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Abstract

The moduli space of stable maps has become a central object of study in algebraic geometry,

and its cohomology is known to encapsulate important enumerative information. In an effort to

further understanding of this cohomology, we describe a method which uses localization in order

to calculate the Euler characteristic of the moduli space of stable maps into a Grassmannian.
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1 Introduction

The moduli space of stable maps, constructed by Kontsevich in [6], has become a central object

of study in algebraic geometry. The cohomology of this moduli space captures immensely useful

algebro-geometric information which permits a remarkable number of previously impossible

enumerative calculations [1]. In an effort to further understanding of this cohomology, we

describe a method for calculating the Euler characteristic of the moduli space of stable maps

into a Grassmannian. We approach this calculation using the following localization theorem,

which follows from [7, Lemma 6].

Theorem 1 (Localization). Suppose X is a smooth Deligne-Mumford stack with a torus action

of C� and fixed locus F . Then χpXq � χpF q.

In fact, our applications of this theorem will be when the fixed locus F of the torus action

is a discrete and finite set, in which case χpF q � |F |.
We will work exclusively over the complex numbers C. We begin in section 2 by reviewing

some elementary facts about the Grassmannian and the Plücker embedding. In section 3,

we define the moduli space of stable maps by describing the functor it represents, and the

set it parametrizes. Then in section 4, we produce a torus action on the moduli space and

describe its fixed locus, thereby allowing us to apply localization and calculate the desired Euler

characteristic. We conclude by discussing generalizations of the calculations presented.

2 The Grassmannian

The Grassmannian G � Gpk, nq, as a set, consists of the k-dimensional subspaces of Cn. In

fact, it has the structure a smooth complex projective variety, and its embedding into projective

space is called the Plücker embedding. Understanding this embedding will be useful, so we

develop part of the theory here, following the exposition of [3, Lecture 6].

If a k-dimensional subspace V P G is spanned by vectors v1, . . . , vk, consider the multivector

v1 ^ � � � ^ vk P
k©

Cn.

This multivector is determined uniquely up to scalars by V , for the choice of a different basis

for V corresponds to multiplication by the determinant of the change of basis matrix. Thus, we

acquire a well-defined map of sets

ψ : GÑ P

�
k©

Cn

�
.

In fact, it turns out that ψ is injective, and that its image can be carved out by homogeneous

polynomials, thereby yielding the structure of a projective variety on G.

We would like to have a description of precisely which elements of Pp
�k

Cnq are in G. To

obtain such a characterization, begin by noticing that the class rωs of some ω P
�k

Cn is in the

image of ψ if and only if ω is totally decomposable, so that

ω � v1 ^ � � � ^ vk
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for some linearly independent v1, . . . , vk P Cn. Next, observe that, given ω P
�k

Cn, a vector

v P Cn will divide ω (that is, ω can be written as v ^ σ for some σ P
�k�1

Cn) if and only

if ω ^ v � 0 P
�k�1

Cn. Thus ω is totally decomposable if and only if the space of vectors

dividing it is k-dimensional, which happens if and only if the linear map v ÞÑ ω ^ v has rank

n� k. Thus, we arrive at the following characterization.

Proposition 2. The class rωs P Pp
�k

Cnq is a point of G if and only if the linear map

αpωq : Cn Ñ
k�1©

Cn

given by v ÞÑ ω ^ v has rank n� k.

3 The Moduli Space of Stable Maps

We define a (genus zero) nodal curve to be a scheme with finitely many irreducible components,

each isomorphic to a projective line P1, joined together at points called nodes to form a tree, so

that there are no cycles. An isomorphism of nodal curves is an isomorphism of the underlying

schemes: more explicitly, it is a bijection µ : C 1 Ñ C under which components are in one-to-one

correspondence, and such that the restriction µ|C1

λ
to a component C 1λ of C 1 is an automorphism

of P1, and is thus of the form

rz : ws ÞÑ rαz � βw : γz � δws

for some α, β, γ, δ P C with αδ � βγ � 0.

Let X be a smooth complex projective variety. An (unmarked) stable map pC,ϕq of degree

d into X is a map ϕ : C Ñ X on a nodal curve C such that

(i) for each component Cλ of C, the restriction ϕ|Cλ : Cλ Ñ X is a morphism of degree dλ
such that

°
dλ � d, and

(ii) if dλ � 0, then Cλ has at least three nodes.

Let S be a scheme over C. A stable map over S of degree d is a flat, proper map C Ñ S and

a map ϕ : C Ñ X such that for every geometric point s of S, the restriction ϕs : Cs Ñ X to

the fiber over s defines a stable map pCs, ϕsq of degree d. We define a functor

MpX, dq : pC-schemesqop Ñ psetsq

which maps a scheme S over C to the isomorphism classes of stable maps of degree d over S.

Theorem 3. Let X be a smooth complex projective variety. For every nonnegative integer

d, the functor MpX, dq is finely represented by a Deligne-Mumford stack [5]. Moreover, when

X � Gpk, nq is a Grassmannian, this stack is smooth.

We will use the notation MpX, dq also for the stack, called the moduli space of stable

maps, which represents the functor MpX, dq. The points of this stack correspond to equivalence

classes of stable maps, where pC,ϕq and pC 1, ϕ1q are equivalent if and only if there exists an
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isomorphism µ : C 1 Ñ C of nodal curves making the diagram

C 1
ϕ1

//

µ

��

X

C

ϕ

>>

commute. Observe that theorem 3 implies that when X � Gpk, nq, we can produce a torus

action on MpG, dq in order to use localization to compute its Euler characteristic.

4 The Euler Characteristic

We now compute the Euler characteristic of the moduli space of stable maps MpG, dq into the

Grassmannian G � Gpk, nq of k-planes in Cn. We begin by defining a torus action on Cn,

which naturally induces a torus action on G, which in turn induces a torus action on MpG, dq.

We then analyze fixed points of this action. In particular, we are able to completely describe and

enumerate torus fixed stable maps of the form P1 Ñ G. Finally, we describe a combinatorial

method for piecing together this information in order to compute χpMpG, dqq.

4.1 Torus Action

Fix once and for all a basis te1, . . . , enu on Cn, as well as n distinct integers p1, . . . , pn. We

define a torus action of C� on Cn by

t �

�
ņ

i�1

aiei

�
�

ņ

i�1

tpiaiei,

where t P C� and ai P C. Equivalently, the action of t P C� on a vector v P Cn is given by left

multiplication by the diagonal matrix

Mt �

�
����
tp1 0 � � � 0

0 tp2 � � � 0
...

...
. . .

...

0 0 � � � tpn

�
���, (1)

so that t � v � Mtv. Observe that Mt has full rank, so is invertible. If V is a k-dimensional

subspace of Cn spanned by v1, . . . , vk, then invertibility of Mt implies that t � v1, . . . , t � vk are

linearly independent vectors spanning a k-dimensional subspace t � V of Cn. In other words,

the torus action on Cn induces an action on G.

The eigenvalues of the matrix Mt are easily identified as its diagonal entries tp1 , . . . , tpn , with

corresponding eigenvectors e1, . . . , en, respectively. Observe that two eigenvalues of Mt become

equal if and only if tpi � tpj for some distinct i and j, if and only if t is an ppi � pjqth root

of unity. The collection of all ppi � pjqth roots of unity as i and j vary forms a finite set T of

points of C�.
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Lemma 4. If V P G is such that t � V � V for some t R T , then V is spanned by peiqiPI for

some k-element subset I � t1, . . . , nu.

Proof. If t � V � V , then V is an invariant subspace of the matrix Mt as defined in (1) above.

Since t R T , the eigenvalues of the diagonal matrix Mt are all distinct, so, as in [2, Example

2.1.1], V must be the span of peiqiPI for some k-element subset of t1, . . . , nu.

Corollary 5. A point V P G is fixed by the torus action if and only if V is spanned by teiuiPI
for some k-element subset I � t1, . . . , nu.

Proof. If t � V � V for all t P C�, then t � V � V for some particular t R T , and then lemma 4

implies that V is the span of peiqiPI . Conversely, any subspace V arising as the span of peiqiPI
for some I � t1, . . . , nu is a direct sum of the linear span of eigenvectors of Mt for all t P C�,

so clearly V must be invariant.

We can now use the torus action on G to naturally induce an action on MpG, dq. If pC,ϕq

is a stable map, define

pt � ϕqpxq � t � ϕpxq

for all x P C and t P C�. It is clear that then pC, t � ϕq is a stable map, so we have defined a

torus action on the set of stable maps. Furthermore, it is also evident that this action factors

through equivalence of stable maps, inducing a well-defined action on MpG, dq given by

t � rC,ϕs � rC, t � ϕs.

Observe that rC,ϕs is fixed if and only if, for each component Cλ of C, the restriction rCλ, ϕ|Cλs

is fixed. Therefore, we reduce the problem of studying torus fixed stable maps on arbitrary nodal

curves reduces to studying torus fixed maps ϕ : P1 Ñ G, where we call such a map fixed if it is

fixed up to equivalence, so that the corresponding equivalence class rP1, ϕs P MpG, dq is torus

fixed.

4.2 Fixed Maps

The degree 0 maps P1 Ñ G are precisely the constant maps, and a constant map is fixed under

the torus action if and only if its image is a fixed point of G. Corollary 5 completely classifies

fixed points of G, and we see that there are precisely

NG �

�
n

k




torus fixed constant maps. In fact, the structure of torus fixed maps of higher degree is rigidly

constrained as well.

Proposition 6. If ϕ : P1 Ñ G is a torus fixed map of positive degree d, its image is a rational

curve through two fixed points of G.

Proof. It is clear that the scheme-theoretic image ϕpP1q is at most one-dimensional, since P1 is

one-dimensional, and cannot be zero-dimensional since ϕ is not constant. By Hurwitz’s theorem

[4, Corollary 2.4], the curve ϕpP1q has genus at most the genus of P1, which has genus 0. Thus,

ϕpP1q is a rational curve.
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Observe that ϕ being torus fixed implies that the torus action on G restricts to a torus

action on ϕpP1q. Moreover, χpϕpP1qq � 2 since ϕpP1q is rational, and localization now implies

that ϕpP1q has two fixed points.

Proposition 7. If ϕ : P1 Ñ G is a torus fixed map of positive degree d, it factors as a

composition

P1 Ñ P1 Ñ G

where the first map is rz : ws ÞÑ rzd : wds, up to a linear change of coordinates, and the second

map is a torus fixed line in G.

Proof. By proposition 6, ϕpP1q is a rational curve in G through two fixed points V and W in

G. Thus, ϕpP1q can be embedded in the projective line in G which passes through V and W ,

and this line must be torus invariant since ϕ is torus fixed. In other words, it suffices to classify

torus fixed maps ψ : P1 Ñ P1, where the action on the codomain arises as a restriction of the

action on G, and thus must be of the form t � rz : ws � rz : tqws for some integer q.

Since ψ is torus fixed, its branch points must be fixed points of the torus action on the

codomain. It is evident that only 0 � r0 : 1s and 8 � r1 : 0s are fixed points of this action, so

all ramified points of ψ must lie over 0 and 8. Since degpψq � d, we know that¸
p over 0

ep �
¸

p over 8

ep � d.

Also, by Hurwitz’s theorem,

2d� 2 �
¸

p over 0,8

pep � 1q,

so it is clear that we must have exactly one point over each of 0 and 8. In other words, if

ψprz : wsq � ra0z
d � a1z

d�1w � � � � � adw
d : b0z

d � � � � � bdw
ds,

both polynomials a0z
d � � � � � adw

d and b0z
d � � � � � bdw

d have exactly one root. Thus ψ must

be of the form ψprz : wsq � rzd : wds, possibly after a linear change of coordinates.

In other words, proposition 7 states that, for every degree d, each torus fixed line in G

corresponds uniquely to a torus fixed degree d map P1 Ñ G. Thus, we have reduced the

problem of counting the number of torus fixed maps to the problem of counting the number of

fixed lines in G.

4.3 Fixed Lines

Let V1, . . . , VNG
be an enumeration of the NG fixed points of G. Proposition 6 implies that

any fixed line must pass through two distinct fixed points Vj , and the choice of these two Vj
completely determines the line. This means that there can be at most�

NG

2




fixed lines in G. However, this overcounts the fixed lines because the line through two arbitrary

Vj might not exist in G (even though it exists in the ambient projective space into which G
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embeds). To determine which of these lines exist in G, we embed G into Pp
�k

Cnq via the

Plücker embedding. Then Vj corresponds to the class rεjs of the multivector

εj � ej1 ^ � � � ^ ejk ,

where Ij � tj1, . . . , jku is the k-element subset of t1, . . . , nu such that Vj is the span of

tej1 , . . . , ejku. The line ϕjj1 : P1 Ñ Pp
�k

Cnq through Vj and Vj1 is given by

ϕjj1prz : wsq � rzεj � wεj1s.

Then, by proposition 2, the line ϕjj1 lies completely in G if and only if the linear map

αpzεj � wεj1q : Cn Ñ
k�1©

Cn

has rank n� k for all rz : ws P P1. Under this map,

ei ÞÑ zεj ^ ei � wεj1 ^ ei.

Observe that εj ^ ei � 0 whenever i P Ij . Letting multivectors of the form εj ^ ei form a basis

for the codomain, the matrix of this map can be described as follows. For each i P t1, . . . , nu,

the ith column of the matrix is

(i) all zeores, if i P Ij X Ij1 ,

(ii) all zeores except a single z in the position corresponding to εj ^ ei, if i P IjzIj1 ,

(iii) all zeores except a single w in the position corresponding to εj1 ^ ei, if i P Ij1zIj , and

(iv) all zeores except a z in the position corresponding to εj ^ ei and a w in the position

corresponding to εj1 ^ ei if i R Ij Y Ij1 .

Columns of type (i) contribute nothing to the rank. This leaves n � |Ij X Ij1 | columns of type

(ii), (iii) and (iv), each of which can contribute up to 1 to the rank. In fact, it is clear that each

of these columns do contribute 1 to the rank, unless there are distinct i, i1 P t1, . . . , nu such that

Ij Y tiu � Ij1 Y ti1u. (2)

In this case, the ith and i1th columns will be redundant, so we will have overcounted the rank

by exactly 1. In other words, the rank of the matrix will be precisely

n� |Ij X Ij1 |� δjj1

where δjj1 is 1 if condition (2) is satisfied, and 0 otherwise. The line ϕjj1 is contained entirely

in G if and only if this rank is n� k, or, equivalently, if and only if

|Ij X Ij1 |� δjj1 � k. (3)

Observe that, since Ij and Ij1 are distinct, |Ij X Ij1 |   |Ij | � k. This means that condition

(3) is satisfied if and only if |Ij X Ij1 | � k � 1 and δjj1 � 1. But δjj1 � 1 alone already forces
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|Ij X Ij1 | � k � 1. In other words, ϕjj1 is a line in G if and only if δjj1 � 1, if and only if

condition (2) is satisfied. Moreover, every such ϕjj1 is indeed torus fixed, since

t � ϕjj1prz : wsq � t � pzεj � wεj1q � zptpj1�����pjk qεj � wpt
pj11

�����pj1
k qεj1 � ϕjj1µtprz : wsq

where µt : P1 Ñ P1 is the automorphism

rz : ws ÞÑ rptpj1�����pjk qz : pt
pj11

�����pj1
k qws.

Therefore, counting torus fixed lines is equivalent to counting the number ways of choosing

two distinct k-element subsets of t1, . . . , nu such that condition (2) is satisfied. There are
�
n
k�1

�
ways of selecting k � 1 elements for the intersection Ij X Ij1 , and then we must choose two

additional elements from the remaining n�k�1 elements, one element for each of the two sets.

Thus, there are

LG �

�
n

k � 1


�
n� k � 1

2



(4)

ways of choosing k-element subsets Ij and Ij1 of t1, . . . , nu such that condition (2) are satisfied,

and exactly the same number of torus fixed lines in G.

4.4 Intersections

Proposition 8. If rC,ϕs P MpG, dq is torus fixed and x P C is a node, then ϕpxq is a torus

fixed point of G.

Proof. Let C1 and C2 be components of C joined by x. If either of ϕ|C1
or ϕ|C2

are of degree 0,

then it is must be a constant map onto a fixed point of G, so in particular ϕpxq must be a fixed

point of G. So suppose both ϕ|C1 and ϕ|C2 are of positive degree. Then ϕpxq P G is a point on

both the curves ϕpC1q and ϕpC2q. These curves are torus invariant, so

t � ϕpxq P ϕpC1q X ϕpC2q

for every t P C�. If ϕpC1q and ϕpC2q are distinct, their intersection is a discrete set, so in fact

ϕpxq must be torus fixed. If ϕpC1q and ϕpC2q are the same curve, we change coordinates to get

ϕpxq to be a torus fixed point of G.

We now count the number of torus fixed lines passing through a given torus fixed point.

Equivalently, we can count the number of distinct k-element subsets of t1, . . . , nu which can be

obtained by replacing exactly 1 element from a given k-element subset of t1, . . . , nu, and it is

apparent that there are

DG �

�
k

k � 1



pn� kq � kpn� kq

ways to do this. In fact, this point of view allows us to recompute the number LG of torus fixed

lines in G as

LG �
1

2

�
NĢ

j�1

DG

�
�

1

2
NGDG,

where the sum is over the NG fixed points of G.

11



4.5 Calculations

We now proceed with calculations of χpMpG, dqq for some small values of d. To fix some

terminology, define a labeling of a nodal curve C to be an assignment of nonnegative integers

dλ to each component Cλ of C. We will say that the labeling sums to d if
°
dλ � d, and that

the labeling is valid if Cλ has at least three nodes whenever dλ � 0, so that in a valid labeling

which sums to d, dλ is the degree of the restriction to Cλ of some stable map of degree d on C.

Also, we will use the following constants, computed earlier.

NG �

�
n

k



.

DG � kpn� kq.

LG �
1

2
NGDG �

1

2

�
n

k



kpn� kq �

�
n

k � 1


�
n� k � 1

2



.

These represent the number of torus fixed points on G, the number of torus fixed lines in G

through a given torus fixed point, and the total number of torus fixed lines in G, respectively.

Calculation 9. When d � 1, the only possible validly labeled nodal curve has just one com-

ponent, with label 1. In other words, the torus fixed stable maps of degree 1 are precisely the

torus fixed lines in G. Thus, by localization,

χpMpG, 1qq � LG.

Calculation 10. Let d � 2. This time, there are two validly labeled nodal curves C.

(i) C has just one component, labeled 2.

(ii) C has two components C1 and C2, both labeled 1.

1
1

For case (i), by proposition 7, there are as many torus fixed degree 2 maps P1 Ñ G as there

are torus fixed lines, for which there are LG options. Now consider case (ii). We can choose

LG lines on the first component, and then we have 2 options for which of the fixed points of

that line to assign to the node of C, and then DG options for lines through the fixed point of G

corresponding to that node. This double-counts precisely when the line on both components is

the same (since in that case a coordinate change on both components would identify two choices

of values for the node of C), and there are LG ways to do this. So, there are

2LGDG � LG � LGp2DG � 1q

torus fixed stable maps on a curve with two components. Putting these counts together, we

arrive at

χpMpG, 2qq � LG � LGp2DG � 1q � 2LGDG.
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Calculation 11. Now, let d � 3. There are four cases to consider.

(i) C has just one component, labeled 4.

(ii) C has two components C1 and C2, labeled 1 and 2, respectively.

1
2

(iii) C has three components C1, C2, and C3, each labeled 1.

1 1
1

(iv) C has four components C1, C2, C3 and C4, with C1 labeled 0, and the other three compo-

nents joined to C1 and labeled 1.

0 1

1

1

The first two cases are largely analogous to their d � 2 counterparts. By proposition 7, there

are precisely LG options to consider for case (i). For case (ii), there are LG options for a degree

2 map on C2, then two choices for which of the fixed points of that curve to assign to the node

of C, and then DG options for a line on C1 through that fixed point, which overcounts when

the map on both components pass through the same two fixed points; so, there are

2LGDG � LG � LGp2DG � 1q

torus fixed maps in case (ii).

For case (iii), let x be the node joining C1 and C2, and let y be the node joining C2 and C3.

Since ϕ|C2 is degree 1, so, in particular injective, it must be that ϕpxq and ϕpyq are distinct fixed

points of G. There are LG options for a line on C1, then 2 options for a choice of fixed point

ϕpxq, and then DG options for a line on C2. The choice of ϕpxq and a line on C2 determines

ϕpyq, and then there are DG options for a line on C3. However, this double-counts precisely

when the line on all three components are the same, so we arrive at a total of

2LGD
2
G � LG � LGp2D

2
G � 1q

torus fixed maps in case (iii). Finally, for case (iv), there are NG options for the constant map

on C1, and then there are

DG �

�
DG

2



�

�
DG

3
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options for the maps on the other components. Summing over the NG options for the constant

map on C1, we arrive at

NG

�
DG �

1

2
DGpDG � 1q �

1

6
DGpDG � 1qpDG � 2q




� 2LG � LGpDG � 1q �
1

3
LGpDG � 1qpDG � 2q �

1

3
LGpD

2
G � 5q

torus fixed maps in case (iv). Thus,

χpMpG, 3qq � LG � LGp2DG � 1q � LGp2D
2
G � 1q �

1

3
LGpD

2
G � 5q

�
1

3
LGp7D

2
G � 6DG � 2q.

5 Conclusion

Much of the work presented here has a routine generalization to flag varieties, which, given a

fixed sequence of integers

0 � k0   k1   k2   � � �   kl � n,

parametrize strictly ascending chains of vector subspaces

0 � V0 � V1 � V2 � � � � � Vl � Cn

of Cn, where dimpViq � ki (so the Grassmannian is a flag variety for which l � 1).

On the other hand, in performing the calculations presented in section 4.5 for higher degrees,

we run into two obstacles. The first is that the fixed locus of MpG, dq starts to contain continuous

families when d ¥ 4. For instance, one of the validly labeled nodal curves that must be considered

when d � 4 is the following curve C.

0 1

1

1

1

One can show that the fixed maps of the form rC,ϕs (with C as depicted above) form a locus

isomorphic to P1, so the overall fixed locus of MpG, 4q is certainly not finite. However, since

χpP1q is known, localization would still allow us to calculate the Euler characteristic in much

the same way as we did in section 4.5. The second, more difficult obstacle is the enumeration

of the possible validly labeled nodal curves. This is a combinatorial problem, and the number

of possibilities grows very quickly. While a tedious enumeration could be performed for any

particular d, it is difficult to understand the growth of the number of possibilities systematically

in a way that would permit some understanding of χpMpG, dqq for arbitrary d.
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