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1. Introduction

This undergraduate thesis will survey Gauss sums, starting from the
classical Gauss sum analyzed by C. F. Gauss, and continuing to more
general character sums. Along the way, the classical Gauss sum will
be utilized to prove the famous law of quadratic reciprocity, which
Gauss refered to as the ”fundamental theorem” in the Disquisitiones
Arithmeticae. Various decompositions and recursions of Gauss sums
will be developed. Prime ideal factorizations will be developed through
Stickelberg’s theorem. Finally, a closing remarks on the Stickelberger
element annihilating the cyclotomic class group and its generalization,
the Brumer-Stark conjecture.
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2. Classical Gauss Sum

The Classical Gauss Sum was studied extensively by Carl Friedrich
Gauss.

This section is series of exercises from Abstract Algebra by Dummit
and Foote.

Put Kp = Q(ζp), where ζp = exp(2πi
p

) and p is an odd prime.

A finite dimensional Q-vector space is called a number field.

Kp is the pth cyclotomic number field. This is because the monic,
irreducible polynomial over Q is the pth cyclotomic polynomial:

Φp(x) =
xp − 1

x− 1
= 1 + x+ . . .+ xp−1 and Q[x]/〈Φp(x)〉 ∼= Kp

Put Gp = Gal(Kp/Q) = {σ ∈ Aut(Kp/Q)| σ(q) = q ∀q ∈ Q}

∀a ∈ Kp, a =

φ(p)∑
i=1

qiζ
i
p =

p−1∑
i=1

qiζ
i
p for qi ∈ Q where {ζ ip}

p−1
i=1 is a

power basis for Kp over Q. Hence τ ∈ Gp is completely determined by
τ(ζp) = ζαp where (α, p) = 1.

This observation elucidates the well-known isomorphism Gp
∼= Z/pZ×.

Definition 2.1. η0 =
∑
τ∈H

τ(ζp) and η1 =
∑
τ∈σH

τ(ζp)

where H is the unique normal subgroup of index 2 and the coset σH =
G \H. η0 and η1 are called the two periods of ζp with respect to H.

By the aformentioned isomorphism, Gp is cyclic, and hence the follow-
ing one-to-one correspondence can be observed:

〈τ1〉 = {τi ∈ G |τi(ζp) = ζg
i

p } ←→ {1, g, . . . , gp−1} = 〈g〉 = Gp.

Remark. 〈τ1〉 is cyclic by the action of composition.

Lemma 2.1. τ1(η0) = η1 and τ1(η1) = η0

Proof. τ1(η0) = τ1(
∑
τ∈H

τ(ζp)) =
∑
τ∈H

τ1(τ(ζp)) =

p−1
2∑
i=1

τ1(τ2i(ζp)) =

p−1
2∑
i=1

τ2i−1(ζp) =∑
τ∈σH

τ(ζp) = η1.
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τ1(η1) = τ1(
∑
τ∈σH

τ(ζp)) =
∑
τ∈σH

τ1(τ(ζp)) =

p−1
2∑
i=1

τ1(τ2i−1(ζp)) =

p−1
2∑
i=1

τ2i(ζp) =∑
τ∈H

τ(ζp) = η0. �

Lemma 2.2. η0 =
∑

a≡square

ζap and η1 =
∑

b 6≡square

ζbp

Proof. a ∈ H ⇔ a = g2k for some k ∈ N ⇔ a = (gk)2 = g2
k ⇔ a is a

square, hence a is a square (modulo p) if and only if a ∈ H.∑
a≡square

ζap =

p−1
2∑
i=1

ζg
2i

p =

p−1
2∑
i=1

τ2i(ζp) =
∑
τ∈H

τ(ζp) = η0

If b is not a square then b 6∈ H and hence b = g2i−1 for some i ∈ N∑
b 6≡square

ζbp =

p−1
2∑
i=1

ζg
2i−1

p =

p−1
2∑
i=1

τ2i−1(ζp) =

p−1
2∑
i=1

τ1(τ2i(ζp)) = τ1(

p−1
2∑
i=1

τ2i(ζp)) =

τ1(η0) = η1 �

Definition 2.2. Let k be a field and K a cyclic extension with Galois
group G of order n, given α ∈ K, the Lagrange resolvent is

(α, ζ) = α + ζσ(α) + . . .+ ζn−1σn−1(α) =
n−1∑
i=0

ζ iσi(α)

where ζ is an nth root of unity and σ is a generator of G.

Lemma 2.3. η0 + η1 = (ζp, 1) = −1 and η0 − η1 = (ζp,−1)

Proof. η0 + η1 =
∑

a≡square

ζap +
∑

b 6≡square

ζbp =

p−1
2∑
i=1

τ2i(ζp) +

p−1
2∑
i=1

τ2i−1(ζp) =

p−1∑
i=1

τi(ζp) = τ1(ζp) + τ2(ζp) + . . . + τp−1(ζp) = τ1(ζp) + τ 2
1 (ζp) + . . . +

τ p−2
1 (ζp) + ζp = ζp + τ1(ζp) + . . .+ τ

φ(p)−1
1 (ζp) = (ζp, 1).

η0 + η1 =

p−1∑
i=1

τi(ζp) =

p−1∑
i=1

ζ ip via rearrangement, and hence η0 + η1 =

Φp(ζp)− 1 = −1, where Φp(x) is the pth cyclotomic polynomial.
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η0 − η1 = (ζg
2

p + ζg
4

p + . . . + ζg
p−1

p ) − (ζg
1

p + ζg
3

p + . . . + ζg
p−2

p ) =
p−1∑
i=1

(−1)iτ i1(ζp) =

p−2∑
i=0

(−1)iτ i1(ζp) = (ζp,−1). �

Lemma 2.4.

p−1∑
i=1

ζ i
2

p = (ζp,−1)

Proof. Observe that (p− k)2 ≡ p2 − 2pk + k2 ≡ k2(mod p).

Put γ =

p−1∑
i=0

ζ i
2

p . γ = ζ0
p + ζ1

p + ζ22

p + . . .+ ζ
(p−2)2

p + ζ
(p−1)2

p =

1 + 2(ζ1
p + ζ22

p + . . . + ζ
( p−1

2
)2

p ). Rewritting the residues 1, 2, . . . , p−1
2

as powers of g, γ = 1 + 2(ζ
(ga1 )2

p + ζ
(ga2 )2

p + . . . + ζ
(g
a p−1

2 )
2

p ) = 1 +

2(ζg
2a1

p + ζg
2a2

p + . . .+ ζg
2a p−1

2

p ) = 1 + 2η0 since each exponent of g in the
parenthesized sum is even and unique mod φ(p).
γ = 1 + 2η0 = 2η0 − (−1) = 2η0 − (ζp, 1) = 2η0 − (η0 + η1) = η0 − η1 =
(ζp,−1). �

Lemma 2.5. τ(γ) = γ if τ ∈ H and τ(γ) = −γ if τ 6∈ H

Proof. τ ∈ H ⇒ τ = τ2i for some i, 1 ≤ i ≤ p−1
2
⇒ τ(γ) = τ(η0− η1) =

τ(η0) − τ(η1) = τ2i(η0) − τ2i(η1) = η0 − η1 = γ since by Lemma 2.1,
τ2 = τ1 ◦ τ1 is the identity on both η0 and η1.
τ 6∈ H ⇒ τ = τ2i+1 for some i, 0 ≤ i < p−1

2
⇒ τ(γ) = τ(η0 − η1) =

τ(η0) − τ(η1) = τ2i+1(η0) − τ2i+1(η1) = η1 − η0 = −γ since τ2i+1 =
τ ◦ τ2i. �

Lemma 2.6. γ̄ = γ when p ≡ 1 (mod 4) and γ̄ = −γ when p ≡ 3
(mod 4) where γ̄ is the complex conjugate of γ.

Proof. By Lemma 2.5, γ is fixed by H, and thus Q ⊆ Q(γ) ⊆ KH . It
is easily verifiable that γ 6∈ Q and thus Q(γ) = KH

p , the subfield of Kp

fixed by H.

Gal(Q(γ)/Q) ∼=
Gal(Kp/Q)

Gal(Kp/Q(γ))
= G/H = 〈σ−1〉 ∼= Z/2Z where σ−1 is

complex conjugation.

A simple observation of orders gives us σ−1 = τ
p−1
2

1 = τ p−1
2
.

p ≡ 1 (mod 4) ⇒ p−1
2
≡ 0 (mod 2) ⇒ τ p−1

2
∈ H ⇒ γ̄ = σ−1(γ) =

τ p−1
2

(γ) = γ.
5



p ≡ 3 (mod 4) ⇒ p−1
2
≡ 1 (mod 2) ⇒ τ p−1

2
6∈ H ⇒ γ̄ = σ−1(γ) =

τ p−1
2

(γ) = −γ. �

Lemma 2.7. γγ̄ = p

Proof. γ̄ =

p−2∑
i=0

(−1)iτ i1(ζp) =

p−2∑
i=0

(−1)iτ−i1 (ζp)⇒

γγ̄ = (

p−2∑
i=0

(−1)iτ i1(ζp))(

p−2∑
j=0

(−1)jτ−j1 (ζp)) =

p−2∑
i=0

p−2∑
j−0

(−1)i−jτ j1 (
τ i−j1 (ζp)

ζp
)

=

p−2∑
k=0

(−1)k
p−2∑
j=0

τ j1 (
τ k1 (ζp)

ζp
) where k = i− j.

k = 0⇒ τ k1 (ζp)

ζp
= 1⇒ τ j1 (

τ k1 (ζp)

ζp
) = 1.

k 6= 0⇒ τ k1 (ζp)

ζp
= ζg

k−1
p = ζαkp = ταk1 (ζp) where gcd(αk, p) = 1.

γγ̄ = (−1)0(p−1)+

p−2∑
k=1

(−1)k
p−2∑
j=0

τ j1 (
τ k1 (ζp)

ζp
) = (p−1)+

p−2∑
k=1

(−1)k
p−2∑
j=0

τ j1 (ζg
k−1
p ) =

(p−1))+

p−2∑
k=1

(−1)k
p−2∑
j=0

τ j1 (ταk1 (ζp)) = (p−1)+

p−2∑
k=1

(−1)kταk1 (

p−2∑
j=0

τ j1 (ζp)) =

(p−1)+

p−2∑
k=1

(−1)kταk1 [(ζp, 1)] = (p−1)+

p−2∑
k=1

(−1)kταk1 (−1) = (p−1)+

p−2∑
k=1

(−1)k+1 = (p− 1) + 1− 1 + . . .+ 1− 1 + 1 = (p− 1) + 1 = p. �

Theorem 2.1. γ2 = (−1)
p−1
2 p

Proof. This follows directly from Lemma 2.6 and Lemma 2.7. �

We conclude that γ = ±
√

(−1)
p−1
2 p with [Q(γ) : Q] = 2.

Remark. By Galois correspondence, Q(γ) is the unique quadratic sub-
field of Kp.

6



3. Quadratic Reciprocity

We will use the results from the previous section to prove one of Gauss’
favorite theorems, the law of quadratic reciprocity.

First we will define the Legendre symbol and develop lemmas and sup-
plementary laws to assist the proof.

Definition 3.1. For odd prime p,

(
a

p

)
=


1 if a is a quadratic residue (mod p) and a 6≡ 0 (mod p)

−1 if a is a quadratic non-residue (mod p)

0 if a ≡ 0 (mod p).

this is called the Legendre symbol.

Lemma 3.1. ∀a, b ∈ Z/pZ×, (a+ b)p ≡ ap + bp (mod p)

Proof. (a+ b)p =

p∑
i=0

(
p

i

)
aibp−i where

(
p

i

)
=

p!

(p− i)!i!
⇒

For 1 ≤ i ≤ p− 1, i! 6≡ 0 (mod p) and (p− i)! 6≡ 0 (mod p) since both
i and p− i are both strictly less than p.(
p

i

)
(p− i)!i! = p! ≡ 0 (mod p)⇒

(
p

i

)
≡ 0 (mod p)

(a+ b)p = ap +

p−1∑
i=1

(
p

i

)
aibp−i + bp ≡ ap + bp (mod p). �

Lemma 3.2. Let p be an odd prime,

(
v

p

)
≡ (v)

p−1
2 (mod p)

Proof. Let p be an odd prime. Z/pZ× is cyclic, with generator g.

If v is a square modulo p, then v = g2k for some k, 0 ≤ k ≤ p− 1

2
.

v
p−1
2 ≡ g(p−1)k ≡ 1k ≡ 1 ≡

(
v

p

)
.

Notice that this accounts for the case where v ≡ 0 (mod p).

If v is not a square modulo p, then v = g2k+1 for some k, 0 ≤ k <
p− 1

2
.

v
p−1
2 ≡ g(p−1)k+ p−1

2 ≡ g
p−1
2 ≡ −1 ≡

(
v

p

)
. �

Lemma 3.3. (Supplementary Law 1)

(
−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)
7



Proof. Put v = −1 in Lemma 3.2 �

Lemma 3.4. (Supplementary Law 2)

(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

Proof. Set ζ8 = exp(2πi
8

) and β = ζ8 + ζ−1
8 = 2 cos 2π

8
=
√

2.

β2 = (ζ8 + ζ−1
8 )2 = ζ2

8 + 2 + ζ−2
8 = 2.

By Lemma 3.2:

(
2

p

)
≡ 2

p−1
2 ≡ (β2)

p−1
2 ≡ βp−1 (mod p).

Multiplying by β on both sides yields: β

(
2

p

)
≡ βp (mod p)

By Lemma 3.1: βp = (ζ8+ζ−1
8 )p ≡ ζp8 +ζ−p8 ≡ (ζ8+ζ−1

8 )

(
2

p

)
(mod p).

p ≡ ±1 (mod 8)⇒ ζp8 + ζ−p8 = ζ8 + ζ−1
8 = β ⇒

(
2

p

)
≡ 1 (mod p).

p ≡ ±3 (mod 8) ⇒ ζp8 + ζ−p8 = ζ3
8 + ζ−3

8 = (ζ8 + ζ8)(ζ
2
8 − 1 + ζ−1

8 ) =

β(ζ2
8 + 2 + ζ−1

8 − 3) = β(β2 − 3) = −β ⇒
(

2

p

)
≡ −1 (mod p) �

Theorem 3.1. Let p, q be two distinct positive prime numbers, then

(
p

q

)
=


(
q

p

)
if p or q ≡ 1 (mod 4)

−
(
q

p

)
if p ≡ q ≡ 3 (mod 4)

Proof. From the previous section, we analyzed γ =

p−1∑
i=1

ζ i
2

p = η0 − η1.

γ is also expressible as γ =

p−1∑
v=1

(
v

p

)
ζvp .

By Theorem 2.1, γq = γ(γ2)
q−1
2 = γ((−1)

p−1
2 p)

q−1
2 = γ(−1)

p−1
2

q−1
2 p

q−1
2

By Lemma 3.2, γq ≡ γ(−1)
p−1
2

q−1
2

(
p

q

)
(mod q).

By Lemma 3.1, γq =

(
p−1∑
v=1

(
v

p

)
ζvp

)q

≡
p−1∑
v=1

(
v

p

)q
ζqvp ≡

p−1∑
v=1

(
v

p

)
ζqvp ≡

p−1∑
v=1

(
q

p

)(
q

p

)(
v

p

)
ζqvp ≡

(
q

p

) p−1∑
v=1

(
qv

p

)
ζqvp ≡

(
q

p

)
γ (mod q).

The last congruence is observable via variable change v → qv
8



By equating both congruences of γq (mod q),

γ(−1)
p−1
2

q−1
2

(
p

q

)
≡
(
q

p

)
γ ⇒ γ2(−1)

p−1
2

q−1
2

(
p

q

)
≡
(
q

p

)
γ2 ⇒

(±p)(−1)
p−1
2

q−1
2

(
p

q

)
≡
(
q

p

)
(±p)⇒ (−1)

p−1
2

q−1
2

(
p

q

)
≡
(
q

p

)
(mod q)

±p is coprime to q, and thus has an inverse modulo q.

Because (−1)n,

(
p

q

)
, and

(
q

p

)
take values in {±1}, the congruence

can be strengthened to an equality.

p or q ≡ 1 (mod 4)⇒ (p−1) or (q−1) ≡ 0 (mod 4)⇒ p− 1

2

q − 1

2
≡ 0

(mod 2)⇒
(
p

q

)
=

(
q

p

)
p ≡ q ≡ 3 (mod 4)⇒ p− 1

2

q − 1

2
≡ 1 (mod 2)⇒

(
p

q

)
= −

(
q

p

)
�

Lemmas 3.3 and 3.4 and Theorem 3.1 give the full statement of qua-
dratic reciprocity. The Legendre symbol being multiplicative (as we
will see in the next section, the Legendre symbol is a quadratic mul-
tiplicative character), together with the lemmas and theorem, allow(
n

p

)
to be computed ∀n ∈ Z.

Example.

(
541

7919

)
=

(
7919

541

)
=

(
345

541

)
=

(
3

541

)(
5

541

)(
23

541

)
=(

541

3

)(
541

5

)(
541

23

)
=

(
1

3

)(
1

5

)(
12

23

)
=

(
4

23

)(
3

23

)
=

(
3

23

)
=

−
(

23

3

)
= −

(
2

3

)
= 1.

The last equality agrees with both lemmas when 2 is viewed as -1
(mod 3) as well.

Definition 3.2. The generalization of the Legendre symbol is the Ja-
cobi. Without restriction to composite n > 0, if n = pα1

1 p
α2
2 . . . pαkk ,

then the Jacobi symbol
(a
n

)
=

(
a

p1

)α1
(
a

p2

)α2

. . .

(
a

pk

)αk
. This is

a product of Legendre symbols. It shares some properties common to
the Legendre symbol, but loses a valuable property as well.

Remark. Both Supplementary Laws and Theorem 3.1 still hold when
distinct primes p and q are replaced by composite n and m where
both n,m are positive and odd. Unfortunately, there is significant
loss of information. Specifically, the Jacobi symbol does not share the
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property:
(a
n

)
= 1 ⇒ a is a square modulo n. This is due to the

indiscernability between an even parity of quadratic nonresidues in the
product of the Jacobi symbol and the necessary condition of a being
a quadratic residue modulo all primes dividing n. Despite this, Jacobi
symbols are still very useful in various algorithms such as in primality
testing.

We will now state the law of cubic reciprocity, without proof, for the
interest of the reader.

Definition 3.3. An Eisenstein integer is an element of Z[ζ3].

Definition 3.4. Let π be and Eistenstein prime with N(π) 6= 3, and

let α ∈ Z[ζ3]. If π|α, set
(α
π

)
3

= 0. If π 6 |α, let
(α
π

)
3

be the unique

power of ζ3 defined by

α(N(π)−1)/3 ≡
(α
π

)
3

(mod π)

This symbol is multiplicative like the Legendre symbol. Lastly, if β is

a unit of Z[ζ3], define
(α
π

)
3

= 1 for every α ∈ Z[ζ3]

Definition 3.5. Let α ∈ Z[ζ3]. α is called primary if α ≡ ±1 (mod 3)

Theorem 3.2. (Cubic Reciprocity). Let α and β be coprime primary
Eisenstein integers. Then (

α

β

)
3

=

(
β

α

)
3

For more information about cubic reciprocity see [3].
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4. Gauss Sums

Definition 4.1. Given a finite abelian group G, the multiplicative
homomorphism χ : G ↪→ S1 ⊂ C× is called a character of G.

g ∈ G, g = ga1
1 . . . gann . χ(g) = exp(2πi

∑
j

aj
fj

) where ordG(gj) = fj.

More generally, χb1,...,bn(g) = exp(2πi
∑
j

bjaj
fj

) =
∏
j

exp(2πi
bjaj
fj

) =∏
j

χb1,...,bn(gj)
ajbj The group of characters is denoted by Ĝ.

The definition of χ used in this paper will be χ(g) = χ1,...,1(g), omitting
the trivial weights.

Let χ0 denote the trivial character, with χ0(g) = 1 ∀g ∈ G.

The finite abelian group on which χ is defined will be a Galois group of
a number field, typically Z/mZ× corresponding to the mth cyclotomic
number field.

Definition 4.2. G = Z/mZ×. χ can be extended by defining χ(n) =
χ(n̄) where n̄ is the residue of n modulo m. Setting χ(n) = 0 for n
with gcd(n,m)>1, extends χ to the integers with periodicity, such that
χ(n) = χ(n+m) ∀n,∈ Z. We say that χ is a character to the modulus
m. This extended character χ is a Dirichlet character.

Definition 4.3. G = Z/mZ×. A character χ has a minimum modulus
of definition, called the conductor, denoted f(χ). A character is called
primitive if f(χ) = m, and imprimitive otherwise, in which case f(χ) <
m.

Example. Let m = 8, then Z/mZ× = {1, 3, 5, 7}. Every non-trivial
character is quadratic. By the multiplicative relationships, it is easily
verifiable that {3,5} generate the group, and hence χ is defined by the
values it takes on 3 and 5. This is the character table:

χ 0 1 2 3 4 5 6 7
χ1 0 1 0 1 0 1 0 1
χ2 0 1 0 -1 0 1 0 -1
χ3 0 1 0 1 0 -1 0 -1
χ4 0 1 0 -1 0 -1 0 1

f(χ1) = 1 < 8 and f(χ2) = 4 < 8, hence χ1 and χ2 are imprimitive
(χ1 is obviously imprimitive because it is the trivial character!)

11



χ3 and χ4 are both primitive because they cannot be defined on a
smaller modulus.

Remark. Unless stated otherwise, χ will be a primitive character.

Definition 4.4. The Gauss sum of Dirichlet character χ modulo N is

GN(χ, a) =
N∑
n=1

χ(n)ζanN where ζN = exp(2πi
N

) and χ is a (primitive)

character of (Galois) group G (= Z/NZ×). The notation GN(χ) =
GN(χ, 1) will be used if there is no ambiguity.

Remark. The Gauss sum generalizes the Langrange resolvent, defined
in the previous section.

When χ is the trivial character, Gp(χ0, 1) = Φp(ζp)− 1 = −1.

When χ is the quadratic character, Gp(χ2, 1) =

p∑
n=1

χ2(n)ζn =

p∑
n=1

(
n

p

)
ζn

where

(
n

p

)
is the Legendre symbol.

The Classical Gauss sum from the Section 2 can now be viewed as the
Gauss sum Gp(χ2) where χ2 is the unique quadratic character of the
Galois group.

Lemma 4.1. Let χ and ψ be characters modulo m. If gcd(f(χ), f(ψ)) =
1, then f(χψ) = f(χ)f(ψ)

Proof. Apply the Chinese Remainder Theorem. �

Remark. Lemma 4.1 allows us to factor characters modulo m. If
m = ab, and gcd(a, b) = 1 then we can factor a character χ modulo m
into a product of characters χa and χb modulo a and b, respectively.

Lemma 4.2. gcd(a,m) = 1⇒ Gm(χ, a) = χ(a)Gm(χ, 1)

Proof. Gm(χ, a) =
m∑
n=1

χ(n)ζanm =
m∑
n=1

χ(a)χ(a)χ(n)ζanm =
m∑
n=1

χ(a)χ(an)ζanm =

χ(a)
m∑
n=1

χ(an)ζanm = χ(a)Gm(χ, 1). The last equality holds because

gcd(a,m) = 1⇒ n→ an is a bijection on Z/mZ×. �

Lemma 4.3. gcd(a,m) > 1⇒ Gm(χ, a) = 0
12



Proof. gcd(a,m) = d > 1⇒ m = rd and a = bd and gcd(r, b) = 1
There exists a c, such that χ(c) 6= 1 and c ≡ 1 (mod r). The existence
of such a c arises from χ being non-trivial on the kernel of the mapping
h : Z/mZ× −→ Z/rZ×. If it were trivial on the kernel, then χ would
determine a character of Im(h) ⊆ Z/rZ×, extending to a character χ′

of Z/mZ×, and χ′ would induce χ. This contradicts χ being primitive.
It is easy to show that a ≡ ca mod m, and thus ζam = ζcam

χ(c)Gm(χ, a) =
m∑
n=1

χ(cn)ζanm =
m∑
n=1

χ(cn)ζcanr = Gm(χ, a) by the vari-

able change cn −→ n, since gcd(c,m) = 1.
(χ(c)− 1)Gm(χ, a) = 0⇒ Gm(χ, a) = 0, since χ(c) 6= 1 �

We will now apply Lemmas 4.2 and 4.3 to generalize Theorem 2.1.

Theorem 4.1. For primitive character χ with conductor m, if gcd(a,m) =
1 then |Gm(χ, a)| =

√
m.

Proof. |Gm(χ, a)|2 = Gm(χ, a)Gm(χ, a) =
∑
x

∑
y

χ(x)χ(y)ζ(x−y)
p where

x and y run over the residues modulo m.

x ≡ y (mod m)⇒
∑

n (mod m)

ζn(x−y)
m =

∑
n (mod m)

1 = m

x 6≡ y (mod m)⇒
∑

n (mod m)

ζn(x−y)
m = Φm(ζm) = 0

By Lemma 4.3, gcd(x,m) > 1 ⇒ χ(x) = 0
∑

n (mod m)

|Gm(χ, n)|2 =∑
(n,m)=1

|Gm(χ, n)|2 =
∑

(n,m)=1

∑
x

∑
y

χ(x)χ(y)ζ(x−y)
m =

∑
(n,m)=1

∑
x (mod m)

χ(x)χ(x) =∑
(n,m)=1

|χ(x)|m = m
∑

(n,m)=1

1 = mφ(m).

By Lemma 4.2, for n coprime to m, Gm(χ, n) = χ(n)Gm(χ, 1) ⇒
|Gm(χ, n)|2 = |χ(n)|2|Gm(χ, 1)|2.

Appealing to Lemmas 4.2 and 4.3, |Gm(χ, n)|2 =

{
|Gm(χ, 1)|2 if gcd(n,m) = 1

0 if gcd(n,m) > 1∑
n (mod m)

|Gm(χ, n)|2 =
∑

(n.m)=1

|Gm(χ, 1)|2 = φ(m)|Gm(χ, 1)|2.

Equating the two yields φ(m)|Gm(χ, 1)|2 = mφ(m)⇒ |Gm(χ, 1)|2 = m

gcd(a,m) = 1⇒ |Gm(χ, a)|2 = |Gm(χ, 1)|2 ⇒ |Gm(χ, a)| =
√
m �

13



Remark. Clearly, by Lemma 4.3, gcd(a,m) > 1⇒ |Gm(χ, a)| = 0

We will now develop a decomposition of a Gauss sum of composite
modulus into simpler Gauss sums.

Theorem 4.2. Let m = ab with gcd(a,b)=1. Let χ = χaχb be a charac-

ter modulo m. Gm(χ) = χa(b−1
a )Ga(χa)χb(a

−1
b )Gb(χb) where f(χa) = a

and f(χb) = b.

Proof. For any n, 1 ≤ n ≤ m, we would like to write n ≡ n1 (mod a)
and n ≡ n2 (mod b). By the Chinese Remainder Theorem,

n = αn1 + βn2 where α ≡

{
1 (mod a)

0 (mod b)
and β ≡

{
0 (mod a)

1 (mod b)

Let ba denote the residue of b (mod a) and ab the residue of a (mod b).
α = bab

−1
a = bb−1

a and β = aba
−1
b = aa−1

b where b−1
a and a−1

b are integer
representatives of the residues between 1 and their respecitve moduli.
χ(n) = χm(n) = χa(n)χb(n) = χa(αn1+βn2)χb(αn1+βn2) = χa(n1)χb(n2)

Gm(χ) =
m∑
n=1

χm(n)ζnm =
∑
n1,n2

χa(n1)χb(n2)ζ
αn1+βn2
m =

∑
n1,n2

χa(n1)χb(n2)ζ
αn1
m ζβn2

m

ζαn1
m = exp(

2πiαn1

m
) = exp(

2πibb−1
a n1

ab
) = exp(

2πib−1
a n1

a
) = ζb

−1
a
a

ζβn2
m = exp(

2πiβn2

m
) = exp(

2πiaa−1
b n2

ab
) = exp(

2πia−1
b n2

b
) = ζ

a−1
b
b

Gm(χ) =
∑
n1,n2

χa(n1)χb(n2)ζ
b−1
a n1
a ζ

a−1
b n2

b =
∑
n1

χa(n1)ζ
b−1
a n1
a

∑
n2

χb(n2)ζ
a−1
b n2

b .

Be Lemma 4.2,
∑
n1

χa(n1)ζ
b−1
a n1
a = χa(b−1

a )
∑
n1

χa(n1)ζ
n1
a = χa(b−1

a )Ga(χa)

and
∑
n2

χb(n2)ζ
a−1
b n2

b = χb(a
−1
b )
∑
n2

χb(n2)ζ
n2
b = χb(a

−1
b )Gb(χb).

Substituting, we get Gm(χ) = χ(b−1
a )Ga(χa)χ(a−1

b )Gb(χb) �

Remark. The process in Theorem 4.2 can be repeated until m is fac-

tored into prime powers. m =
k∏
i=1

pαii ⇒ Gm(χ) = µ
∏
i

Gp
αi
i

(χpαii )

where µ is the appropritate root of unity.

14



5. Quadratic Gauss Sums

We will now focus on quadratic Gauss sums and their decomposition.

Definition 5.1. The quadratic Gauss sum g(a,N) =
N∑
n=1

ζan
2

N .

The quadratic Gauss sum can be decomposed into simpler quadratic
Gauss sums, and ultimately factored analogously to the Gauss sum in
Theorem 4.2.

Lemma 5.1. For odd prime p, g(a, p) =

(
a

p

)
g(1, p).

Proof. Appealing to Lemma 2.4 and Lemma 4.2, we see that gcd(a, p) =

1 ⇒ g(a, p) =

p∑
n=1

ζan
2

p =

p∑
n=1

χ2(a)ζanp = G(χ2, a) = χ2(a)G(χ2, 1) =

χ2(a)G(χ2, 1) = χ2(a)

p∑
n=1

χ(n)ζnp = χ2(a)

p∑
n=1

ζn
2

p = χ2(a)g(1, p), where

χ2 is the Legendre symbol. Likewise, if gcd(a, p) = p⇒ χ2(a) = 0. �

Remark. By induction, Lemma 5.1 can be extended through the Ja-
cobi symbol so that the restriction on p is lifted from having to be
prime to having to only be odd and positive. Even the restriction of
being odd can be lifted, but the proof requires analytic computation.

We will now develop some recursion formulae, useful in the process of
factorizing quadratic Gauss sums.

Lemma 5.2. For odd prime p, and j ≥ 2, g(1, pj) = pg(1, pj−2).

Proof. Writing n p-adically, n = r+spj−1 with r a residue modulo pj−1

and s a residue modulo p. n2 = (r+ spj−1)2 = r2 + 2rspj−1 + sp2j−2 ≡
r2 + 2rspj−1 (mod pj).

g(1, pj) =

pj∑
n=1

ζn
2

pj =
∑
r

∑
s

ζr
2+2rspj−1

pj
=
∑
r

∑
s

ζr
2

pj ζ
2rs
p = p

∑
r,p|r

ζr
2

pj .

gcd(p, r) = p ⇒ ζ2rs
p = exp(2πis) = 1, so the inner summation is p as

s runs through the residues modulo p.
gcd(p, r) = 1⇒ s −→ 2rs is a bijection on Z/pZ and as s runs through
the residues modulo p, each pth root of unity appears once, so the inner
summation is 0.
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g(1, pj) = p
∑
r,p|r

ζr
2

pj = p(ζ0
pj+ζ

p2

pj
+ζ4p2

pj
+. . .+ζ

p2(j−1)2

pj
) = p(ζ0

pj−2+ζ1
pj−2+

ζ4
pj−2 + . . .+ ζ

(j−2)2−1

pj−2 ) = p

pj−2−1∑
n=0

ζn
2

pj−2 = p

pj−2∑
n=1

ζn
2

pj−2 = pg(1, pj−2) �

Lemma 5.3. g(1, 2j) = 2g(1, 2j−2) for j ≥ 4.

Proof. Writing n 2-adically, n = r+s2j−2 with r a residue modulo 2j−2

and s a residue modulo 2. n2 = (r+ s2j−2)2 = r2 + 2rs2j−2 + sp2j−4 ≡
r2 + rs2j−1 (mod 2j).

g(1, 2j) =
2j−1∑
n=0

ζn
2

2j =
∑
r

∑
s

ζr
2+rs2j−1

2j
=
∑
r

∑
s

ζr
2

2j (−1)rs = 2
2(j−1)−1∑
2|r,r=0

ζr
2

2j .

The last equality holds by the same arguement as in Lemma 5.2.

g(1, 2j) = 2
2(j−1)−1∑
2|r,r=0

ζr
2

2j = 4
2(j−2)−1∑
2|r,r=0

ζr
2

2j = 4(ζ0
2j+ζ

22

2j +ζ24

2j +. . .+ζ2(j−3)2

2j ) =

4(ζ0
2j−2 +ζ1

2j−2 +ζ22

2j−2 + . . .+ζ2(j−4)2

2j−2 ) = 4
2(j−3)−1∑
n=0

ζn
2

2j−2 = 2
2(j−2)−1∑
n=0

ζn
2

2j−2 =

2g(1, 2j−2). The second and sixth equalities are due to symmetry. �

Lemma 5.4. g(1, pj) =

{
p
j
2 pj ≡ 1 (mod 4)

ip
j
2 pj ≡ 3 (mod 4)

Proof. g(1, pj) = pg(1, pj−2) = . . . = pkg(1, pj−2k) after k iterations.

j ≡ 0 (mod 2)⇒ g(1, pj) = . . . = p
j−2
2 g(1, p2) = p

j
2 g(1, 1) = p

j
2 .

j ≡ 1 (mod 2) ⇒ g(1, pj) = . . . = p
j−1
2 g(1, p) = p

j−1
2

√
(−1)

p−1
2 p =√

(−1)
p−1
2 p

j
2 =

{
p
j
2 if p ≡ 1 (mod 4)⇔ pj ≡ 1 (mod 4)

ip
j
2 if p ≡ 3 (mod 4)⇔ pj ≡ 3 (mod 4)

�

Lemma 5.5. g(1, 2j) =

{
(1 + i)2

j
2 2j ≡ 0 (mod 4)

0 2j ≡ 2 (mod 4)

Proof. g(1, 2j) = 2g(1, 2j−2) = . . . = 2kg(1, 2j−2k) after k iterations.

2j ≡ 0 (mod 4) ⇒ g(1, 2j) = . . . = 2
j−2
2 g(1, 4) = 2

j−2
2 (i1 + i4 + i9 +

i16) = 2(1 + i)2
j−2
2 = (1 + i)2

j
2 .

2j ≡ 2 (mod 4)⇒ g(1, 2j) = . . . = 2
j−1
2 g(1, 2) = 2

j−1
2 (1− 1) = 0 �
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Lemma 5.6. Let a be odd. Then g(a, 2r) = ε(a)

(
−2r

a

)
g(1, 2r) where

ε(a) =

{
1 if a ≡ 1 (mod 4)

i if a ≡ 3 (mod 4)

Proof. Let σa : ζ2r −→ ζa2r . Then g(a, 2r) = σa(1, 2
r) = σa(1+i)σa(2

r
2 ).

σa(1 + i) = 1 + ia =

{
1 + i if a ≡ 1 (mod 4)

1− i if a ≡ 3 (mod 4)
=

(
−1

a

)
ε(a)(1 + i)

σa(2
r
2 ) =

(
2

a

)r
2
r
2 =

(
2r

a

)
2
r
2 ⇒ g(a, 2r) = ε(a)

(
−2r

a

)
g(1, 2r) �

Analogous to Theorem 4.2, there is a way to decompose a quadratic
Gauss sum of composite modulus.

Theorem 5.1. Let m = ab with gcd(a, b) = 1. g(1,m) = µg(1, a)g(1, b)
where µ is an appropriate root of unity.

Proof. For any n, 1 ≤ n ≤ m, we would like to write n ≡ n1 (mod a)
and n ≡ n2 (mod b). By the Chinese Remainder Theorem,

n = αn1 + βn2 where α ≡

{
1 (mod a)

0 (mod b)
and β ≡

{
0 (mod a)

1 (mod b)

Let ba denote the residue of b (mod a) and ab the residue of a (mod b).
α = bab

−1
a = bb−1

a and β = aba
−1
b = aa−1

b where b−1
a and a−1

b are integer
representatives of the residues between 1 and their respecitve moduli.

n2 = (αn1 + βn2)
2 = α2n2

1 + 2αβn1n2 + β2n2
2 = b2ab

−2
a n2

1 + a2
ba
−2
b +

2mb−1
a a−1

b ≡ b2ab
−2
a n2

1 + a2
ba
−2
b (mod m) ⇒ ζn

2

m = ζ
(b2ab

−2
a )n2

1+(a2
ba
−2
b )n2

2
m =

ζ
(b2ab

−2
a )n2

1
m ζ

(a2
ba
−2
b )n2

2
m = ζ

(bb−2
a )n2

1
a ζ

(aa−2
b )n2

2

b ⇒ g(1,m) = g(bb−2
a , a)g(aa−2

b , b).

m = 2jk where k is odd and j ≥ 0⇒ g(1,m) = g(kk−2
2j
, 2j)g(2j2j

−2
k , k).

Appealing to Lemma 5.1, the subsequent remark, and Lemma 5.6,
g(1,m) = g(kk−2

2j
, 2j)g(2j2j

−2
k , k) =

ε(kk−2
2j

)

(
−2j

kk−2
2j

)
g(1, 2j)

(
2j2j

−2
k

k

)
g(1, k) =[

ε(kk−2
2j

)

(
−2j

kk−2
2j

)(
2j2j

−2
k

k

)]
g(1, 2j)g(1, k).

k =
∏
piodd

paii , so further decomposition of g(1, k) is possible but the

computation of the root of unity becomes rather cumbersome. �
17



Remark. m =
∏

piprime

paii . Using Theorem 5.1 and great diligence,

g(1,m) = µ
∏

piprime

g(1, paii ) where µ, the appropriate root of unity, can

be computed through methods in the proof of Theorem 5.1.

We conclude this section with an elegant equation for evaluating qua-
dratic Gauss sums due to Dirichlet. The proof of the theorem uses
analytic methods and is beyond the scope of this paper.

Theorem 5.2. For any positive integer b, g(1, b) =
1 + i−b

1 + i−1

√
b.

Proof. See Algebraic Number Theory by S. Lang, pp. 88-90. [5] �

Remark. Theorems 5.1 and 5.2 allow g(a, b) to be computed for any
positive integers a, b.
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6. Stickelberger’s Theorem

To pursue the prime factorization of the Gauss sum, we will look at
the Gauss sum as an ideal (or divisor) in the appropriate number field.

We must first introduce the Teichmüller character, which will be a
canonical character dependent on a prime ideal that will be the basis
for expressing all other characters. The existence of such a character
will be justified by Hensel’s lemma.

Theorem 6.1. (Trivial case of Hensel’s lemma). Let K be a number
field and let p be a prime ideal in the ring of integers OK. Let Kp be the
completion of K at the finite place p and let Op be the ring of integers
in Kp. Let f(x) be a polynomial with coefficients in Op and suppose
there exists α0 ∈ Op such that

f(α0) ≡ 0 mod p, f ′(α0) 6= 0 mod p

Then there exist a root α ∈ Kp of f(x), i.e. f(α) = 0.

Proof. See http://planetmath.org/encyclopedia/HenselsLemma.html. �

Corollary. Let p be a prime number. The ring of p-adic integers Zp

contains exactly p − 1 distinct (p − 1)th roots of unity. Furthermore,
every (p− 1)th root of unity is distinct modulo p.

Proof. Notice that Qp, the p-adic rationals, is a field. Therefore f(x) =
xp−1 − 1 has at most p− 1 roots in Qp. Moreover, if we let a ∈ Z with
1 ≤ a ≤ p − 1 then f(a) = ap−1 − 1 ≡ 0 mod p by Fermat’s little
theorem. Since f ′(a) = (p − 1)ap−2 is non-zero modulo p, the trivial
case of Hensel’s lemma implies that there exist a root of xp−1− 1 in Zp

which is congruent to a modulo p. Hence, there are at least p− 1 roots
in Zp, and we can conclude that there are exactly p− 1 roots. �

Definition 6.1. The Teichmüller character (or Teichmüller lift) is the
unique character ω of F×p satisfying ω(a) ≡ a (mod p).

Lemma 6.1. The Teichmüller character generates the character group
of F×p .

Proof. F×p is cyclic and ω(ζp−1+p) = ζp−1, and so ω has order p−1. �

Remark. Every character of F×p is expressable as ω−k. We will thus

use ω(a) ≡ a−1 (mod p) as our generator to avoid negative powers.
From this point on, we will refer to ω as this generator.
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The following lemmas will explain this diagram.

Pp−1
1 . . .Pp−1

r

Kp−1,p

ppppppppppp

LLLLLLLLLLL

p1 . . . pφ(p−1) Kp−1

NNNNNNNNNNNNN
Kp

qqqqqqqqqqqqq πp−1

Q

p

Put Kn = Q(ζn) and let Km,n be the composite of Km and Kn.

It is well known in algebraic number theory that in a number field K,
an ideal factors into a product of prime ideals, the algebraic integers

of K. n =
r∏
i=1

pi
ei

Lemma 6.2. Let n be an ideal of OK. n =
r∏
i=1

peii .

r∑
i=1

eifi = [K : Q]. Where fi = [OK/pi : Z/n]

fi is called the inertial degree of pi.

Proof. n[K:Q] = NK/Q(n) =
r∏
i=1

NK/Q(pi)
ei =

r∏
i=1

neifi = n
∑r
i=1 eifi �

Remark. If K is a Galois extension, then ei = e and fi = f for
1 ≤ i ≤ r As a consequence, efr = [K : Q].

Kp and Kp−1 are both Galois extensions because ζp and ζp−1 generate
the all of the pth and (p− 1)st roots of unity in Kp and Kp−1, respec-
tively, thus the fields are normal, and because all number fields are
separable.

Theorem 6.2. Write m in the form pkn, p 6 | n. Then e = φ(pk) and
f is the multiplicative order of p modulo n.
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Proof. See Number Fields by D. Marcus pp. 76-78. [7] �

Corollary. If p 6 | n, then p splits in φ(m)/f distinct primes ideals in
OKp−1, where f is the order of p mod m.

Lemma 6.3. p totally splits in Kp−1.

Proof. Appealing to the corollary when m = p−1 gives us that p splits
into φ(p− 1) distinct prime ideals because f = 1. �

Lemma 6.4. p totally ramifies in Kp.

Proof. π = (1 − ζp)|(1 − ζ ip) for 1 ≤ i ≤ p − 1 ⇒ πp−1|
p−1∏
i=1

(1− ζ ip) =

Φ(1) = p. For π, (p − 1)fr = efr = [Kp : Q] = φ(p) = p − 1 ⇒ f =
r = 1. π has full ramification index, and must be prime, otherwise it
would factor causing efr > [Kp : Q]. �

Lemma 6.5. p =
∏

Pp−1
1 . . .Pp−1

φ(p−1) in OKp−1,p.

Proof. Appealing to Lemmas 6.2, 6.3 and 6.4,
p = p1 . . . pφ(p−1) in OKp−1 ⇒ r ≥ φ(p− 1). p = πp−1 ⇒ e ≥ (p− 1).
ef ≥ φ(p− 1)φ(p) = [Kp−1,p : Q] = efr ≥ ef . �

Now we know the structure of the factorization of p, and hence the
Gauss sum with absolute value p. Stickelberger’s theorem will explain
the factorization of the Gauss sum in terms of prime ideals in Kp−1,p

. In full generality, q = pn ≡ 1 (mod m). The following theorems will
state the general case, but the content of this paper will only analyze
the case of n = 1 and m = p− 1

Definition 6.2. For integer k, looking at k (mod q− 1), we write the
p-adic expansion k = k0 + k1p+ . . .+ kn−1p

n−1 with 0 ≤ ki ≤ p− 1.

s(k) =
n−1∑
i=0

ki and γ(k) =
n−1∏
i=0

ki!

Both s(k) and γ(k) are periodic q − 1.

Theorem 6.3. (Stickelberger’s Theorem). For any integer k, we have
the congruence

G(ωk, ζTrp )

(ζp − 1)s(k)
≡ −1

γ(k)
(mod P)
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In particular,

ordPG(ωk, ζTrp ) = s(k)

Proof. See Cyclotomic Fields I,II by S. Lang, pp. 7-9. [6] �

Corollary. In the case of n = 1, q = pn = p and Tr(x) = xp
0

= x.
s(k) = k0 ≡ k (mod q) and γ(k) = k0!
In this case, Stickelberger’s Theorem states: for 0 ≤ k ≤ p− 1

G(ωk, ζp)

(ζp − 1)k
≡ −1

k!
(mod P)

in particular,

ordPG(ωk, ζp) = k

Proof. Let p be a prime ideal over p. ω(n) ≡ n−1 (mod p) = (mod Pp−1).

Gp(ω) =

p−1∑
n=1

ω(n)ζnp ≡
p−1∑
n=1

n−1(1− π)n (mod Pp−1)

Gp(ω) ≡
p−1∑
n=1

n−1(1− nπ) (mod P2) since P||π.

Gp(ω) ≡
p−1∑
n=1

n−1 +Gp(ω) ≡
p−1∑
n=1

π ≡ 0− (p− 1)π ≡ π (mod P2)

Hence we have that, P||Gp(ω). Similarily, for 1 ≤ k ≤ p− 2,

Gp(ω
k) =

p−1∑
n=1

ω(n)kζnp ≡
p−1∑
n=1

n−k(1− π)n (mod Pp−1)

Gp(ω
k) ≡

p−1∑
n=1

n−k
n∑
j=0

(−1)j
(
n

j

)
πj ≡

k∑
j=0

p−1∑
n=1

n−k(1 + α1nπ + α2n
2π2 + . . .+ (−1)k

1

k!
nkπk) (mod Pk+1)

For 1 ≤ j ≤ k − 1,

p−1∑
n=1

nj−kαjπ
j ≡ αjπ

j

p−1∑
n=1

nj−k ≡ 0 (mod Pk+1)

Gp(ω
k) ≡

p−1∑
n=1

(−1)
1

k!
πk ≡ (−1)k+1 1

k!
πk 6≡ 0 (mod Pk+1).

Hence we have that, Pk||Gp(ω
k)⇒ ordPG(ωk) = k. �

Stickelberger’s Theorem gives us a correspondence between kth powers
of a particular prime ideal P exactly dividing the Gauss sums Gp(ω

k).
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Using the result of the theorem, we can understand the full factorization
of a particular Gauss sum Gp(ω

a)

Take σa = σa,1 ∈ Gal(Kp−1,p/Q) such that σa(ζp) = ζp and σa(ω) = ωa.

Gp(ω)σa =

p−1∑
n=1

ω(n)aζnp = Gp(ω
a).

Pa||Gp(ω
a)⇒ (Pσ−1

a )
a
||Gp(ω

a)σ
−1
a ⇒ (Pσ−1

a )
a
||Gp(ω)

We now have the full factorization of Gp(ω) =
∏

(a,p−1)=1

(Pσ−1
a )

a
.

Via conjugation, we know the full factorization of Gp(ω
k) = Gp(ω)σk =∏

(a,p−1)=1

(Pσ−1
a σk)

a
for any 1 ≤ k ≤ p− 2 with gcd(k, p− 1) = 1.

The following well known theorem in algebraic number theory provides
a method for computing the primes p and P lying over p.

Lemma 6.6. If χ has order m, then Gp(χ)m ∈ Km.

Proof. Let τ ∈ Gal(Km,p/Q) such that τ(ζp) = ζvp and τ(ζm) = ζm. In
fact, τ ∈ Gal(Km,p/Km).

τ(Gp(χ)m) = τ(
∑

n (mod q)

χ(n)ζnp ) =
∑

n (mod q)

χ(n)ζvpn = χ(v)
m
Gp(χ)m.

�

Theorem 6.4. Let p be a prime ideal (or divisor) in the number field
k. If Ok[θ] = OK, then there is a prime ideal (or divisor) Pi|p of

K/k of residue class degree (inertial degree) f = deg(hi(x)) given by
P = hi(θ) + pOK (or P = (hi(θ), p) as a divisor), where h(x) is

the (monic) irreducible polynomial of θ and h(x) =
∏

hi(x) is the

projection of h(x) in Fq[x] ∼= Ok/p[x]

Remark. It is necessary that Ok[θ] = OK . For θ = ζn this holds.

Remark. The proof is elementary but relatively long and can be found
in many texts. The result of the theorem will be used for computational
examples, hence the proof is excluded.

Proof. See Number Fields by D. Marcus pp.79-82. [7] or Analytic The-
ory of Algebraic Numbers by H. Stark Theorem, 8.1.3. [9] �

Example. Let k = Q, p = 7 and K = K6 where θ = ζ6. h(x) =
Φ6(x) = x2 − x + 1 ≡ (x − 3)(x − 5) (mod 7). There are exactly two
primes p1, p2 dividing p, both of inertial degree 1. p1 = (ζ6 − 3, 7) and
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p2 = (ζ6 − 5, 7). K6 is a quadratic extension, hence p = p1p2.
To verify, 7 = (2 +

√
−3)(2−

√
−3) = (1 + 2ζ6)(3− 2ζ6) =

[1 · 7 + 2(ζ6 − 3)][(−1) · 7− 2(ζ6 − 5)].
Using our previous results, p = p1p2 = P6

1P
6
2 in K6,7.

Definition 6.3. The Stickelberger element is

θ(k, p) =
∑

c∈Z/mZ×
〈 kc

q − 1
〉σ−1

c ∈ Q[G]

where 〈t〉 ≡ t (mod Z) and 0 ≤ 〈t〉 ≤ 1 and m is the order of the
character ωk (mod p). ωk will be defined contextually.

Lemma 6.7. For any integer k, we have s(k) = (p− 1)
n−1∑
i=0

〈 kp
i

q − 1
〉.

Proof. We may assume 1 ≤ k ≤ q − 1 since both sides of the equation
are (q − 1)-periodic in k. k = k0 + k1p+ . . .+ kn−1p

n−1 ⇒
kpi = kn−i+kn−(i−1)p+. . .+kn−1p

i−1+k0p
i+k1p

i+1+. . .+kn−(i+1)p
n−1 ⇒

〈 kp
i

q − 1
〉 =

kpi

q − 1
⇒

n−1∑
i=0

〈 kp
i

q − 1
〉 =

n−1∑
i=0

kpi

q − 1
=
s(k)(1 + p+ . . .+ pn−1)

q − 1
=

s(k) q−1
p−1

q − 1
=

s(k)

p− 1
�

Theorem 6.5. Gp(ω
k, ζTrp ) = P(p−1)θ(k,p) = pθ(k,p) as ideals in Kp−1,p.

Proof. ordσ−1
c PG(ωk, ζTrp ) = ordPσcG(ωk, ζTrp ) = ordPG(ωck, ζTrp ) =

s(kc) by Theorem 6.3. {σpi} fixes Gp(ω
kζTp r) and hence fixes p (this is

the decomposition group of p) ⇒ in the ideal pθ(k,p), σ−1
c p occurs with

multiplicity
n−1∑
i=0

〈 kcp
i

q − 1
〉 =

s(kc)

p− 1
, by Lemma 6.6. Hence in the ideal

P(p−1)θ(k,p), σ−1
c P occurs with multiplicity (p− 1)

s(kc)

p− 1
= s(kc). �
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Example. n = 1 and q = p = 7. The only primes above p are P1P2

in K6,7, and thus are the only primes dividing Gp(ω
k, ζp)

k Gp(ω
k, ζp)

1 P(p−1)θ(k,p) = P6(〈 1
6
〉σ−1

1 +〈 5
6
〉σ−1

5 ) = P1P
5
2

2 P(p−1)θ(k,p) = P6(〈 2
6
〉σ−1

1 +〈 10
6
〉σ−1

5 ) = P2
1P

4
2

3 P(p−1)θ(k,p) = P6(〈 3
6
〉σ−1

1 +〈 15
6
〉σ−1

5 ) = P3
1P

3
2

4 P(p−1)θ(k,p) = P6(〈 4
6
〉σ−1

1 +〈 20
6
〉σ−1

5 ) = P4
1P

2
2

5 P(p−1)θ(k,p) = P6(〈 5
6
〉σ−1

1 +〈 25
6
〉σ−1

5 ) = P5
1P

1
2

Theorem 6.6. Let C be the ideal class group of Q(ζm). Then for all b
prime to m,

(b− σb)θ(m)

annihilates C

Proof. (Sketch:) χp = ωN(p−1)/m and put θ(m) =
∑

c∈Z(m)×

〈 c
m
〉σ−1

c . As a

special case of Theorem 6.5, we obtain the factorization

Gp(χp, ζ
Tr
p ) = pθ(m))

Therefore, if b is an integer prime to m, then

Gp(χp, ζ
Tr
p )b−σb = pθ(m)(b−σb)

θ(m)(b− σb) lies in Z[G]. This gives us a factorization of the θ(m)(b−
σb)th power of the Gauss sum in terms of p and its conjugates in Q(ζm).
In every ideal class there exists an ideal prime to m (Hilbert).
pθ(m)(b−σb) is principal for every p 6 | m �

7. Brumer-Stark Conjecture

The Brumer-Stark conjecture is the generalization of the Stickelberger
ideal annihilating the ideal class group of Q(µm).

Conjecture. (Brumer-Stark). Every ideal a of K has the following
property: There exists an element α ∈ K satisfying |α|v = 1 for every
Archimedian place v of K such that aωθS,K/k = (α) and such that the
extension K( ω

√
α) is Abelian.

This conjecture has recently been proven by Dr. Cristian D. Popescu.
In his seminar’s closing remarks, he mentioned that he is working on a
further generalization of the Brumer-Stark conjecture for non-Abelian
extensions.
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