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Abstract

In an effort to better understand linear transformations, we look at triangular-
ization of matrices. After a discussion of both nilpotent and unipotent matrices,
we prove the Lie-Kolchin theorem by considering the nilpotent parts of unipo-
tent matrices.

2



Acknowledgments

First and foremost, I would like to thank my advisor Lance Small. Without
his patience, understanding nature, and guidance, this paper would not have
been possible. He has been a great mentor for me this past year, both with
this research and in my quest to apply for graduate school. I would also like
to thank Dan Rogalski and Cristian Popescu, who instilled in me a deep love
for Algebra and helped me find the drive that I needed to undertake difficult
mathematics.

Next I would like to thank Jeffrey Rabin, who has helped me develop as
a mathematics student over the past four years. I often went to him seeking
advice and direction, especially when applying for graduate school. Thank you
for always being willing to meet with me and answer my questions.

In general, I would like to thank the Mathematics Department staff at UCSD,
especially Jan Bitmead. They are a very helpful group and possess a wealth of
information vital to navigating life as an undergraduate math student.

Last, but certainly not least, I would like to thank my friends. I have de-
veloped an amazing support system over the past four years and it is no exag-
geration when I say I would not be where I am today without it. To all of you,
from the friends who I have taken math classes with every quarter to those who
have never heard of a nilpotent matrix, but listen to me anyway as I practice
my presentation of this thesis, thank you. This paper is dedicated to you.

3



Contents

1 First Remarks 5
1.1 Background Material . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . 6
1.1.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Sets of Matrices 9
2.1 Nilpotent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Unipotent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Lie-Kolchin Theorem 16

4 Outlook 21

5 Historical Notes 22
5.1 Ellis Kolchin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Jacob Levitzki . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Sophus Lie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Joseph Wedderburn . . . . . . . . . . . . . . . . . . . . . . . . . 24

Bibliography 25

4



1 First Remarks

This paper is essentially a walk through some topics in linear algebra, building
up to the Lie-Kolchin Theorem. In particular, we will look at two special kinds
of matrices, nilpotent and unipotent. We will heavily depend on the process of
triangularization. This process relies upon a basic understanding of eigenvalues
and eigenvectors, as well as some other ideas of linear algebra. Much of the
needed material, if not all, will be covered in section 1.1.

Unless otherwise stated, all work will be done over the complex number field,
C. The complex number field has many nice properties. The properties that
will be most useful to us are that C is an algebraically closed field, and that it
has characteristic 0. The natural numbers, N. will also be utilized.

1.1 Background Material

The aim of this paper is to be accessible to advanced undergraduate students.
In this section you will find definitions and examples of material that is assumed
throughout the paper. There is nothing more complicated here than what is
found in a first-level linear algebra course. This section may therefore be used
more as a reference for readers who have not practiced this topic in a while.
I have done this in an effort to make the paper as self-contained as possible,
though I avoid defining some basic notions and the definitions in this section
are not as rigorous. It is expected that most readers will choose to skip this
section, especially 1.1.1. For a more complete background, see the references.

1.1.1 Matrices

First, we will be concerned primarily with square matrices. A matrix A is simply
a set of numbers arranged into rows and columns.

Example 1.

A1 =


α1,1 α1,2 · · · α1,n

α2,1 α2,2 · · · α2,n

...
...

. . .
...

αn,1 αn,2 · · · αn,n


is an n× n matrix with an entry αi,j in the ith row and jth column.

Definition 1.1. The identity matrix, denoted by I, is a square matrix with 1’s
along the diagonal and 0’s everywhere else. That is,

I =

1 0
. . .

0 1


Definition 1.2. A square matrix N is invertible if there exists a matrix B such
that

BN = NB = I
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We denote the inverse of N as N−1.

Definition 1.3. A triangular matrix is a matrix with zeroes above or below the
main diagonal.

Example 2.

A2 =

1 2 3
0 4 5
0 0 6


is an upper triangular matrix.

Definition 1.4. A strictly triangular matrix is a triangular matrix with zeroes
along the main diagonal.

Example 3.

A3 =

0 1 2
0 0 3
0 0 0


is a strictly upper triangular matrix.

Definition 1.5. The trace of a matrix N is the sum of its diagonal entries, and
is denoted tr(N).

I will heavily rely on an understanding of the trace of a matrix later in the
paper.

Claim. The trace of matrices is a linear function.

That is, for some matrices N0 and N1, and some scalar α,

1. tr(αN0) = αtr(N0)

2. tr(N0 +N1) = tr(N0)+tr(N1)

Proof. The proof of this claim is given in [4].

1.1.2 Eigenvalues and Eigenvectors

As I noted earlier, we will need to understand eigenvalues and eigenvectors in
order to triangularize matrices. Occasionally, especially in older texts, eigen-
values are referred to as characteristic values, and eigenvectors are referred to
characteristic vectors (see [1] and [7]).

Definition 1.6. Let N be a square matrix. Suppose there exists some scalar λ
and a vector ~v such that

N~v = λ~v

Then we say that N has eigenvector ~v with corresponding eigenvalue λ.

The process of finding eigenvalues and eigenvectors relies on the following:
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Theorem. (Cayley-Hamilton Theorem) Every square matrix over a commuta-
tive field satisfies its own characteristic polynomial.

A proof of the Cayley-Hamilton Theorem is given in [1].

Definition 1.7. The characteristic polynomial of a matrix N is

det(N − λI) = 0

I choose to not define the determinant, or det, of a matrix as it is much
easier to see in practice, and I will not utilize determinants other than refer-
encing the characteristic polynomial of a matrix. For more, see [4]. A more
advanced discussion of the Cayley-Hamilton Theorem can be found in [3] as
well as [1]. Now that we know about eigenvalues and eigenvectors, let us look
at triangularization.

Definition 1.8. A matrix N is triangularizable if it is similar to a triangular
matrix. That is, if there exists an invertible matrix P such that:

P−1NP = T

where T is a triangular matrix.

Let us look at an example of a triangularizable matrix.

Example 4.

A4 =

(
1 1
−1 −1

)
A4 has an eigenvalue of 0, and we get an eigenvector, ~v1

~v1 =

[
1
−1

]

We want to find an invertible matrix P such that:

P−1A4P = T

where T is a triangular matrix.
Letting the first column of P = ~v1, we complete ~v1 to a basis to complete P. So
let

P =

(
1 1
−1 0

)
Then

P−1 =

(
1 0
1 1

)
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So

P−1A4P =

(
1 0
1 1

)(
1 1
−1 −1

)(
1 1
−1 0

)
=

(
1 1
0 0

)(
1 1
−1 0

)
=

(
0 1
0 0

)
which is upper triangular.
So A4 is triangularizable.

I also choose not to define a basis. A connection between the eigenvalues
and the trace of a matrix can be made.

Claim. Let N be a square matrix with eigenvalues λ1, λ2, . . . λk. Then

tr(N) =

k∑
i=1

λi

Proof. The proof of this claim is given in [4]. Note that this claim relies on the
fact that we’re working over C.

For a deeper understanding of these topics, I recommend [1].

1.1.3 Fields

Fields are not strictly something that one would work with extensively in a
first-level linear algebra course. For this reason, I suggest [3] and [7] for more
reading. I will, however, give the definition of a field since I heavily rely on
the concept of one throughout the paper. Since it will also be helpful to be
reminded of the definition of a group, I will start there.

Definition 1.9. A set G forms a group under a binary operation · if the fol-
lowing hold:

(i) · is associative

(ii) G has an identity element

(iii) G is closed under inverses

Now we can define a field. I take this definition from [3].

Definition 1.10. A field is a set F together with two commutative binary op-
erations + and · on F such that:

(i) F is a group under +

(ii) (F − {0}) is a group under ·

(iii) the distributive law holds. That is ∀ a, b, c ∈ F ,

a · (b+ c) = a · b+ a · c
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2 Sets of Matrices

2.1 Nilpotent Matrices

The first set of matrices we will look at are nilpotent matrices.

Definition 2.1. A matrix N is nilpotent if ∃ k ∈ N s.t. Nk = 0.

Definition 2.2. If k is the least natural number s.t. Nk = 0, then we say k is
the index of N .

Let us look at an example of a nilpotent matrix.

Example 5. Let

A5 =

2 2 −2
5 1 −3
1 5 −3


Then

A2
5 =

12 −4 −4
12 −4 −4
24 −8 −8


And

A3
5 =

0 0 0
0 0 0
0 0 0


So A5 is a nilpotent matrix.

Notice that the most obvious example of nilpotent matrices are strictly upper
or strictly lower triangular. In fact,

Proposition 2.1. Every strictly upper or strictly lower triangular matrix is
nilpotent.

Proof. Suppose A is an n× n strictly upper triangular matrix. Let

A =


0 . . . . . . 0

α2,1 0
...

...
. . .

. . .
...

αn,1 . . . αn,n−1 0


Let the entries of A2 be βi,j . Then

βi,j =

n∑
k=1

αi,kαk,j
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By looking at the entries of A, we can see that βi,j = 0 when j ≥ i. Consider
βi,i−1.

βi,j−1 =

n∑
k=1

αi,kαk,i−1

= αi,1αi,i−1 + αi,2α2,i−1 + . . .+ αi,nαn,i−1

Each αi,n or αn,i−1 will lie on or above the diagonal of A. So βi,i−1 = 0. Then
we have

A2 =



0 0 . . . . . . 0
0 0 . . . . . . 0

β2,1 0
. . . 0

...
. . .

. . .
. . .

...
βn,1 . . . βn,n−2 0 0


Similarly, if the entries of A3 are represented by γi,j then we get

γi,j =

n∑
m=1

αi,mβm,j

Again, γi,j = 0 when j ≥ i− 2, by what we saw above. So

A3 =



0 0 . . . . . . 0 0
0 0 . . . . . . 0 0

γ3,1 0
. . . 0 0

...
. . .

. . .
. . .

... 0
γn,1 . . . γn,n−3 0 0 0


Each time we raise A to a power, the next diagonal row under the main diagonal
becomes zeroes. If we continue in this fashion, we can see that eventually we will
obtain An = 0. I will wave my hands a bit here since we have more important
things to prove.

We will now consider the eigenvalues of nilpotent matrices.

Proposition 2.2. Every nilpotent matrix has all of its eigenvalues equal to 0.

Proof. Let A be a nilpotent matrix with index k, and let λ be an eigenvalue of
A. Then, for some nonzero vector ~v,

A~v = λ~v

Since Ak−1 6= 0, then we can multiply by Ak−1 on each side, producing

Ak−1A~v = Ak−1λ~v

Ak~v = λAk−1~v

0 = λAk−1~v
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So λ = 0, for any eigenvalue λ of A.

Since the trace of a square matrix over the complex numbers is the sum of
its eigenvalues, then

Remark. The trace of any nilpotent matrix over the complex numbers is 0.

Now that we have some properties of nilpotent matrices, let us look at tri-
angularization, the central topic of this paper.

Proposition 2.3. Every nilpotent matrix can be triangularized.

Proof. Suppose A is a nilpotent, n × n matrix. We will prove this claim by
induction on the size of n. Suppose n = 1. Then A is triangular by definition.
Suppose now that if A is a nilpotent, (n − 1) × (n − 1) matrix, then it is
triangularizable. Let A be n × n. Suppose ~v1 is an eigenvector of A. Then let
the first column of P be ~v1. So,

P =

 |~v1 · · ·
|


We complete the vector ~v to a basis, and fill in the remaining columns

of P with that basis. When we consider at P−1AP , we’ll get the eigenvalue
corresponding to ~v1 as the first entry of the first column of the resulting matrix,
with zeroes below. However, we recall that each eignvalue of A must be 0. Then

P−1AP =


0 β1 . . . βn−1
0 α1 . . . α2

...
...

. . .
...

0 α3 . . . α4


Where each αi, βj is some complex number. Notice now thatα1 . . . α2

...
. . .

...
α3 . . . α4


is a (n− 1)× (n− 1) matrix. Since A is nilpotent, this matrix is also nilpotent
(this will become more obvious in the discussion below). Then by the induction
hypothesis, this matrix can be triangularized. So A can be triangularized.

In this proof, we can see the motivation behind our method in example 4
when we found an eigenvector and then completed that eigenvector to a basis.

We have seen a few properities of nilpotent matrices, which brings up the
question: how can we tell if a matrix is nilpotent? First I will show that

Proposition 2.4. Any two similar matrices share the same eigenvalues.
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Proof. Suppose you have two similar matrices, N and N0. Then there exists
some invertible matrix P such that

P−1NP = N0

LetN0 have an eigenvector of ~v with corresponding eigenvalue λ. ThenN0 ~v = λ~v.
Substituting in P−1NP for N0, we get

P−1NP~v = λ~v

So
NP~v = λP~v

From this, we can see that N has an eigenvector of P~v with corresponding
eigenvalue λ. So N and N0 have the same eigenvalues.

Again since the trace of a matrix is the sum of its eigenvalues, it follows from
proposition 2.4 that

Remark. Any two similar matrices over the complex numbers have the same
trace.

Now we can prove the following proposition.

Proposition 2.5. If a matrix N has all of its eigenvalues equal to 0, then N is
nilpotent.

Proof. Let N be an n× n matrix with all of its eigenvalues equal to 0. Then

det(N − λI) = λn

By the Cayley-Hamilton Theorem, we get Nn = 0. So N is nilpotent.

Notice that by proposition 2.2 and proposition 2.5, we see that

Proposition 2.6. A matrix N is nilpotent if and only if all of its eigenvalues
are equal to 0.

This proof was partially adapted from the one presented at [6]. From 2.4
and 2.6, it is immediate that

Remark. Any matrix which is similar to a nilpotent matrix is nilpotent.

In fact, we can prove that

Proposition 2.7. Any nilpotent matrix is similar to a strictly upper or lower
triangular matrix.

Proof. Let N be a nilpotent matrix. We know N can be triangularized, so there
exists an invertible matrix P and a triangular matrix T such that

P−1NP = T

Since N and T are similar matrices, they share the same eigenvalues by propo-
sition 2.4. Then by proposition 2.6, both N and T have all of their eigenvalues
equal to 0. Since T is triangular, its eigenvalues lie on its diagonal. So T must
be a strictly upper or lower triangular matrix.
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Recall that a matrix determines a linear transformation. It is useful to note
that

Proposition 2.8. A nilpotent matrix will remain nilpotent with respect to any
basis.

Proof. Let A be a nilpotent matrix. Suppose you have a chance of basis matrix,
B. Then consider B−1AB. If

An = 0

Then

(B−1AB)n = B−1AnB

= 0

So B−1AB is still nilpotent.

For a discussion on change of basis matrices, see [1]. Suppose now that we
want to consider a field other than the complex numbers, or perhaps want to
consider any field in general.

Proposition 2.9. A nilpotent matrix is triangularizable over any field.

Proof. We already know that any nilpotent matrix can be triangularized. Sup-
pose N is a matrix is nilpotent over a field F . If we consider N over another
field, say G, then N would simply undergo a change of basis. And we’ve al-
ready seen that any nilpotent matrix will remain nilpotent with respect to any
basis.

Now that we have worked a bit with nilpotent matrices, let us consider a set
of nilpotent matrices. Suppose we wanted to triangularize each matrix in this
set. That is, suppose we want this set to be simultaneously triangularizable.

Definition 2.3. A set of matrices (N1, N2, . . . , Nk, . . .) can be simultaneously
triangularized if there exists an invertible matrix P such that P−1NjP is trian-
gular, for any j.

Let’s specifically look at a semigroup of matrices. I call the theorem below
“Levitzki’s Theorem”after the mathematician who proved it (see section 5.2),
although it is not commonly known by that name.

Theorem. (Levitzki’s Theorem) A semigroup of nilpotent matrices can be si-
multaneously triangularized.

Definition 2.4. A semigroup is a set of elements with a binary operation.

A light discussion of this theorem can be found in [8]. We will not look at
the proof of this theorem, though we will use the theorem in section 3. The
proof can be found in [7].
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2.2 Unipotent Matrices

The next type of matrices that we will look at are unipotent matrices. Unipotent
matrices and nilpotent matrices are closely related, as can be seen in definition
2.5.

Definition 2.5. A matrix N is unipotent if (N-I) is a nilpotent matrix, where
I is the identity matrix.

Let us look at an example of a unipotent matrix.

Example 6. Let

A6 =

3 2 −2
5 2 −3
1 5 −2


Then

A6 − I =

2 2 −2
5 1 −3
1 5 −3


Which is a nilpotent matrix by example 5. So A6 is unipotent.

Proposition 2.10. Each unipotent matrix has an inverse.

Proof. Let N be a unipotent matrix. Then N = I+N0, where N0 is a unipotent
matrix. Recall the power series

1

1 + x
= 1− x+ x2 − x3 + · · ·

Then
1

1 +N0
= 1−N0 +N2

0 −N3
0 + · · ·

Since N0 is a nilpotent matrix, Nk = 0 for some k, so

1

1 +N0
= 1−N0 +N2

0 −N3
0 + · · · ±Nk−1

0

Multiplying (1 +N0) over, we get

1 = (1 +N0)(1−N0 +N2
0 −N3

0 + · · · ±Nk−1
0 )

So I −N0 +N2
0 −N3

0 + · · · ±Nk−1
0 is the inverse of N

Note that in this proof, I use 1 and I interchangeably, as they are the same as
far as our use with them goes. Since every unipotent matrix has an inverse, we
can have a multiplicative group of unipotent matrices U such that ∀ u1,u2 ∈ U ,
u1u2 ∈ U . This arises in Lie Theory (see section 5.3). Unipotent matrices also
arise in the theory of algebraic groups.
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Just as we looked at simultaneous triangularization of a set of nilpotent ma-
trices in section 2.1, we will now look at simultaneously triangularizing unipo-
tent matrices. In particular, we’ll look at a multiplicative group of unipotent
matrices.

Before we move on, I would like to address the following question. Why do
we need to stipulate that we are working in a group? That is because in general,
the product of two unipotent matrices is not necessarily nilpotent.

Example 7. Let

A0 =

(
2 1
−1 0

)
and

B0 =

(
1 1
0 1

)
Then

A0 − I =

(
1 1
−1 −1

)
and

B0 − I =

(
0 1
0 0

)
Let A0 − I = A and B0 − I = B. Note that

A2 = B2 =

(
0 0
0 0

)
so both A and B are nilpotent, which means A0 and B0 are unipotent matrices.
Consider A0B0. Is A0B0 a unipotent matrix?

A0B0 = (I +A)(I +B)

= I +A+B +AB

If A+B +AB is nilpotent, then A0B0 is a unipotent matrix.

A+B +AB =

(
1 1
−1 −1

)
+

(
0 1
0 0

)
+

(
0 1
0 −1

)
=

(
1 3
−1 −2

)
Since A+ B + AB is a 2× 2 matrix, then if it is nilpotent, it is nilpotent with
index at most 2. Let A+B +AB = C. Clearly C 6= 0. And

C2 =

(
−2 −3
1 1

)
So C2 6= 0. Then C is not nilpotent. So A0B0 is not a unipotent matrix.
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3 Lie-Kolchin Theorem

The Lie-Kolchin Theorem is the mathematical child of two prominent mathe-
maticians, Sophus Lie and Ellis Kolchin. You can read more about them, as
well as a bit of background of the theorems, in sections 5.3 and 5.1 respectfully.
The Lie-Kolchin Theorem is fundamental to the theory of algebraic groups.

Theorem. (Lie-Kolchin Theorem) A multiplicative group of unipotent matrices
can be simultaneously triangularized.

We will look at a proof sketch of this theorem. We begin by looking at the
nilpotent parts of these unipotent matrices.

Let U be a multiplicative group of unipotent matrices. Suppose we have
A0, B0 ∈ U . Then let A0 − I = A, B0 − I = B where A,B are nilpotent
matrices. I will show:

Proposition 3.1. In a multiplicative group of unipotent matrices, the product of
two nilpotent parts of unipotent matrices is always a sum of nilpotent elements.

That is, I will prove that AB is a sum of nilpotent elements.

Proof. Consider the product A0B0.

A0B0 = (I +A)(I +B)

= I +A+B +AB

Since we are in a group of unipotent matrices, then I + A + B + AB is also
unipotent. So by definition, A+B +AB is a nilpotent matrix. I pause here to
define the circle product.

Definition 3.1. The circle product of two elements, x1 and x1, is defined as:

x1 ◦ x2 ≡ x1 + x2 + x1x2

Then note that A ◦ B = A + B + AB. So A ◦ B is a nilpotent element.
Obvserve that by subtracting A and B on both sides of the equation, we obtain
AB = A ◦B −A−B, which is a sum of nilpotent elements.

Now let us take a subalgebra, M , generated by the nilpotent parts of these
unipotent elements in U .

Definition 3.2. A subalgebra is a set closed under addition, scalar multiplica-
tion, and multiplication of its elements.

Then M = {ΣαiAi |Ai nilpotent parts of elements in U, αi ∈ C}. Suppose
we want to take the multiplication of two elements in M . Observe that

(ΣαiAi)(ΣβjBj) = ΣαiβjAiBj

We know that AiBj sum of nilpotent parts of elements in U . So each element
in M is a sum of nilpotent elements.
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Next we will show that each element of M is nilpotent by considering the
trace of each matrix. Recall that the trace of any nilpotent matrix is 0, and
that for any two matrices T, T ′,

tr(T + T ′) = tr(T ) + tr(T ′)

Then since every element of M is a sum of nilpotent elements, each element of
M has trace 0. In fact, tr(Ak) = 0 ∀ k ∈ N, for any A ∈M , since any power of
an element in M will also be in M (M is multiplicative). But I wanted each of
these elements to be nilpotent.

Proposition 3.2. Suppose N is an n× n matrix over C such that tr(Nk) = 0
for all k ∈ N. Then N is nilpotent with index n.

Proof. Let N be an n × n matrix and we’ll induct on the size of n. If n = 1
and tr(N)=0, then clearly N = 0. So N is nilpotent with index 1. Suppose this
holds up to matrices of size (n− 1)× (n− 1). Let N be an n× n matrix with
characteristic equation:

det(N − λI) = αnλ
n + αn−1λ

n−1 + · · ·+ α1λ+ α0

Suppose that N has no eigenvalues equal to zero. If λ1 are the eigenvalues of
N , then

α0 =
∏
i

λi

So if λi 6= 0 for all i, then α0 6= 0. Then by the Cayley-Hamilton Theorem,

αnN
n + αn−1N

n−1 + · · ·+ α1N + α0I = 0

Taking the trace of each side of the equation, we get

tr(αnN
n + αn−1N

n−1 + · · ·+ α1N + α0I) = tr(0)

Since trace is linear, we can reduce this to

αntr(N
n) + αn−1tr(N

n−1) + · · ·+ α1tr(N) + α0tr(I) = 0

We know that tr(Nk) = 0 for all k ≤ n, so then we get

α0n = 0

Which is a contradiction. So N has an eigenvalue of 0.
Now we are going to begin to triangularize N . Let P be the matrix that is

used to triangularize N . We can assume the first column of P is the eigenvector
of N corresponding to the eigenvalue of 0 (note that this is the same method
I used in example 4). Again, we complete P by completing the basis of this
eigenvector. Then if P−1NP = T , where T is a triangular matrix, we have

T =


0 0 . . . 0
β1 γ1 0
...

...
. . .

...
βn−1 ζ . . . γn−1
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Recall that since N and T are similar matrices, they share the same eigenvalues
by proposition 2.4 and thus they also have the same trace. Note that if N and
T are similar,

P−1NkP = T k

for all k ∈ N. So tr(Nk) = tr(T k) = 0 for all such k. Notice that we have an
(n− 1)× (n− 1) matrix,

T0 =

γ1 0
...

. . .

ζ . . . γn−1


So if tr(T k) = 0 then tr(T k

0 ) = 0 as well. By our induction hypothesis, since T0
is an (n− 1)× (n− 1) matrix, then T0 is nilpotent. So T is nilpotent.

Please note that this is a variation of the proof of Lemma 6.8.3 in [5]. I
have chosen to take a slightly different approach in areas, while filling in gaps
in others. We also could have used proposition 2.2 and used induction to show
that

Proposition 3.3. Suppose N is an n× n matrix over C. Suppose tr(Nk) = 0
for all k ∈ N. Then all of the eignevalues of N are 0.

This would have given us the same result as above. If we look back at
example 5, we can see that tr(A) = tr(A2) = 0, exactly what we would expect
since A is nilpotent.

Let’s look at an example in characteristic 6= 0, where this theorem fails.

Example 8. Suppose we’re in a field of characteristic 2. Let

A8 =

(
1 0
0 1

)
Then Ak

8 = I ∀k ∈ N, but tr(Ak
8) = 0.

Now by Levitzki’s Theorem that we looked at in section 2.1, we know that M
can be simultaneously triangularized. Since M was generated by the nilpotent
parts of our unipotent elements in U , all we have to do is extract our results
back to the unipotent elements and we have showed the theorem. How exactly
can we do this?

Proof. Let N0 be a unipotent matrix in our group, U . Then let N0 − I = N ,
where N is a nilpotent matrix. We know by looking at our subalgebra, M ,
that each of these matrices can be simultaneously triangularized. Let P be the
matrix that simultaneously triangularizes M . Then P−1NP = T , where T is a
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triangular matrix. Observe:

P−1NP = T

P−1(N0 − I)P = T

P−1N0P − P−1IP = T

P−1N0P − I = T

P−1N0P = T + I

Since T is a triangular matrix, then T + I is also a triangular matrix. So N0

is similar to a triangular matrix, which means N0 is triangularizable. Since N0

was an arbitrary matrix in U , then we can conclude that every matrix in U is
triangularizable by P . So our multiplicative group of unipotent matrices can be
simultaneously triangularized.

We could have concluded our result at an earlier stage if we had used Wed-
derburn’s Theorem.

Theorem. (Wedderburn’s Theorem) If an algebra has a nilpotent basis, it is
itself nilpotent.

Once we know that each element of M is a sum of nilpotent elements we can
apply Wedderburn’s Theorem in the following way. M is a finite dimensional
subalgebra, which means it has a finite basis. Each element of this basis is a
sum of nilpotent elements so by taking a spanning set of these elements and
then reducing to a basis, we have a nilpotent basis for M . Then we get that
each element of M is nilpotent, so we have reduced our size of the Lie-Kolchin
Theorem by quite a bit. By using Wedderburn’s Theorem, we have avoided
using traces of matrices, which means that we know our result holds over any
field of characteristic 0 or of characteristic p, where p is prime. The proof of
Wedderburn’s Theorem can be found in [11]. I do not give it here because it
requires advanced methods.

Now we can apply this method to another theorem that Kaplansky calls
“Theorem H”on p. 137 of [7]. We are effectively improving Kaplansky’s method
of proof in a way that has not been noticed before.

Theorem. (Theorem H) Let S be a multiplicative semigroup of matrices over
a field F. Suppose each has the form λI +N for λ in F and N nilpotent. Then
S can be simultaneous triangular form.

That is, the elements of S can be simultaneously triangularized.

Proof. Consider a subalgebra, M , generated by the nilpotent elements N of S.
Because S is a multiplicative semigroup, and is therefore closed under multi-
plication, then we know that for any two elements λ0I + N0 and λ1I + N1 in
S,

(λ0I +N0)(λ1I +N1) = λ0λ1I +N0 +N1 +N0N1
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Therefore N0N1 is a sum of nipotent elements. Again, by what we did above,
we know then that each element in M is a sum of nilpotent elements. By Wed-
derburn’s Theorem, each element of M is nilpotent. Here we apply Levitzki’s
Theorem and we have that M can be simultaneously triangularized. Suppose P
is the matrix that simultaneously triangularizes M . Consider P−1(λI + N)P .
Then

P−1(λI +N)P = P−1(λI)P + P−1NP

= λI + T

= T0

where T, T0 are triangular. Then S can be simultaneously triangularized.

Note that unlike the proof of the Lie-Kolchin Theorem given earlier, since
we used Wedderburn’s Theorem we know that Theorem H holds not only for
characteristic 0, but also for characteristic p.

20



4 Outlook

The results that I have shown here hold over a field of characteristic 0, though as
noted above it is not hard to see that the results hold in a field of characteristic
p, where p is prime. In [8], Kaplansky notes that Levitzki’s Theorem also works
over a division ring. Note that

Definition 4.1. A division ring is a field in which multiplication is not com-
mutative.

In [9], Mochizuki shows the following theorem:

Theorem. Let G be a unipotent group of n×n matrices over a division ring ∆ of
characteristic 0 or prime p greater than (n−1)(n− [n2 ]) where [n2 ] is the greatest
integer less than or equal to n

2 . Then G can be simultaneously triangularized.

In [2], it is shown that:

Theorem. A unipotent group of matrices over a division ring of characteristic
2 is nilpotent.

But in general, the results of the Lie-Kolchin Theorem are not known over
division rings of characteristic 6= 0. It is my hope that I can continue to examine
these results in my graduate studies.
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5 Historical Notes

While researching material for this course, I’ve come across many mathemati-
cians who have significant contributions to the field. Along with these contri-
butions, I’ve learned about the mathematicians themselves. Professor Lance
Small has impressed upon me the importance of knowing a bit about each of
these people, in an effort to remember that each has a story. This section is a
collection of the historical background of each mathematician that I often came
across during my studies this year. While it is not the most important section
in this paper, I believe it was a necessary supplement. Most of the information
in this section has come from Professor Small, although I make use of [10].

5.1 Ellis Kolchin

Photo courtesy of [10]

Ellis Kolchin was an American mathematician who proved the aforemen-
tioned Lie-Kolchin Theorem in 1948. Despite the fact that Kolchin served in
the U.S. Army in World War II, he was able to publish papers while the war
was going on. Kolchin spent his entire career at Columbia University, though
he served as a visiting professor in several places, including the Institute for
Advanced Study at Princeton University.
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5.2 Jacob Levitzki

Photo courtesy of Lance Small

Jacob Levitzki was an Israeli mathematician. He was a doctoral student of
Emmy Noether, and proved the theorem that I called “Levitzki’s Theorem”in
1931. Levitzki had a very famous student, Shimshon Amitsur. He died young,
in his thirties, as a result of a heart condition. Some of his papers were delayed
five or six years due to the breakout of World War II.

5.3 Sophus Lie

Photo courtesy of [10]

Sophus Lie was a Norwegian mathematician in the late 1800s. It is interest-
ing to note the number of amazing mathematicians that Norway has produced,
especially when considering its size of the country. Other prominent Norwegian
mathematicians that are worth mentioning include Ludwig Sylow and Niels
Abel. Lie is most famously known for his advances that led to the branch of
mathematics now called Lie theory.
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5.4 Joseph Wedderburn

Photo courtesy of [10]

Joseph Wedderburn was a Scottish mathematician who spent most of his
professional career in the United States. Wedderburn famously proved that
any finite division ring must be a field. In 1909 he began work at Princeton
University, and was there until he entered World War I fighting for the British.
He served with distinction, but suffered afterwards from what was most likely
shell-shock or PTSD. The paper [11] was the last he ever published.
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