the Stoichiometric Representation of some chemical reaction network.

Proof. Let S be as in the statement of the Proposition. Write S = S+−S− where S+, S−
have non-negative entries given by

(S+)ij =

{
Sij if Sij > 0

0 otherwise
and (S−)ij =

{
−Sij if Sij < 0

0 otherwise

Our assumptions imply that each column of S+, S− is nonzero. Let S = {S1, . . . , Sd} be
an arbitrary collection of species. Define the map φ : Zd → spanZS by

φ(a) =
d∑

i=1

aiSi for a = (a1, . . . , ad)
T ∈ Zd

Let {yi1 , . . . , yi′d
} be the ordered columns of S− and {yj1 , . . . , yj′

d
} be the ordered columns

of S+. By construction, the t’th column of S is precisely yjt − yit . Now, identify the



13

columns of S+ and S− with their image under φ. Let R be the set of reactions,

R = {yi1 → yj1 , . . . , yid′ → yjd′}

If we let K be the set of rate constants that correspond to these reactions and C :=
{yi1 , . . . , yi′d

, yj1 , . . . yj′
d
} be the set of complexes, we have a chemical reaction network

given by (S, C,R, C) whose Stoichiometric matrix is precisely S. Proposition 2.3 shows
that the system of differential equations dx

dt
= Sv(x) for x ∈ Rd

≥0 as constructed in (2.3)
is RF.

�

Differential Equations in Stoichiometric Form share many nice properties, and are
studied extensively in the chemical literature. One may refer to [Pa06] and [F79] for
some examples of these.

There is another way of representing this system of differential equations associated
to a chemical reaction network, which has other significant properties. This will be the
topic of the next section.

2.3. The Complexes Representation dx
dt

= Y AκΨ(x). Let (S, C,R,K) be an arbi-
trary chemical reaction network as presented in §2.1, where we set

d = |S|, k = |C|, d′ = |R| = |K|

Now let Y : R|C| → R|S| be the matrix defined by

Y :=

 | |
y1 . . . yk

| |


As described before, each reaction, yi → yj, i, j ∈ {1, . . . , k} has a corresponding rate

constant κi→j. Now let A : R|C| → R|C| be a matrix defined by:

Aij =

{
κi→j if yi → yj ∈ R
0 otherwise

,

where Aij is the entry in row i and column j of matrix A. Notice that our restrictions
on what types of reactions are permissable imply that A will have 0’s along its diagonal.
Now define the matrix Aκ : R|C| → R|C|, such that,

Aκ = AT − diag(A · 1),

where 1 is a vector with |C| components consisting of 1’s, and for any vector v =
{v1, . . . , vn}T ∈ Rn, diag(v) is an n× n matrix defined by,

(diag(v))ij =

{
vi if i = j

0 otherwise
.
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Thus, diag(A · 1) is a matrix with row sums of matrix A along its diagonal and 0’s
everywhere else. Indeed the entry in row i and column j of matrix Aκ is:

(Aκ)ij =


κj→i if i 6= j and yi → yj ∈ R

0 if i 6= j and yi → yj ∈ R

−
∑|C|

m=1 Aim if i = j

Finally we let Ψ(x) : Rn → R|C|×1 be the vector of monomials defined by:

Ψ(x) =


xy1

xy2

...
xyk

 ,

where x = (x1, . . . , xn)T , and we consider the differential equations,

(2.5)
dx

dt
= Y AκΨ(x)

This system is well-defined since Y is a |S| × |C| matrix, Aκ is a |C| × |C| matrix and
Ψ(x) is a vector with |C| components. Differential equations associated to a chemical
reaction network that are constructed as in (2.5) are the Complexes Representation
of the chemical reaction network. �

Remark 2.5. In the above construction, we must always pick an ordering for the com-
plexes and species to proceed. For example, if we had the reaction,

2H + O → H2O,

we could label the species as S1 = H, S2 = O, and S3 = H2O. Picking an ordering is
always a matter of preference, and there is no unique way to do it. Indeed we could
have ordered the species above as S1 = O and S2 = H. Thus, two people may pick
different ordering and then come up with different matrices Y and Aκ, but any two such
constructions for the same set of chemical reactions will have the same Y , Aκ, and Ψ(x)
after row and column permutations, and will always yield the same system of differential
equations.

We now present an example to illustrate such a construction.

Example 2.6. Suppose we had the set of reactions,

A + C � D

D → B + E

B + E → A + C

Then we let our set of species be,

S = {S1, S2, S3, S4, S5}
with S1 = A, S2 = B, S3 = C, S4 = D, and S5 = E. Notice that we have 3 complexes,
y1 = S1 + S3, y2 = S4, y3 = S2 + S5, so that our set of complexes is,

C = {y1, y2, y3}
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We now have our set of reactions as,

R = {y1 → y2, y2 → y1, y2 → y3, y3 → y1}.
This means we will only have rate constants κ1→2, κ2→1, κ2→3, and κ3→1. Hence our
matrix A is,

A =

 0 κ1→2 0
κ2→1 0 κ2→3

κ3→1 0 0

 .

A simple matrix computation gives:

Aκ = AT − diag(A · 1) =

 −κ1→2 κ2→1 κ3→1

κ1→2 −κ2→1 − κ2→3 0
0 κ2→3 −κ3→1

 .

We also have,

Y =


1 0 0
0 0 1
1 0 0
0 1 0
0 0 1


Another quick computation gives,

(2.6) Ψ(x) =

 x1x3

x4

x2x5


Thus, the Complexes Representation of this chemical reaction network is precisely:

dx

dt
=


dx1

dt
dx2

dt
dx3

dt
dx4

dt
dx5

dt

 = Y AκΨ(x) =


−κ1→2x1x3 + κ3→1x2x5 + κ2→1x4

κ2→3x4 − κ3→1x2x5

−κ1→2x1x3 + κ3→1x2x5 + κ2→1x4

κ1→2x1x3 − κ2→1x4 − κ2→3x4

κ2→3x4 − κ3→1x2x5


One may also check that the Stoichiometric Representation of this network is

(2.7)
dx

dt
=


−1 1 0 1
0 0 1 −1
−1 1 0 1
1 −1 −1 0
0 0 1 −1




κ1→2x1x3

κ2→1x4

κ2→3x4

κ3→1x2x5

 = Sv(x)

and this yields the same system of differential equations as the Complexes Representa-
tion. �

Notice that in the above example, v(x) looks almost like Ψ(x) but with rate constants
attached to monomials, and the columns of matrix S in (2.7) are linear combinations of
the columns of matrix Y in the Complexes Representation. This is not a coincidence;
that is, for arbitrary chemical reaction networks, we will always have

(2.8)
dx

dt
= Sv(x) = Y AκΨ(x)
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and the final results in this section will tell us exactly this. First, some definitions are
needed.

Definition 2.7. Let (S, C,R, κ) be an arbitrary chemical reaction network. For each
complex yj ∈ C, we denote the multiplicity of the complex as

βj := card({yi ∈ C : yj → yi ∈ R}).
Indeed, the multiplicity of a complex is the number of reactions in the network where
the complex serves as an input to the reaction. Thus, complexes that are outputs to
a reaction, but are not an input to any reaction have multiplicity 0. For example, if
we had the set of reactions {A → 2B, A + C � 2D, 2D → B + E, B + E →
A + C }, then the multiplicities of the complexes A, 2B, A+C, 2D, B+E are 1,0,1,2,

and 1 respectively. It follows immediately from our definition that

|C|∑
j=1

βj = |R|.

Also, for each j = 1, . . . , |C| we will write {yj → yj1 , . . . , yj → yjβj
} for the set of

reactions corresponding to complex j. Our definition allows such a set to be empty.

With the notion of multiplicities, we can develop a more convenient form for writing
the Stoichiometric Representation of a chemical reaction network.

Let dx
dt

= Sv(x) be the Stoichiometric Representation of the chemical reaction network.
Recall that the columns of S correspond to the reactions of the network, and that
if we order the reactions differently, we will just be permuting the columns of S and
the corresponding entries of v(x) without changing the actual system of differential
equations. With this in mind, let C = {y1, . . . , yn} be the ordered complexes for the
reaction network. Denote βj := multiplicity of yj, and let Bj be the |S| × βj matrix
given by

Bj :=

 | | |
yj1 − yj yj2 − yj . . . yjβj

− yj

| | |


and let vBj

∈ Rβj denote the vector

vBj
:=


κyj→yj1

xyj

κyj→yj2
xyj

...
κyj→yjβj

xyj


for j = 1, . . . , n. If we order our set of reactions as

R = {y1 → y11 , . . . , y1 → y1β1
, . . . , yj → yj1 , . . . , yj → yjβj

, . . . , yn → yn1 , . . . , yn → ynβn
},

then S and v(x) are precisely

S =
[

B1 B2 . . . Bn

]
, v(x) =

 vB1

...
vBn

 .

In this case, S and v(x) we call a Stoichiometric Canonical Form.



17

�

Theorem 2.8. Let (S, C,R,K) be a chemical reaction network. Suppose dx
dt

= Sv(x)

is the Stoichiometric Representation associated with the chemical network, and let d̃x
dt

=
Y AκΨ(x) be the Complexes Representation of the chemical network. Then

dx

dt
= Sv(x) = Y AκΨ(x).

Proof. Let C = {y1, . . . , yn} be the ordered complexes for the reaction network. Denote
βj := multiplicity of yj, and let Bj be the |S| × βj matrix given by

Bj :=

 | | |
yj1 − yj yj2 − yj . . . yjβj

− yj

| | |


and let vBj

∈ Rβj denote the vector

vBj
:=


κyj→yj1

xyj

κyj→yj2
xyj

...
κyj→yjβj

xyj


for j = 1, . . . , n. Thus, the Stoichiometric Canonical Form of S and v(x) is given by

S =
[

B1 B2 . . . Bn

]
, v(x) =

 vB1

...
vBn

 .

By direct calculation, we have

(2.9) Sv(x) =
n∑

j=1

BjvBj
=

n∑
j=1

βj∑
i=1

κyj→yji
xyj(yj − yji

)

Let Aκ = (aij) be as in the Complexes Representation of the chemical reaction network,
and denote α1, . . . , αn as the columns of Aκ written symbolically as αj = (a1j, . . . , anj)

T .
Then by definition,

(αj)i = aij =


−

∑βj

k=1 κyj→yjk
if i = j

κyj→yjk
if i = jk for some k ∈ {1, . . . , βj}

0 otherwise

Direct computation of Y αj, which is precisely the j’th column of Y Aκ, gives

Y αj =

 | |
y1 . . . yn

| |

αj = (−
βj∑
i=1

κyj→yji
)yj +

βj∑
i=1

κyj→yji
yji

=

βj∑
i=1

κyj→yji
(yji

− yj) =: γj



18

Thus, the computation of Y AκΨ(x) gives

Y AκΨ(x) =

 | |
γ1 . . . γn

| |

 xy1

...
xyn

 =
n∑

j=1

xyjγj

=
n∑

j=1

xyj

βj∑
i=1

κyj→yji
(yji

− yj) =
n∑

j=1

βj∑
i=1

κyj→yji
xyj(yji

− yj) = Sv(x)

where the last equality follows directly from (2.9). �

In many situations, it is more useful to have an explicit algorithm to decompose the
Stoichiometric Representation of a chemical network into the Complexes Representation
of a chemical network, and vice versa. The proof of the following proposition tells us
precisely how to do this.

Proposition 2.9. Let (S, C,K,R) be an arbitrary chemical reaction network with

dx

dt
= Sv(x) = Y AκΨ(x)

as its Stoichiometric and Complexes Representation. Then there exists a |C|×|R| matrix
G and a |R| × |C| matrix K0 such that

dx

dt
= Y GK0Ψ(x) with Y G = S, GK0 = Aκ, and K0Ψ(x) = v(x).

Moreover, we may take G to be a matrix consisting of entries in the set {−1, 0, 1}, and
K0 as a block diagonal matrix (whose blocks are actually vectors) consisting of 0’s and
rate constants.

Proof. Let C = {y1, . . . , yn} be the ordered complexes for the reaction network. Denote
βj := multiplicity of yj, and let Bj be the |S| × βj matrix given by

Bj :=

 | | |
yj1 − yj yj2 − yj . . . yjβj

− yj

| | |


and let vBj

∈ Rβj denote the vector

vBj
:=


κyj→yj1

xyj

κyj→yj2
xyj

...
κyj→yjβj

xyj


for j = 1, . . . , n. Thus, the Stoichiometric Canonical Form of S and v(x) is given by

S =
[

B1 B2 . . . Bn

]
, v(x) =

 vB1

...
vBn

 .
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Each column yji
− yj for i = 1, . . . , βj of Bj is a linear combination of two columns of Y

and hence, is given by yji
− yj = Y γij where γij := {γij

1 , . . . , γij
|C|}T is a column vector of

0’s, 1’s, and -1’s given by

γij
k =


−1 if k = j

1 if k = ji

0 otherwise

Set
Γj := [γ1j, γ2j, . . . , γβjj]

so that we have the equality
Bj = Y Γj.

The matrix G is row obtained as

G := [Γ1, . . . , Γn],

a |C| × |R| matrix with entries in {−1, 0, 1} and we have the computation

Y G = [Y Γ1, . . . , Y Γn] = [B1, . . . , Bn] = S.

Let Aκ = (aij) be as in the Complex Representation of the chemical reaction network,
and denote α1, . . . , αn as the columns of Aκ written symbolically as αj = (a1j, . . . , anj)

T .
Then by definition,

(αj)i = aij =


−

∑βj

k=1 κyj→yjk
if i = j

κyj→yjk
if i = jk for some k ∈ {1, . . . , βj}

0 otherwise

By construction, we have the calculation

Γj

 κyj→yj1
...

κyj→yjβj

 = αj

for each j = 1, . . . , n.

Now, we turn to the matrix K0. We let Kj be a column vector with βj entries given
by

Kj :=

 κyj→yj1
...

κyj→yjβj


for each j = 1, . . . , n. Note that our definition of multiplicities allows for Kj to be an
empty vector. Since

∑n
j=1 βj = |R|, the matrix

K0 :=


K1 0β1 . . . 0β1

0β2 K2 . . . 0β2

...
...

. . .
...

0βn 0βn . . . Kn


is a |R|×|C| block diagonal matrix consisting of rate constants and 0’s, where 0βi

denotes
a 0-vector with βi entries. At this point, we have an important remark: If βj = 0 for
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some j ∈ {1, . . . , n}, then the rows corresponding to Kj will not appear in the matrix
K0 above. In this case, column j will still appear and it will consist entirely of 0’s.

A direct computation now shows

GK0 = [Γ1K1, . . . , ΓnKn] = Aκ.

Our final computation gives

K0Ψ(x) =

 K1x
y1

...
Knx

yn

 =

 vB1

...
vBn

 = v(x).

Hence, we have
dx

dt
= Sv(x) = Y GK0Ψ(x) = Y AκΨ(x),

and this completes the proof. �

We now provide an example illustrating the use of Proposition 2.9.

Example 2.10. This example gives an explicit computation using Proposition 3.9 in de-
composing the Stoichiometric Representation (dx

dt
= Sv(x)) into the Complexes Repre-

sentation (dx
dt

= Y AκΨ(x)).

Suppose we had the set of reactions,

A → B, A → C, A → D

B → C, B → A + D

C → A + D

The ordered species for this network are

S = {A, B, C,D}.
Hence, the set of complexes, reactions, and rate constants are precisely

C =
[
y1 = (1, 0, 0, 0)T , y2 = (0, 1, 0, 0)T , y3 = (0, 0, 1, 0)T , y4 = (0, 0, 0, 1)T , y5 = (1, 0, 0, 1)T

]
R = {y1 → y2, y1 → y3, y1 → y4, y2 → y3, y2 → y5, y3 → y5}

K = {κy1→y2 , κy1→y3 , κy1→y4 , κy2→y3 , κy2→y5 , κy3→y5}

With the notation in the proof of Proposition 3.9, we have Γ1, Γ2, Γ3,G,K0 given by

Γ1 =


−1 −1 −1
1 0 0
0 1 0
0 0 −1
0 0 0

 , Γ2 =


0 0
−1 −1
1 0
0 0
0 1

 , Γ3 =


0
0
−1
0
1



G = [Γ1, Γ2, Γ3] =


−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 −1 0 0 0
0 0 0 0 1 1

 ,
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K0 =


κy1→y2 0 0 0 0
κy1→y3 0 0 0 0
κy1→y4 0 0 0 0

0 κy2→y3 0 0 0
0 κy2→y5 0 0 0
0 0 κy3→y5 0 0

 .

We also have Y and Ψ(x) as in the Complexes Representation of the reaction network
given by

Y =


1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

 , Ψ(x) =


x1

x2

x3

x4

x1x4


A quick matrix computation for S, Aκ, v(x) as in the usual Complexes and Stoichiometric
Representation shows

S = Y G, Aκ = GK0, v(x) = K0Ψ(x).

�

Now that we know the Stoichiometric Representation and the Complexes Represen-
tation are the exact same system of differential equations, perhaps there are other prop-
erties that are shared between these two decompositions. One of the most important
properties is the number of equilibrium points of a differential equation associated to a
chemical reaction network. This will be the topic of the next section.

3. Determinant Expansions versus Deficiency

We now turn to various methods used to analyze equilibria of differential equations
arising from chemical reaction networks. Indeed, for those who are familiar with chemical
network theory, determinant expansions (see [HKG08]) are commonly used to analyze
equilibria for the Stoichiometric Representation, and deficiency (see [G03]) is used to
investigate equilibria of the Complexes Representation. Since these two representations
exhibit the same system of differential equations as shown in Proposition 2.9, one might
expect a relationship between determinant expansions and deficiency since both of these
tools are used to determine unique equilibria for the differential equations as shown in
the Introduction.

In this section we examine determinant expansions and deficiency with concrete ex-
amples to show that they are unrelated when it comes to investigating equilibria for a
chemical network.

3.1. Determinant Expansions versus Deficiency. In this subsection, we provide
examples that suggest determinant expansions and deficiency are generally unrelated
when they are used to analyze equilibria of systems of differential equations associated
to chemical reaction networks. Before doing so, we provide the necessary background
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definitions. Some of these concepts were introduced in §1, but we present them again
here for the reader’s convenience.

For this section, we will employ the terminology used in Gunawardena’s paper [G03,
§3]. Let {S, C,R,K} be an arbitrary chemical reaction network as defined in §2. For
the Stoichiometric matrix S as defined in §2, the quantity rank(S) is commonly referred
to as the dimension of the stoichiometric subspace. Now, let y, y′ ∈ C and say
that y is directly linked to y′, denoted y ↔ y′ if either y → y′ ∈ R or y′ → y ∈ R.
By definition, if y ↔ y′ then y′ ↔ y. Now take the reflexive, transitive closure of ↔ to
obtain an equivalent relation.

Definition 3.1. If y, y′ ∈ C then y is said to be linked to y′, denoted y ∼ y′, if either
y = y′ or there are y1, . . . , ym ∈ C such that y = y1 ↔ y2 ↔ · · · ↔ ym = y′.

The equivalence classes of complexes under ∼ are termed linkage classes. For ex-
ample, the set of reactions {A 
 2B, A + C 
 D, D → B + E, B + E → A + C}
has 2 linkage classes: {A, 2B} and {A + C, D,B + E}. A vital tool used to determine
unique equilibria in certain affine subspaces of Rd (see [G03]) is called the deficiency
of a reaction network. In the Complexes Representation dx

dt
= Y AκΨ(x), the deficiency

of a chemical network is defined to be

deficiency := dim(kerY ∩ ImAκ).

An important result regarding the deficiency is a useful bound given by

0 ≤ deficiency ≤ n− l − s,

where n is the number of complexes, l is the number of linkage classes, and s is the
dimension of the stoichiometric subspace [G03]. For convenience, we will refer to the
quantity n− l − s just described as the topological deficiency (top. deficiency) of
the chemical network. A useful result is that deficiency = top. deficiency whenever top.
deficiency equals 0 or 1, which we state here in the following Lemma (see [G03]).

Lemma 3.2. Suppose the topological deficiency for a certain chemical network is 1 or
0. Then deficiency = topological deficiency for the network.

We now present a result that will allow us to construct new chemical reaction networks
from old ones, and whose deficiency and top. deficiency are equal.

Proposition 3.3. Let {S, C,R,K} be a chemical reaction network with Stoichiometric
and Complexes Representation given by dx

dt
= Sv(x) = Y AκΨ(x) as described in previous

sections. Suppose that the deficiency of the network is either 1 or 0. Then any chemical
reaction network corresponding to the stoichiometric matrix

S̃ =


S 0 . . . 0
0 S . . . 0
...

...
. . .

...
0 0 . . . S


where 0 is a |S| × |R| matrix of 0’s, has a topological deficiency that is equal to its
deficiency.



23

Proof. Suppose {S, C,R,K} is a chemical reaction network with Stoichiometric and
Complexes Representation given by dx

dt
= Sv(x) = Y AκΨ(x) as described in previous

sections, and assume that the deficiency of the network is 1 or 0. Let d = |S|, d′ = |R|,
n = |C|, l be the number of linkage classes for the network, and s as the dimension of
its stoichiometric subspace. Let t1 and d1 by the topological deficiency and deficiency of
the chemical network respectively. Fix k ∈ N, and let {S̃, C̃, R̃, K̃} be a new chemical
network given by Proposition 2.4 whose dk × d′k Stoichiometric matrix S̃ is

S̃ =


S 0 . . . 0
0 S . . . 0
...

...
. . .

...
0 0 . . . S

 ,

where 0 is a d× d′ matrix of 0’s. Let d̃x
dt

= Ỹ ÃκΨ̃(x) be the Complexes Representation

for the new network. By construction, Ỹ is a nk × nk matrix given by

Ỹ =


Y 0 . . . 0
0 Y . . . 0
...

...
. . .

...
0 0 . . . Y

 ,

where 0 is a n× n matrix of 0’s. We also have

Ãκ =


Aκ 0 . . . 0
0 B1 . . . 0
...

...
. . .

...
0 0 . . . Bk−1

 ,

where 0 is a n×n matrix of 0’s and Bi is a n×n matrix of rate constants, and has the same
sign pattern as Aκ for each i = 1, . . . , k − 1. Let t2 and d2 be the topological deficiency
and deficiency for this new network. By construction, the new chemical network has
kn complexes, kl linkage classes, and ks as the dimension of its stoichiometric subspace
⇒ t2 = kn − kl − ks = k(n − l − 1) = kt1. Notice, basic linear algebra on direct-sum
decompositions tells us

(3.1) dim(kerỸ ∩ ImÃκ) = dim(kerY ∩ ImAκ) +
k−1∑
i=1

dim(kerY ∩ ImBi).

If we consider a chemical network with Complexes Representation dx
dt

= Y BiΨi(x) for
each i = 1, . . . , k − 1, then its Stoichiometric matrix is S, and its topological deficiency
is n − l − s = t1 by construction ⇒ dim(kerY ∩ ImBi) = t1 by Lemma 3.2. Thus,
d2 = dim(kerỸ ∩ ImÃκ) = kt1 = t2 using equation (4.1), and this is the desired result.

�

We now provide a brief introduction to determinant expansions, which are relevant to
studying the Stoichiometric Representation.
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Let A = (aij) be an n× n matrix, and Sn be the permutation group with n elements.
Recall that the determinant of A is given by,

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

aiσ(i)

where sgn : Sn → {−1, 0, 1} is the usual sign function for a permutation. In the case of
RF differential equations, the determinant of matrix SU described in the Introduction
is usually 0 since SU is a sparse matrix. However, there are useful variants of the
determinant, see [CF05], and [HKG08], which do give meaningful results. We present
them here.

Definition 3.4. The Craciun-Feinberg determinant expansion [CF05] is defined to be
cfd(S) := det(SU − tI)with t fixed, e.g. t = 1.

Definition 3.5. Another important computation that is used to analyze equilibria for
a chemical network is the core determinant (see [HKG08, §3.2]). For the matrices
S ∈ Rd×d′

, U ∈ Rd′×d defined in §1, with r := rank(S), the core determinant is defined
to be

(3.2) cd(S) := lim
t→0

1

td−r
det(SU − tI)

Note that since S is a constant matrix, the expression cfd(S) and cd(S) is a polyno-
mial in the functions Uij(x) which are the entries of the matrix function U(x) = v′(x)
as described in Introduction 1.1. Thus, we will say that cfd(S) and cd(S) has a De-
terminant Sign(DetSign) iff all the terms in the respective determinant expansions
have the same sign. Results regarding the connection between cfd(S) or cd(S) having a
DetSign and the type of equilibria for the chemical network can be found in [CF05] and
[HKG08].

The two situations of cd(S), cfd(S) having a DetSign and the network having defi-
ciency 0 have important consequences regarding the equilibria for the reaction network
as shown in the Introduction. Nevertheless, the next few examples will show that cd(S),
cfd(S) having a DetSign have no relation to the deficiency of a chemical network.

Example 3.6. The next two examples show that cfd(S) exhibiting a DetSign has no re-
lation to a network having deficiency 0. First, we give a network where cfd(S) has a
DetSign and the deficiency of the network is 1. Then, we provide an example where
cfd(S) has a sign, but the network has an arbitrarily large deficiency.

Consider the chemical network,

A → B, 2C → D, D → E, C → E

A + B → C, 3A → 4B
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The stoichiometric matrix S and the matrix U = v′(c) for this chemical network is given
by,

S =


−1 −1 0 0 0 −3
1 −1 0 0 0 4
0 1 −2 0 −1 0
0 0 1 −1 0 0
0 0 0 1 1 0



U =


kA−>B 0 0 0 0

cBkA+B−>C cAkA+B−>C 0 0 0
0 0 2cCk2C−>D 0 0
0 0 0 kD−>E 0
0 0 kC−>E 0 0

3c2
Ak3A−>4B 0 0 0 0


Then the determinant of SU − I with I being the 6× 6 identity matrix is given by,

cfd(S) = Det(SU − I) = −1− kA−>B − 9c2
Ak3A−>4B − cAkA+B−>C − cBkA+B−>C

−2cAkA−>BkA+B−>C − 21c3
Ak3A−>4BkA+B−>C−

kC−>E − kA−>BkC−>E − 9c2
Ak3A−>4BkC−>E

−cAkA+B−>CkC−>E − cBkA+B−>CkC−>E−
2cAkA−>BkA+B−>CkC−>E − 21c3

Ak3A−>4BkA+B−>CkC−>E

−4cCk2C−>D − 4cCkA−>Bk2C−>D−
36c2

AcCk3A−>4Bk2C−>D − 4cAcCkA+B−>Ck2C−>D

−4cBcCkA+B−>Ck2C−>D − 8cAcCkA−>BkA+B−>Ck2C−>D−
84c3

AcCk3A−>4BkA+B−>Ck2C−>D − kD−>E−
kA−>BkD−>E − 9c2

Ak3A−>4BkD−>E − cAkA+B−>CkD−>E−
cBkA+B−>CkD−>E − 2cAkA−>BkA+B−>CkD−>E

−21c3
Ak3A−>4BkA+B−>CkD−>E − kC−>EkD−>E−

kA−>BkC−>EkD−>E − 9c2
Ak3A−>4BkC−>EkD−>E

−cAkA+B−>CkC−>EkD−>E − cBkA+B−>CkC−>EkD−>E−
2cAkA−>BkA+B−>CkC−>EkD−>E

−21c3
Ak3A−>4BkA+B−>CkC−>EkD−>E − 4cCk2C−>DkD−>E−

4ckA−>Bk2C−>DkD−>E − 36c2
Ack3A−>4Bk2C−>DkD−>E

−4cAcCkA+B−>Ck2C−>DkD−>E−
4cBcCkA+B−>Ck2C−>DkD−>E − 8cAckA−>BkA+B−>Ck2C−>DkD−>E

−84c3
Ack3A−>4BkA+B−>Ck2C−>DkD−>E

A quick observation reveals that each term in the above computation has a negative
coefficient, and this means cfd(S) has a DetSign. However, this system has 9 complexes,
3 linkage classes, and the dimension of its stoichiometric subspace is 5. Thus, the
deficiency of the network is 9 − 5 − 1 = 1 by Proposition 3.3. This example may be
extended to show that we may have chemical networks with an arbitrary deficiency, and
still have a DetSign. �
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Example 3.7. Here, we show how cfd(S) may have a DetSign, but the deficiency of the
network is arbitrarily large.

So fix k ∈ N. Let S be the Stoichiometric matrix in the previous examples, and let U
be the corresponding 6× 5 matrix written symbolically as,

U =


U11 0 0 0 0
U21 U22 0 0 0
0 0 U33 0 0
0 0 0 U44 0
0 0 U53 0 0

U61 0 0 0 0


Now consider the chemical network corresponding to the 5k× 6k Stoichiometric matrix
S̃ given by,

S̃ =


S 0 . . . 0
0 S . . . 0
...

...
. . .

...
0 0 . . . S


where 0 is a 5 × 6 matrix consisting of all 0’s. If we consider the differential equations
dx
dt

= S̃v(x), then the Jacobian Ũ = v′(x) will be a 6k × 5k matrix written symbolically
as,

Ũ =


U1 0 . . . 0
0 U2 . . . 0
...

...
. . .

...
0 0 . . . Uk


where 0 is a 6× 5 matrix consisting of all 0’s, U1 = U , and Ui is a 6× 5 matrix with the
same sign pattern as U . Matrix multiplication gives S̃Ũ as a 5k×5k matrix represented
in block diagonal form as,

S̃Ũ =


SU1 0 . . . 0
0 SU2 . . . 0
...

...
. . .

...
0 0 . . . SUk


where 0 is a 5 × 5 matrix consisting of all 0’s. Elementary properties of determinants
gives us the direct computation,

cfd(S̃) = det(S̃Ũ − I5k) =

∣∣∣∣∣∣∣∣


SU1 − I5 0 . . . 0
0 SU2 − I5 . . . 0
...

...
. . .

...
0 0 . . . SUk − I5


∣∣∣∣∣∣∣∣ =

=
k∏

i=1

det(SUi − I5)

Since det(SU − I) has a DetSign as shown in the previous example, then det(S̃Ũ) also
has a DetSign by the above computation since the DetSign only depends on the sign
pattern of U and not the actual entries of U . However, our construction shows that
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this system has 9k complexes, 3k linkage classes, and the dimension of its stoichiometric
subspace is 5k. Hence the deficiency of this network is 9k− 3k− 5k = k by Proposition
3.3. �

We now turn to examples involving the core determinant.

Example 3.8. In the next two examples, we will show that the core determinant having
a DetSign has no relation to the deficiency of a chemical network. That is, we will
find chemical networks whose core determinant has a DetSign, and the deficiency of
the network is 1. Then we construct a network such that cd(S) has a DetSign, but the
deficiency of the network is arbitrarily large.

Consider the chemical network,

A + F → B, A + B → C, C + F → D, D → E + F

C → E

We denote c = {cA, cB, cC , cD, cE, cF} as the vector of chemical concentrations. The
stoichiometric matrix S and the matrix U = v′(c) for this chemical network is given by,

(3.3) S =


−1 −1 0 0 0
1 −1 0 0 0
0 1 −1 0 −1
0 0 1 −1 0
0 0 0 1 1
−1 0 −1 1 0


(3.4)

U =


cF kA+F−>B 0 0 0 0 cAkA+F−>B

cBkA+B−>C cAkA+B−>C 0 0 0 0
0 0 2cCcF kD−>E+F 0 0 c2

CkD−>E+F

0 0 0 kD−>E+F 0 0
0 0 kC−>E 0 0 0

 .

A computation in Mathematica shows rank(S) = 4, and the core determinant for this
network is given by,

cd(S) := lim
t→0

1

td−r
det(SU − tI) = lim

t→0

1

t6−4
det(SU − tI) =

2c2
AcF kA+F−>BkA+B−>Ck2

D−>E+F + 2cAcBcCcF kA+F−>BkA+B−>Ck2
D−>E+F

+4cAcCc2
F kA+F−>BkA+B−>Ck2

D−>E+F + c2
AkA+F−>BkA+B−>CkD−>E+F kC→E

+cAcBkA+F−>BkA+B−>CkD−>E+F kC→E + 2cAcF kA+F−>BkA+B−>CkD−>E+F kC→E

+2cAc2
CkA+F−>BkA+B−>CkD−>E+F kC→E

The coefficients of all the terms in cd(S) are positive and thus, the core determinant
for this network has a DetSign. One may even compute the Craniun-Feinberg deter-
minant to see that it too has a DetSign. Nevertheless, this network has 8 complexes
(A+F,B,A+B,C,C+F,D,E+F,E), 3 linkage classes, and the dimension of the stoichio-
metric subspace is 4. Thus, the deficiency for the network is 8-2-5 = 1 6= 0 by Proposition
3.3. �
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We may now extend this example to find a chemical network with an arbitrary defi-
ciency size, but whose core determinant still has a DetSign.

Example 3.9. Here, we find a chemical network such that cd(S) has a DetSign, but the
deficiency of the network is arbitrarily large.

Fix k ∈ N. Let S be the 6× 5 matrix in (2.12), and U be the matrix in (2.13) written
symbolically as,

U =


U11 0 0 0 0 U15

U21 U22 0 0 0 0
0 0 U33 0 0 U35

0 0 0 U44 0 0
0 0 U53 0 0 0

 .

By Proposition 2.4, there is a chemical network corresponding to the 6k × 5k stoichio-
metric matrix S̃ given by,

S̃ =


S 0 . . . 0
0 S . . . 0
...

...
. . .

...
0 0 . . . S


where 0 is a 6 × 5 matrix consisting of all 0’s. If we consider the differential equations
dx
dt

= S̃v(x), then the Jacobian Ũ = v′(x) will be a 5k × 6k matrix written symbolically
as,

Ũ =


U1 0 . . . 0
0 U2 . . . 0
...

...
. . .

...
0 0 . . . Uk


where 0 is a 5 × 6 matrix consisting of all 0’s, U1 = U , and Ui is a 5 × 6 matrix with
the same sign pattern as U for each i = 2, . . . , k − 1. Since r := rank(S) = 4, and
the rank of a block diagonal matrix is the sum of the ranks of the diagonal blocks,
then rank(S̃) = 4k. Thus, using elementary properties of determinants and matrix
multiplication gives us cd(S̃) as,

cd(S̃) = lim
t→0

1

t6k−4k
det(S̃Ũ − tI6k)

= lim
t→0

1

t6k−4k

∣∣∣∣∣∣∣∣


SU1 − tI6 0 . . . 0
0 SU2 − tI6 . . . 0
...

...
. . .

...
0 0 . . . SUk − tI6


∣∣∣∣∣∣∣∣

= lim
t→0

1

t2k

k∏
i=1

det(SUi − tI5)

=
k∏

i=1

(lim
t→0

1

t2
det(SUi − tI5)) = (cd(S))k,

where the last equality follows if we consider cd(S) as depending only on the sign pattern
of U and not the particular entries of U . Hence, cd(S̃) = (cd(S))k has a sign since cd(S)
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has a sign using the computation in the previous example. Nevertheless, this system has
8k complexes, 3k linkage classes, and the dimension of its stoichiometric subspace is 4k
⇒ the deficiency of the network is 8k − 3k − 4k = k by Proposition 3.3. �

These examples suggest that even though the deficiency 0 method and certain proper-
ties of Determinant Signs yield similar conclusions regarding the uniqueness of equilibria
of a chemical reaction, deficiency and Determinant Signs have no relation to each other.

Besides comparing determinant expansions and deficiency, one may wonder if the sign
pattern of SU has any bearing on the deficiency of a chemical network. In the next
section, we extend some matrix theoretic results regarding the sign pattern of SU , and
then show that sign patterns and deficiency have no relation.

4. Sign Pattern of f ′(x) = SU

In this section, we determine precisely when an entry of SU has a sign as described
in the introduction. We then show how in certain situations when SU does not have a
sign pattern, we may study an associated matrix that does have a sign pattern, and use
sign definite matrix analysis on this new matrix to gain information on the determinant
of SU . Finally, we provide examples to suggest that SU having a sign pattern has no
relation to the deficiency of a chemical network.

4.1. Conditions for SU having a Sign Pattern. Here, we give concrete conditions
to determine when an entry of SU has a sign.

First, in order to analyze the sign pattern of SU , we need some necessary conditions.
These conditions are succinctly encompassed in [HK08, §3.1] and we state them here for
completeness.

prop:JacSigns Proposition 4.1. Suppose S satisfies RF.

(1) All the diagonal entries of SU are negative linear combinations of the Uij.

(2) SU admits a sign pattern (that is, each of its entries is a positive or negative linear
combination of monomials in Uij) iff the matrix S does not contain a 2 × 2 submatrix
with the same sign pattern as

eq:2cycleeq:2cycle (4.1)

[
+1 −1
−1 −1

]
or

[
−1 +1
−1 −1

]
or

[
−1 −1
+1 −1

]
or

[
−1 −1
−1 +1

]
.

Proof. Diagonal entries of SU are of the form
∑

j SijUji. Since Uji = 0 if Sij > 0, (SU)ii

is a negative linear combination of certain Uji.

Write S = S+ − S− for real matrices S+, S− with nonnegative coefficients. The
(i, j)th entry of SU does not have a sign pattern iff (S+U)ij 6= 0 and (S−U)ij 6= 0.
(S+U)ij =

∑
k(S+)ikUkj, so (S+U)ij 6= 0 iff for some k, (S+)ik 6= 0 and Ukj 6= 0, i.e.,

(S+)ik 6= 0 and Sjk < 0. Similarly, (S−U)ij 6= 0 iff there is some ` with (S−)i` 6= 0 and
Sj` < 0. Taken together this means that the 2× 2 submatrix of S given by rows i, j and
columns k, ` has the same sign pattern as one of the matrices in (4.1). �
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In fact, the proof of this proposition gives us an even more precise result.

Corollary 4.2. Suppose S is a d × d′ matrix that satisfies RF. Let i < j with i ∈
{1, . . . , d} and j ∈ {1, . . . , d′}. Then

(1) (SU)ij has a sign iff S does not contain a 2× 2 submatrix in rows i and j and some
columns u and v with the same sign pattern as[

+1 −1
−1 −1

]
or

[
−1 +1
−1 −1

]
(2) (SU)ji has a sign iff S does not contain a 2× 2 submatrix in rows i and j and some
columns u and v with the same sign pattern as[

−1 −1
+1 −1

]
or

[
−1 −1
−1 +1

]
Proof. (1) ”⇒” First, assume we are in the case where S has a 2× 2 submatrix in rows
i and j, i < j, and some columns u, v with the same sign pattern as[

+1 −1
−1 −1

]
As in the proof of Proposition 4.1, write S = S+−S− for real matrices S+ ,S− with non-
negative coefficients. Then (SU)ij = (S+U)ij − (S−U)ij =

∑
k(S+)ikUkj −

∑
k(S−)ikUkj.

By assumption, Sju < 0 ⇒ Uuj 6= 0. Also, Siu > 0 ⇒ (S+)iu = Siu > 0 ⇒ (S+)iuUuj 6=
0 ⇒

∑
k(S+)ikUkj 6= 0. Similarly, Sjv < 0 by assumption ⇒ Uvj 6= 0. Also, we have

Siv < 0 ⇒ (S−)iv = Siv < 0 ⇒ (S−)ivUvj 6= 0 ⇒
∑

k(S−)ikUkj 6= 0 ⇒ (SU)ij is not a
positive or negative linear combination of the entries of U , and hence, it does not have a
sign by definition. The case where S has a 2× 2 submatrix with the same sign pattern
as [

−1 +1
−1 −1

]
is proved analogously.

”⇐” Now suppose that (SU)ij for some does not have sign. More precisely, this
means (S+U)ij 6= 0 and (S−U)ij 6= 0 ⇒ 0 6= (S+U)ij =

∑
k(S+)ikUkj ⇒ (S+)iu 6= 0

and Uuj 6= 0 for some u ⇒ Siu > 0 and Sju < 0 by the RF property of S. Similarly,
(S−U)ij 6= 0 ⇒ (S−)iv 6= 0 and Uvj 6= 0 for some v ⇒ Siv < 0 and Sjv < 0 since S is
RF. Also u 6= v by construction of S+ and S−. Thus, we have, Sju, Siv, Sjv < 0 and
Siu > 0. Thus S has a 2× 2 submatrix in rows i, j and columns u, v with the same sign
pattern as [

+1 −1
−1 −1

]
or

[
−1 +1
−1 −1

]
depending on whether u < v or u > v respectively.

This establishes (1). An analogous proof establishes (2) by replacing each i with j
and each j with i in the above proof. �

Corollary 4.2 provides a way for studying the sign pattern of the more complicated
matrix valued function SU by looking at the simpler constant matrix S. Such concrete
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and simple conditions will allow us to look at the sign pattern of SU even if this matrix
does not have a sign pattern, since the sign of each of its entries is determined by the
constant matrix S. This will be the topic of the next section.

4.2. Creating Sign Patterns for SU = f ′(x). As shown in the previous section, SU
will not be a sign definite matrix under certain conditions. In this section, we show an
alternative and meaningful way to associate a sign patterned matrix to SU even if SU
does not have a sign pattern. We first motivate this with a discussion on determinants.

Of most interest in the analysis of RF systems is looking at the determinant of SU .
Indeed, the determinant is well-defined in this case since S is a d × d′ matrix and
U is a d′ × d matrix. Also, the direct connection between sign patterns of matrices
and their determinant can be found in [HK08, § Theorem 2.9], and we do not present
their results here. For our purposes, if SU does have a sign pattern, it is often easier to
analyze the determinant of SU based on its sign pattern rather than direct computation.
Unfortunately, SU will sometimes not have a sign pattern according to Proposition 4.1,
but this can be remedied by noticing that if we left multiply SU by an invertible matrix
E, then det(ESU) = det(E)det(SU). Often, we may find such a matrix E, so that
ESU has a sign pattern, and thus, the analysis for a sign pattern of ESU will suffice to
understand the determinant of SU since the determinants of SU and ESU will merely
differ by the scalar det(E). This idea is our motivation for the following definitions.

Definition 4.3. Let us say that SU ”almost” has a sign pattern if there is an
invertible matrix E such that ESU has a sign pattern.

For our next result, it will make it easier to consider matrices of the forms:

(1) i.)

[
+1 −1
−1 −1

]
ii.)

[
−1 +1
−1 −1

]
iii.)

[
−1 −1
+1 −1

]
iv.)

[
−1 −1
−1 +1

]
and

(2)

 ∗ −1
+1 ∗
−1 −1

 ,

 ∗ +1
−1 ∗
−1 −1

 ,

 −1 ∗
∗ +1
−1 −1

 ,

 +1 ∗
∗ −1
−1 −1


 ∗ −1
−1 −1
+1 ∗

 ,

 ∗ +1
−1 −1
−1 ∗

 ,

 −1 ∗
−1 −1
∗ +1

 ,

 +1 ∗
−1 −1
∗ −1


 −1 −1

+1 ∗
∗ −1

 ,

 −1 −1
−1 ∗
∗ +1

 ,

 −1 −1
∗ +1
−1 ∗

 ,

 −1 −1
∗ −1

+1 ∗


Notice that the matrices in (2) are merely all possible row and column permutations of
the matrix:  ∗ −1

+1 ∗
−1 −1
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Definition 4.4. We will refer to submatrices of S that have the same sign pattern as
a matrix in (1) as bad-submatrices. This definition is motivated by Proposition 4.1,
which tells us that SU will not have a sign pattern if S contains a submatrix with the
same sign pattern as a matrix in (1).

Theorem 4.5. Suppose S has exactly one 2 × 2 bad-submatrix, and S does not have a
3× 2 submatrix with the same sign pattern as a matrix in (2). Then SU = f ′(x) almost
has a sign pattern.

Proof. [
???
?] Without loss of generality, let us assume that rows 1 and 2, and columns 1

and 2 have the same sign pattern as (1) i.). (otherwise, we could permute the columns
of matrix S and U , without affecting determinants or sign patterns). Now let a = S11,
b = −S12, c = −S21, and d = −S22. First, we claim that (SU)12 = aU12 − bU22 −∑n

r=3 S1rUr2, where S1r ≥ 0 whenever Ur2 6= 0 for r = 3, 4, . . . , n. If not then S1r < 0
and Ur2 > 0 for some r ∈ {3, 4, . . . , n} ⇒ S2r < 0 and this means S a bad-submatrix
corresponding to rows 1 and 2 and columns 1 and r, which contradicts our assumptions.
Thus, (SU)12 = aU12+ (negative linear combination of entries of U). By Corollary 4.2,
(SU)12 is the only such entry of SU without a sign ⇒ SU22 = −cU12+ (negative linear
combination of entries of U), since c and d > 0. So now, add a times row 2 of SU to row
1 to form a new matrix, (SU)′. Then (SU)′12 is a negative linear combination of entries
of U, and hence has a sign. We must make sure (SU)’ has a sign pattern. If not, then by
Corollary 4.2 (which tells us that all other entries of SU are either positive or negative
linear combinations of entries of U), it must be that for some t 6= 2 we have (SU)1t < 0
and (SU)2t > 0 or vice versa. Without loss of generality, we will assume it’s the former.
This implies that since (SU)ij =

∑n
k=1 SikUkj, then applying this formula with 1 and t

and then with 2 and t, we get that S1r < 0 and Urt > 0 for some r, and S2s > 0 and
Ust > 0 for some s 6= r ⇒ Str < 0 and Sts < 0. This means S has a 3 × 2 submatrix,
corresponding to rows 1, 2, and t, and columns r and s, with the same sign pattern as
a matrix in (2), and this is a contradiction. Thus this row operation really does give a
sign pattern �

It is indeed worth noting that we needed some very stringent assumptions on S in
order to get a sign pattern after a simple row operation. Even more so, this is in the
case where S has only 1 bad-submatrix. The cases where S has more bad-submatrices
becomes increasingly difficult. Nevertheless, we have yet to find a counterexample where
SU did not have a sign pattern after elementary row operations, and we believe that
all Jacobians SU for RF systems do have a sign pattern after some elementary row
operations. We leave it to the interested reader to verify if this is the case.

We now turn to comparing sign patterns and deficiency of a chemical network.

4.3. Sign Patterns versus Deficiency. As previously mentioned, a chemical network
having 0 deficiency has significance on the type of equilibria for a chemical network, see
[G03]. On the other hand, the sign pattern of SU described in the §1.3 also correlates
to whether the system has equilibria in the positive orthant (see [HKG08]). A natural
question is whether the sign pattern of SU has any correlation to a system having 0
deficiency and a certain number of linkage classes. The answer is no, and in this section
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we give examples of chemical networks such SU that 0 deficiency does not imply a sign
pattern for SU .

Example 4.6. The next few examples illustrates how SU having a sign pattern does not
correlate to a chemical network having deficiency 0. Thus, we will show that SU having
a sign pattern does not imply 0 deficiency for a network.

Consider the reaction network,

A → B

B → C

C 
 A + B

In this case we have 4 complexes, 1 linkage class, and the dimension of the stoi-
chiometric subspace is 3. Thus, the deficiency of the system is 0 by Proposition 3.3.
Nevertheless, the reactions A → B and A + B → C imply that SU will not have a sign
pattern by Proposition 1.4 since in this case, we have

S =

 −1 0 −1 1
1 −1 −1 1
0 1 1 −1


�

Example 4.7. We may extend the construction in the previous example to find reaction
networks that have 4k complexes, k linkage classes, 3k as the dimension of the stoichio-
metric subspace, and still do not have a sign pattern, for any k ∈ N

Fix k ∈ N. Consider,

A1 → A2, A2 → A3, A3 
 A1 + A2

A4 → A5, A5 → A6, A6 
 A4 + A5

...

Ai−3 → Ai−2, Ai−2 → Ai−1, Ai−1 
 Ai−3 + Ai−2

Ai → Ai+1, Ai+1 → Ai+2, Ai+2 
 Ai+1 + Ai+2

...

A4k−5 → A4k−4, A4k−4 → A4k−3, A4k−3 
 A4k−5 + A4k−4

A4k−2 → A4k−1, A4k−1 → A4k, A4k 
 A4k−2 + A4k−1

By construction, each line above represents a distinct linkage class and 3 distinct com-
plexes ⇒ we have k linkage classes and 4k complexes. We also claim that the dimension
of the stoichiometric subspace is 4k. To see this, let

(4.2) B =

 −1 0 −1 1
1 −1 −1 1
0 1 1 −1


for j = 1, . . . , k.
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By construction, the Stoichiometric matrix S will be a 3k × 4k block matrix,

S =


B 0 . . . 0
0 B . . . 0
...

...
. . .

...
0 0 . . . B


Where B is the matrix appearing in (2.5) and 0 is a 3 × 4 matrix consisting of all 0’s.
Notice that rank(B) = 3 ⇒ rank(S) = 3k. Thus, the dimension of the stoichiometric
subspace is 3k ⇒ the deficiency of the network is 0. However, Proposition 4.1 implies
that SU will not have a sign pattern. In fact, Corollary 4.2 implies that SU will have
exactly k entries without a sign. �

Remark 4.8. The examples we provide in §3 and §4 suggest that sign patterns and
Determinant Signs have no relation to the deficiency of a network. There may still be
other properties of deficiency and determinant expansions that do correlate, but in most
chemical literature, the deficiency 0 condition and Determinant Signs have yielded the
most fruitful results in studying equilibria of a chemical network.
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