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Abstract

An acclaimed episode of the television series Futurama features a
two-body mind-switching machine. The machine has a serious limi-
tation: it will not work more than once on the same pair of bodies.
After the Futurama community indulges in a mind-switching frenzy,
the following question is raised: Can the switching be undone so as
to restore all minds to their original bodies? Ken Keeler found an al-
gorithm [2, pp. 18–19] that undoes any mind-scrambling permutation
with the aid of two “outsiders”. We refine Keeler’s result by provid-
ing a more efficient algorithm that uses the smallest possible number
of switches. James Grime has a corollary which is presented in his
video [3] and in The Commutator magazine [2, p. 20]; we generalize
the corollary and prove it is optimal. We present best possible algo-
rithms for undoing two natural sequences of switches each effecting a
cyclic mind-scrambling permutation in the symmetric group Sn. This
happens to yield certain expressions for the identity permutation as a
product of distinct transpositions, so it is natural to ask for necessary
and sufficient conditions on m and n for the identity to be expressible
as a product of m distinct transpositions in Sn. We close by finding
such conditions.
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1 Introduction

The Prisoner of Benda, an acclaimed episode of the animated television series
Futurama, features a two-body mind-switching machine. Any pair can enter
the machine to swap minds, but with one serious limitation: the machine
will not work more than once on the same pair of bodies.

After the Futurama community indulges in a mind-switching frenzy, a
question is raised: Can the switching be undone so as to restore all minds to
their original bodies? The show provides an answer using what is known in
the popular culture as “Keeler’s Theorem”. The theorem is the brainchild
of the show’s writer Ken Keeler [6], who earned a PhD in Mathematics from
Harvard University in 1990 [7] before becoming a television writer/producer.
For The Prisoner of Benda, Keeler garnered a 2011 Writers Guild Award [9].
Keeler’s Theorem is discussed in [2, pp. 18–19].

The problem of undoing the switching can be modeled in terms of group
theory. Represent the bodies involved in the switching frenzy by {1, 2, · · · , n}.
The symmetric group Sn consists of the n! permutations of {1, 2, · · · , n}. Let
I denote the identity permutation. A 2-cycle (ab) is called a transposition;
it represents the permutation which switches the minds of bodies a and b.
The k-cycle (a1 · · · ak) is the permutation which sends a1’s mind to a2, a2’s
mind to a3, · · · , and ak’s mind to a1. Following the convention in [1], we
compute products (i.e., compositions) in Sn from right to left. For example,
(123) = (12)(23) = (13)(12) = (23)(13).

The successive swapping of minds during the switching frenzy can be rep-
resented by a product P of distinct transpositions in Sn. (The transpositions
must be distinct due to the limitation of the machine.) In addition to view-
ing P formally as a product, we can also view P as a permutation. It will
be assumed that this permutation is nontrivial, otherwise nothing needs to
be undone. For an example of P , suppose that 2 switches minds with 3 and
then 2 switches minds with 1; this corresponds to the product P = (12)(23),
yielding the mind-scrambling permutation P = (123).

To restore all minds to their original bodies, one must find a product σ
of distinct transpositions such that σP = I and such that the transposition
factors in the product σ are distinct from those in the product P . Such a σ
is said to undo P . From now on, the phrase “transposition factors” will be
shortened simply to “factors”.

A σ1 that undoes a product P1 may differ dramatically from a σ2 that
undoes a product P2, even if P1 and P2 effect the same mind-scrambling
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permutation. For example, we will see (in Theorems 2 and 3) that while the
products P1 = (12)(23)(34)(45) and P2 = (45)(35)(25)(15) both effect the
permutation (12345), P1 can be undone by a product in S5, but P2 cannot.

In the aftermath of a switching frenzy, the community may have no recol-
lection of the sequence of switches that had taken place. It is then expedient
to find a product σ that is guaranteed to undo the mind-scrambling per-
mutation P ∈ Sn regardless of which transpositions in Sn had effected P .
Keeler’s Theorem explicitly produces such a product σ ∈ Sn+2. Each factor
in Keeler’s σ contains at least one of the entries

x = n+ 1, y = n+ 2,

so that the factors in σ are distinct from the transpositions that effected
P . One can view x and y as altruistic outsiders who had never entered
the machine during the frenzy, but who are subsequently willing to endure
frequent mind switches in order to help others restore their minds to their
original bodies.

Viewed as a permutation, P can be expressed (uniquely up to ordering)
as the product P = C1 · · ·Cr of nontrivial disjoint cycles C1, · · · , Cr in Sn
[1, p. 77]. For each i = 1, · · · , r, let ki denote the length of cycle Ci. In
discussing Keeler’s Theorem and our refinement (Theorem 1), we will assume
that

k1 + · · ·+ kr = n.

This presents no loss of generality, since if k1 + · · · + kr = m < n, then we
could relabel the bodies and mimic the arguments using m in place of n.

1.1 Keeler’s method

We now describe Keeler’s method for constructing a product σ ∈ Sn+2 which
undoes P = C1 · · ·Cr. For convenience of notation, write k = k1, so that C1

is a k-cycle (a1 · · · ak) with each ai ∈ {1, 2, · · · , n}. It is easily checked that
σ1C1 = (xy), where σ1 is the product of k + 2 transpositions given by

σ1 = (xa1)(xa2) · · · (xak−1) · (yak)(xak)(ya1). (1)

For each cycle Ci, we have analogous products σi of ki + 2 transpositions for
which

σiCi = (xy), i = 1, · · · , r.
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Note that every transposition in σi has the form (xu) or (yu) for some entry u
in Ci. Since disjoint cycles commute, (xy) commutes with every transposition
in Sn, so

τ := σr · · ·σ2σ1
is a product of distinct transpositions for which τP = (xy)r. Taking

σ =

{
(xy)τ, if r is odd

τ, if r is even,
(2)

we find that σ undoes P and σ is a product of distinct transpositions in Sn+2

each containing at least one of the entries x, y, as desired.
By (1) and (2), the number of factors in Keeler’s σ is either n+ 2r+ 1 or

n + 2r according as r is odd or even. However, for each r > 2, the number
of factors needed to undo P can be reduced. For example, for r = 3,
P = (12)(34)(56) is undone by Keeler’s product of 13 transpositions

σ = (xy)(5x)(6y)(6x)(5y)(3x)(4y)(4x)(3y)(1x)(2y)(2x)(1y),

but in fact P can be undone by the product of 11 transpositions

(5x)(6y)(6x)(5y)(1x)(2x)(3x)(4y)(4x)(3y)(1y).

In Theorem 1 of the next section, we refine Keeler’s method by showing that
P can be undone via a product of only n+ r+ 2 distinct transpositions each
containing at least one of the entries x, y. We show moreover that this result
is “best possible” in the sense that n+ r+ 2 cannot be replaced by a smaller
number.

1.2 Grime’s Corollary

James Grime of University of Cambridge introduced Grime’s Corollary in his
video [3]. It is also discussed in [2, p. 20]. His corollary deals with the per-
mutation P = (12)(3456789) that is created by (45)(89)(12)(39)(65)(37)(36).
Keeler undoes P in 13 switches. Grime improves this by undoing P with a
product σ of 9 distinct transpositions, where

σ = (19)(62)(31)(72)(41)(82)(51)(92)(61).

In the end of his video [3], Grime posed an open question, “Can you find a
better way (with or without outsiders)?”. We take the challenge and prove
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that Grime’s Corollary is best possible in the sense that 9 cannot be replaced
by a smaller number. In fact, we prove the optimality of a generalization of
Grime’s Corollary for P = (12)(345 · · ·n) when n ≥ 4.

In subsequent sections, we turn our attention to the problem of undoing,
with a minimal number of outsiders, explicit products P of distinct transpo-
sitions in Sn which effect the cycle (123 · · ·n). The product

P = (34)(24)(13)(14)(45)(23)(35)(12)(25)(15) (3)

is an example of a product of distinct transpositions in S5 which effects
the cycle (12345). Can P be undone by a product σ that uses fewer than
two outsiders? We proceed to show that the answer is no. There are ten
transpositions in S5. Each occurs as a factor in (3) and hence cannot occur
as a factor in σ. Assume for the purpose of contradiction that P could be
undone by a product σ ∈ S6 (i.e., using the sole outsider 6). Then P−1 =
σ = (6a1) · · · (6as) for some set of distinct entries a1, · · · , as ∈ {1, 2, 3, 4, 5}.
This yields a contradiction because σ = (54321) fixes 6 while (6a1) · · · (6as)
fails to fix 6.

It may happen that two outsiders are required to undo a product P even
when not all

(
n
2

)
transpositions in Sn occur as factors of P . For example,

consider the product

P = (23)(12)(34)(14)(24),

which is a product of distinct transpositions in S4 effecting the cycle (1234).
We leave it to the reader to show that P cannot be undone by a product
σ ∈ S5 (i.e., using the sole outsider 5).

With the aim of finding interesting classes of products that can be undone
using fewer than two outsiders, we examined what are undoubtably the two
most natural products P in Sn effecting (12 · · ·n), namely [1, p. 81]

P1 = (12)(23)(34) · · · (n− 1, n) and P2 = (n− 1, n) · · · (3n)(2n)(1n).

Theorems 2 and 3 determine how many outsiders and how many mind
switches are sufficient to undo each of these two products. Theorem 2 shows
that for n ≥ 5, P1 can be undone without any outsiders, using only n + 1
switches, where n + 1 is best possible. Theorem 3 shows that for n ≥ 3,
P2 can be undone using only one outsider, again with n+ 1 switches, where
n + 1 is best possible. We note that no σ can undo P2 without outsiders;

7



otherwise, as P2 doesn’t fix n, such σ would contain a factor of the form (an)
with a < n, which is impossible because P2 contains all such factors.

Notice that if P = (12 · · ·n) is not factored in the form of P1 or P2, then
it is possible that P can be undone by a σ with fewer than n + 1 distinct
transpositions, as illustrated by the following example.

Example 1. For P = (1234567) = (23)(67)(17)(34)(15)(14), we have that
σ = (25)(26)(35)(45)(27)(12) undoes P . Observe that σ contains only 6 <
n+ 1 = 8 distinct transpositions.

When n ≥ 5, Theorem 2 provides equalities of the form σP1 = I which
express the identity I as a product of 2n distinct transpositions in Sn. For
the case n = 4, I can be expressed as a product of 6 distinct transpositions
in S4, e.g.,

I = (34)(14)(23)(13)(24)(12).

Such equalities lead to the question: What are necessary and sufficient con-
ditions on m and n for I to be expressible as a product of m distinct transpo-
sitions in Sn? Theorem 4 provides the answer: it is necessary and sufficient
that m be an even integer with 6 ≤ m ≤

(
n
2

)
.

In order to prove Theorems 2–4, we require three lemmas about cycles.
Lemma 1 is known [4, p. 77], but we provide an elementary proof for com-
pleteness. The proof of Lemma 3 is due to I. Martin Isaacs [5]. We are
grateful for his permission to include it here, as our original proof was con-
siderably less elegant.

We will need the well-known “Parity Theorem”, which shows that that
the identity permutation I cannot equal a product of an odd number of
transpositions. Two proofs of the Parity Theorem may be found in [1, pp.
82, 149], and a nice recent version is due to Oliver [8]. We give Oliver’s proof
in the Appendix.

2 An optimal refinement of Keeler’s method

Theorem 1. Let P = C1 · · ·Cr be a product of r disjoint ki-cycles Ci in Sn,
with ki ≥ 2, n = k1 + · · · + kr. Then P can be undone by a product λ of
n + r + 2 distinct transpositions in Sn+2 each containing at least one of the
entries x = n + 1, y = n + 2. Moreover, this result is best possible in the
sense that n+ r + 2 cannot be replaced by a smaller number.
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Proof. Write k = k1, so that C1 is a k-cycle (a1 · · · ak). Corresponding to the
cycle C1, define the product

G1(x) = (a1x)(a2x) · · · (akx),

whose leftmost factor is
F1(x) = (a1x).

Corresponding to each cycle Ci, i = 1, · · · , r, define Gi(x) and Fi(x) analo-
gously. Set

λ = (xy) ·Gr(x) · · ·G2(x) · (akx)G1(y)(a1x) · F2(y) · · ·Fr(y).

It is readily checked that λ undoes P and that λ is a product of n + r + 2
distinct transpositions in Sn+2 each containing at least one of the entries x, y.

It remains to prove optimality. Suppose for the purpose of contradiction
that P can be undone by a product σ of t < n+ r+ 2 distinct transpositions
in Sn+2 each containing at least one of the entries x, y. Then by the Parity
Theorem, t ≤ n+ r.

On the other hand, we have the lower bound t ≥ n, since each of the
n entries in P must occur (coupled with x or y) in a factor of σ. Let A
denote the set of entries in C1 = (a1 · · · ak), and let a denote the leftmost
element of A appearing in the product σ. Since P maps a to some other
element of A, it follows that a appears twice in σ, i.e., σ has both of the
factors (ax) and (ay). The same argument shows that each of the r cycles Ci
contains an entry which appears twice in σ. Thus the inequality t ≥ n can
be strengthened to t ≥ n + r. Consequently, t = n + r. It follows that each
of the r cycles Ci contains exactly one entry which appears twice in σ, and
the other n− r entries appear only once. This accounts for all n+ r factors
of σ, so in particular, (xy) cannot be a factor of σ.

Let a′ denote the rightmost element of A appearing in the product σ.
Since P maps some element of A to a′, it follows that a′ appears twice in
σ. Since a is the only element of A that appears twice in σ, we must have
a = a′. Consequently, we have shown the following two properties of C1:
(i) there is a unique entry a in C1 for which the transpositions (ax) and (ay)
both occur as factors of σ, and
(ii) each entry of C1 other than a occurs in exactly one factor of σ, and that
factor must lie strictly between (ax) and (ay).
These two properties are similarly shared by each of the r cycles Ci.
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Let N1 denote the number of transpositions in σ that lie strictly between
its factors (ax) and (ay). Define Ni similarly for each of the r cycles Ci. We
may assume without loss of generality that

N1 ≤ Ni for all i = 1, · · · , r.

We may also assume that the factor (ax) in σ lies to the left of the factor
(ay), and that a = ak.

Let My denote the set of factors in σ which contain the entry y and
which lie between (akx) and (aky) inclusive. Suppose for the purpose of
contradiction that every transposition in My has the form (aiy) for some
ai ∈ A. Since σ must send ai+1 to ai for each i = 1, · · · , k− 1, it follows that
the elements of My have to occur in the following order in σ:

(a1y), (a2y), · · · , (ak−1y), (aky).

But then σ could not send a1 to ak, a contradiction. Thus some transposition
in My must have the form (hy), where h /∈ A. Consider the rightmost
(hy) ∈ My with h /∈ A. For some fixed j > 1, h is an entry of the cycle Cj.
Among all the elements (aiy) ∈ My that lie to the right of (hy), let (amy)
denote the one closest to (hy). As σ cannot send am to h, it follows that
the entry h occurs twice between (akx) and (aky), i.e., σ has factors (hx)
and (hy) both lying strictly between (akx) and (aky). Thus Nj < N1. This
violates the minimality of N1, giving us the desired contradiction.

Remark 1. As λP = I, λP is even. It is easy to check directly that λP is
even. Notice that for k > 1, a k-cycle can be written as a product of k − 1
distinct transpositions (for example, P1 and P2 in Section 4). Hence, λ can be
written as a product of (k1−1)+(k2−1)+· · ·+(kr−1) = n−r transpositions.
Thus, λP can be written as a product of (n + r + 2) + (n − r) = 2(n + 1)
transpositions, which implies λP is even.

Example 2. Let P = (12)(345)(67) ∈ S7. Find σ ∈ S9, a product of
distinct transpositions such that each transposition contains at least one the
the entries x, y and that σ undoes P .
Keeler’s method:
σ1 = (xy)(x1)(y2)(x2)(y1)(x3)(x4)(y5)(x5)(y3)(x6)(y7)(x7)(y6).
There are n+ 2r+ 1 = 7 + 6 + 1 = 14 transpositions in σ1, which undoes P .
Our best possible algorithm:
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σ2 = (xy)(6x)(7x)(3x)(4x)(5x)(2x)(1y)(2y)(1x)(3y)(6y).
Notice that there are only n+ r + 2 = 7 + 3 + 2 = 12 < 14 transpositions in
σ2, which also undoes P .

Example 3. Let P = (12) ∈ S2. Undo P with σ ∈ S4.
Keeler’s method:
σ1 = (xy)(x1)(y2)(x2)(y1).
There are n+ 2r + 1 = 2 + 2 + 1 = 5 transpositions in σ1, which undoes P .
Our best possible algorithm:
σ2 = (xy)(2x)(1y)(2y)(1x).
There are n+ r + 2 = 2 + 1 + 2 = 5 transpositions in σ2, which also undoes
P . (Observe that if one switches the disjoint transpositions (x1) and (y2) in
σ1 and then renames x, y as y, x, respectively, one can see that σ1 becomes
σ2.)

Notice that one cannot find a σ which undoes (12) with less than five
distinct transpositions, since identity cannot be written as a product of less
than 6 distinct transpositions, which is shown in Theorem 4 in Section 5.

Remark 2. When r = 1, 2, both Keeler’s method and our algorithm are
best possible. However, when r is large, we have n+ r+ 2 is much less than
n+ 2r.

2.1 A variant of Theorem 1

Corollary 1. Let P = (12)C2 · · ·Cr be a product of r disjoint ki-cycles Ci in
Sn, with ki ≥ 2, n = k1 + · · ·+ kr. Suppose r ≥ 2 and the entries 1, 2 switch
only with each other in the product of distinct transpositions that creates P .
Then P can be undone by a product η of n + r − 2 distinct transpositions
in Sn each containing at least one of the entries 1, 2. Moreover, this result
is best possible in the sense that n + r − 2 cannot be replaced by a smaller
number.

Proof. Notice that the entries 1, 2 in P can play the roles of x, y in Theorem
1 since none of 1 or 2 switches with other entries in the sequence of switches
that took place to create P . Write k = k2, so that C2 is a k-cycle (b1 · · · bk).
Set

η = Gr(1) · · ·G3(1) · (bk1)G2(2)(b11) · F3(2) · · ·Fr(2). (4)

It is readily checked that η undoes P and that η is a product of n + r − 2
distinct transpositions in Sn each containing at least one of the entries 1, 2.
Optimality is clear by the result of Theorem 1.
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Remark 3. Corollary 1 (with r = 2, n = 9) shows that 9 factors for undoing
Grime’s P is best possible if each such factor is required to contain at least
one of the entries 1, 2. Corollary 2 below will show that 9 factors is best
possible unconditionally.

2.2 The optimality of a generalization of Grime’s Corol-
lary

Corollary 2. For n ≥ 4, let P = (12)(345 · · ·n) be an instance of P in
Corollary 1 with r = 2. Then there exists a product σ of n distinct trans-
positions in Sn which undoes P . Moreover, this result is best possible in the
sense that no σ which undoes P can have fewer than n distinct factors.

Proof. The existence of such a σ as a product of n transpositions that undoes
P is guaranteed by (4) in the proof of Corollary 1. It remains to prove
optimality.

Suppose for the purpose of contradiction that P can be undone by a
product τ of k < n distinct transpositions. Since τP = I, the Parity Theorem
shows that k ≤ n − 2. Consider the rightmost factor (ab) of τ which has
one of the entries 1, 2. Without loss of generality, a = 1. Since (n, n −
1, · · · 3)(12) = τ , we have (n, n − 1, · · · 3)(12)(13) = τ(13), which implies
(n, n−1, · · · 321) = τ(13), a product of 1 +k ≤ n−1 transpositions. Lemma
1 gives 1 + k = n − 1. Moreover, Lemma 2 shows that b is in {1, 2, · · · , n}.
Without loss of generality, b = 3. If not, we can rename the entries cyclically.
We can move (13) to the right by interchanging disjoint transpositions and/or
employing equalities of the form (13)(3a) = (1a)(13). Doing this repeatedly,
we have τ = γ(13), where γ is a product of k − 1 transpositions. Since τ
undoes P , we have τ = P−1, which implies

γ(13) = (n, n− 1, · · · 3)(12).

Multiplying both sides of the above equality by (13), we obtain

γ = (n, n− 1, · · · 321).

Lemma 1 gives k − 1 ≥ n− 1, which is a contradiction to k ≤ n− 2.
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3 Three lemmas about cycles

3.1 Lemma 1

Lemma 1. Let 2 ≤ k ≤ n. Then no k-cycle in Sn can be a product of fewer
than k − 1 transpositions.

Proof. The result is obvious for k = 2, 3, 4. Assume there exists a minimal
k ≥ 5 for which the result is false, i.e., some k-cycle (a1 · · · ak) ∈ Sn equals
a product P of t transpositions in Sn, where t < k − 1. If each of a1, · · · , ak
occurred at least twice as an entry in the product P , then P would have at
least k transpositions as factors, which is impossible since k > t. Thus some
ai occurs exactly once as an entry in P . We may assume without loss of
generality that i = k, i.e., ak occurs exactly once.

We can move the factor of P containing ak to the left in the product
P by interchanging disjoint transpositions and/or employing the equality
(cb)(bak) = (cak)(cb). Doing this repeatedly, we find that for some x ∈
{1, · · · , n},

(a1 · · · ak) = P = (xak)τ,

where τ is a product of t− 1 transpositions, none of which contain the entry
ak. Since the permutation on the left sends ak to a1, we must have x = a1.
Multiplying on the left by the transposition (a1ak), we obtain

(a1 · · · ak−1) = τ.

Since τ is a product of t− 1 < k − 2 transpositions, the (k − 1)-cycle on the
left can be expressed as a product of fewer than k − 2 transpositions. This
contradicts the minimality of k.

3.2 Lemma 2

Lemma 2. Let 2 ≤ k ≤ n. Suppose that (a1 · · · ak) ∈ Sn equals a product P
of exactly k − 1 transpositions in Sn. Then every entry in the product P is
one of the ai, i = 1, 2, · · · , k.

Proof. The result is obvious for k = 2, 3. Assume there exists a minimal
k ≥ 4 for which the result is false. Let A denote the set {a1, · · · , ak}, and let
X = {x1, · · · , xr} denote the set of entries in the product P which are not
in the set A. Note that our choice of k shows that X is nonempty.
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CASE 1: Every factor of P with an entry in X has both entries in X.
In this case, repeatedly use the equality (aiaj)(xixj) = (xixj)(aiaj) if neces-
sary to move all of the factors of the form (xixj) to the far left in P . Thus

(a1 · · · ak) = P = στ,

where all entries in the product σ lie in X and all entries in the product τ
lie in A. Since X is nonempty, τ must be a product of fewer than k − 1
transpositions. Since σ and τ are disjoint, the above equality is impossible
unless σ is equal to the identity permutation. Thus

(a1 · · · ak) = τ.

This contradicts Lemma 1, since τ is the product of fewer than k − 1 trans-
positions.
CASE 2: Some factor of P has the form (xa) with x ∈ X, a ∈ A.
Repeatly interchanging disjoint transpositions and/or using equalities of the
form (ya)(xa) = (xa)(xy) or (yx)(xa) = (xa)(ya), we can move (xa) to the
far left in P , so that

(a1 · · · ak) = P = (xa)τ,

where τ is a product of k− 2 transpositions. Multiply on the left by (xa) to
obtain

(a1 · · · ai−1xai · · · ak) = τ, where ai = a.

The (k+1)-cycle on the left is thus equal to a product of k−2 transpositions,
which contradicts Lemma 1.

3.3 Lemma 3

Lemma 3. Let 2 ≤ k ≤ n. Suppose that the k-cycle c = (a1 · · · ak) ∈ Sn
equals a product P of k − 1 transpositions in Sn. Then at least one of these
k − 1 factors has the form

(aiai+1), 1 ≤ i < k. (5)

Proof. The result is obvious for k = 2. For k ≥ 3, we will induct on k. By
Lemma 2, every entry in P is one of the ai. Let (auav) denote the rightmost
factor of P with u < v. Write w = v − u. If w = 1, we are done, so assume
that w > 1. Define the w-cycle

s = (au+1 · · · av)
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and the (k − w)-cycle

t = (a1 · · · au, av+1 · · · ak).

If w = k−1, then t is interpreted as the 1-cycle (a1). It is easily checked that
c(auav) = ts. Thus ts can be written as a product of k − 2 transpositions,
all factors of P .

Let F denote the set of w entries in s and let G denote the set of k − w
entries in t. Note that F and G are disjoint sets whose union is {a1, · · · , ak}.
Suppose for the purpose of contradiction that one of the k − 2 transposi-
tion factors of ts were of the form (fg) with f ∈ F and g ∈ G. Repeat-
edly interchanging disjoint transpositions and/or using equalities of the form
(fg)(af) = (ag)(fg) or (fg)(ag) = (af)(fg), we can write ts as a product
of k − 2 transpositions with rightmost factor (fg). Thus ts(fg) is a product
of k − 3 transpositions. On the other hand, since s and t are disjoint cycles
where s has entry f and t has entry g, we see that ts(fg) is a k-cycle (just as
we saw above that ts(auav) equals the k-cycle c). A k-cycle cannot be written
as a product of k−3 transpositions by Lemma 1, so we have a contradiction.

We now know that the k−2 transposition factors in ts are of two disjoint
types: those that switch elements of F and those that switch elements of G.
Consequently,

ts = BA,

where A is a product of factors of the first type and B is a product of factors
of the second type. Since t−1B and As−1 are disjoint permutations whose
product is the identity, it follows that s = A and t = B. By Lemma 1,
the w-cycle s cannot be a product of fewer than w − 1 transpositions, and
similarly, t cannot be a product of fewer than k−w− 1 transpositions. The
combined number of factors in the products A and B is k−2, so the products
A and B have exactly w − 1 and k − w − 1 factors, respectively. Since the
w-cycle s is a product of w − 1 transpositions, it follows from the induction
hypothesis that s (and hence P ) has a factor of the form (4).

4 Optimal methods to undo P1 and P2

4.1 Undoing P1

Theorem 2. For n ≥ 5, let P1 denote the product of n − 1 transpositions
in Sn given by P1 = (12)(23)(34) · · · (n − 1, n). Then there exists a product
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σ of n + 1 distinct transpositions in Sn which undoes P1, and this result is
best possible in the sense that no such σ can have fewer than n + 1 distinct
factors.

Proof. Define σ = (3n)(2, n − 1)(1n)(14)(2n)(13) · (35) · · · (3, n − 1), where
when n = 5, the empty product (35) · · · (3, n−1) is interpreted as the identity.
It is easily checked that σP1 = I and that σ is a product of n + 1 distinct
transpositions in Sn all distinct from the n−1 transpositions in P1. It remains
to prove optimality.

Suppose for the purpose of contradiction that there exists a product E of
k < n+ 1 distinct transpositions in Sn for which EP1 = I and for which the
k transpositions in E are distinct from the n− 1 transpositions in P1. Since
EP1 = I, the Parity Theorem shows that k ≤ n−1. On the other hand, since
P1 = (12 · · ·n), Lemma 1 gives k ≥ n−1. Thus the number of transpositions
in the product E is exactly n− 1. Note that E−1 is a product of these same
n − 1 transpositions in reverse order, and E−1 = P1 = (12 · · ·n). Hence by
Lemma 3, one of these n− 1 transpositions in E has the form (i, i+ 1) with
1 ≤ i < n. This contradicts the distinctness of the factors of E from those
in P1, since by definition, P1 is a product of all n− 1 transpositions (i, i+ 1)
with 1 ≤ i < n.

The restriction n ≥ 5 in Theorem 2 cannot be relaxed. Clearly P1 cannot
be undone in Sn when n < 4. Assume for the purpose of contradiction that
for n = 4, there is a σ that undoes P1 = (12)(23)(34) in S4. Then to avoid
overlap, σ must be a product of the three unused transpositions in S4, namely
(14), (24), (13). Applying Lemma 2 to σ−1 = (1234), we see that σ−1 and
hence σ must contain one of the factors (12), (23), (34), a contradiction.

4.2 Undoing P2

Theorem 3. For n ≥ 3, let P2 denote the product of n− 1 transpositions in
Sn given by P2 = (n, n − 1) · · · (n3)(n2)(n1). Then there exists a product τ
of n + 1 distinct transpositions in Sn+1 which undoes P2, and this result is
best possible in the sense that no such τ can have fewer than n + 1 distinct
factors.

Proof. Define τ = (2, n+ 1)(3, n+ 1)(4, n+ 1) · · · (n, n+ 1) · (1, 2)(1, n+ 1).
It is easily checked that τP2 = I and that τ is a product of n + 1 distinct
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transpositions in Sn+1 all distinct from the n − 1 transpositions in P2. It
remains to prove optimality.

Suppose for the purpose of contradiction that there exists a product F
of k < n + 1 transpositions in Sn+1 for which FP2 = I and for which the k
transpositions in F are distinct from the n − 1 transpositions in P2. Since
FP2 = I, the Parity Theorem shows that k ≤ n−1. On the other hand, since
P2 = (12 · · ·n), Lemma 1 gives k ≥ n−1. Thus the number of transpositions
in the product F is exactly n − 1. Note that F−1 is a product of these
same n − 1 transpositions in reverse order, and F−1 = P2 = (12 · · ·n).
Hence by Lemma 2, the entries in these n− 1 transpositions all lie in the set
{1, 2, · · · , n}. Since the permutation F moves n, it follows that one of these
n− 1 transpositions in F has the form (in) with 1 ≤ i < n. This contradicts
the distinctness of the factors of F from those in P2, since by definition, P2

is a product of all n− 1 transpositions (in) with 1 ≤ i < n.

5 I as a product of m distinct transpositions

in Sn

Theorem 4. For the identity I to be expressible as a product of m distinct
transpositions in Sn, it is necessary and sufficient that m be an even integer
with 6 ≤ m ≤

(
n
2

)
.

Proof. We begin by showing that the conditions are necessary. First, m
must be even by the Parity Theorem. Clearly m > 2, and furthermore, m
cannot exceed

(
n
2

)
, since

(
n
2

)
is the number of distinct transpositions in Sn.

To complete the proof of necessity, we now show that m 6= 4. Assume for the
purpose of contradiction that I = WXY Z, where W , X, Y , Z are distinct
transpositions. Then the product WXY Z has at least 4 distinct entries,
each occurring at least twice. (For if some entry z occurred only once, then
WXY Z could not map z to z.) Thus the product must have exactly four
distinct entries a, b, c, d, each occurring exactly twice. Suppose first that
X and W are not disjoint, so that say W = (ab) and X = (ac). Then
Y Z = (abc), which is impossible because the entry a occurs once in W and
once in X, so a cannot occur in either Y or Z. Thus X and W must be
disjoint. Since WX = ZY , it follows that Z and Y are disjoint. Then either
W = Y or W = Z, contradicting the fact that W is distinct from Y and Z.
This completes the proof of necessity. It remains to show sufficiency.
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Define
f(a, b, c) = (ac)(ab)(bc),

which we view formally as a product of 3 transpositions, while noting that
f(a, b, c) equals (ab) when viewed as a permutation. If a product λ of trans-
positions has a factor (ab), then formally replacing (ab) by f(a, b, c) increases
the number of λ’s factors by 2, without altering λ as a permutation.

We next show how to express I explicitly as a product of distinct trans-
positions in S4, S5, S6, S7, and S8. Our treatment for S5, S6, S7, and S8

illustrates the general inductive procedure, but it may be skipped if desired.
For m = 6, we have the base case

I = (12)(23)(14)(13)(24)(34) in S4.

This equality uses all six transpositions in S4, so to consider the values m =
8, 10, we move up to S5. For m = 8, replace the first transposition (12) above
by f(1, 2, 5) to obtain

I = (15)(12)(25)(23)(14)(13)(24)(34) in S5.

For m = 10, replace the transposition (34) above by f(3, 4, 5) to obtain

I = (15)(12)(25)(23)(14)(13)(24)(35)(34)(45) in S5.

This equality uses all ten transpositions in S5, so to consider the values
m = 12, 14, we move up to S6. For m = 12, replace (23) above by f(2, 3, 6)
to obtain

I = (15)(12)(25)(26)(23)(36)(14)(13)(24)(35)(34)(45) in S6.

For m = 14, replace (45) above by f(4, 5, 6) to obtain

I = (15)(12)(25)(26)(23)(36)(14)(13)(24)(35)(34)(46)(45)(56) in S6.

This equality uses all of the fifteen transpositions in S6 except for (16), so
to consider values m = 16, 18, 20, we move up to S7. For m = 16, 18, 20,
successively replace (12) by f(1, 2, 7), (34) by f(3, 4, 7), and (56) by f(5, 6, 7),
respectively. This yields the following for m = 20:

I = (15)(17)(12)(27)(25)(26)(23)(36)(14)(13)(24)(35)×
× (37)(34)(47)(46)(45)(57)(56)(67) in S7.
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This equality uses all of the twenty-one transpositions in S7 except for (16),
so to consider values m = 22, 24, 26, 28, we move up to S8. For m = 22, 24, 26,
successively replace (23) by f(2, 3, 8), (45) by f(4, 5, 8), and (67) by f(6, 7, 8),
respectively. This yields the following for m = 26:

I = (15)(17)(12)(27)(25)(26)(28)(23)(38)(36)(14)(13)(24)(35)(37)×
× (34)(47)(46)(48)(45)(58)(57)(56)(68)(67)(78) in S8.

This equality uses all twenty-eight transpositions in S8 except (16) and (18).
This suggests that we make the atypical replacement of (68) by f(6, 8, 1) to
obtain the following for m = 28:

I = (15)(17)(12)(27)(25)(26)(28)(23)(38)(36)(14)(13)(24)(35)(37)×
× (34)(47)(46)(48)(45)(58)(57)(56)(16)(68)(18)(67)(78) in S8.

This equality uses all twenty-eight transpositions in S8.
We now describe the general inductive procedure for constructing equal-

ities in S4k+1 through S4k+4, for k ≥ 1. For the remainder of the proof, we
use the notation N = 4k and b(m) =

(
m
2

)
. (The motivation for working

successively with blocks {SN+1, SN+2, SN+3, SN+4}, N = 4, 8, 12, · · · is that
for all n ≥ 2, the parities of b(n) and b(n+ 4) are the same.)

Starting from the equality in SN corresponding to

m = b(N),

successively replace (12) by f(1, 2, N + 1), (34) by f(3, 4, N + 1), · · · ,
(N − 1, N) by f(N − 1, N,N + 1) to obtain the equalities in SN+1 for

m = b(N) + 2, b(N) + 4, · · · , b(N) +N,

respectively.
Starting from the last equality in SN+1, which corresponds to

m = b(N) +N = b(N + 1),

successively replace (23) by f(2, 3, N + 2), (45) by f(4, 5, N + 2), · · · ,
(N,N + 1) by f(N,N + 1, N + 2) to obtain the equalities in SN+2 for

m = b(N + 1) + 2, b(N + 1) + 4, · · · , b(N + 1) +N,
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respectively. The last equality uses all b(N+2) transpositions in SN+2 except
(1, N + 2).

Starting from this last equality in SN+2, which corresponds to

m = b(N + 2)− 1,

successively replace (12) by f(1, 2, N + 3), (34) by f(3, 4, N + 3), · · · ,
(N + 1, N + 2) by f(N + 1, N + 2, N + 3) to obtain the equalities in SN+3 for

m = b(N + 2) + 1, b(N + 2) + 3, · · · , b(N + 2) +N + 1,

respectively. The last equality uses all b(N+3) transpositions in SN+3 except
(1, N + 2).

Starting from this last equality in SN+3, which corresponds to

m = b(N + 3)− 1,

successively replace (23) by f(2, 3, N + 4), (45) by f(4, 5, N + 4), · · · ,
(N + 2, N + 3) by f(N + 2, N + 3, N + 4) to obtain the equalities in SN+4 for

m = b(N + 3) + 1, b(N + 3) + 3, · · · , b(N + 3) +N + 1,

respectively. The last equality uses all b(N+4) transpositions in SN+4 except
(1, N + 2) and (1, N + 4). Finally, make the atypical replacement of the
transposition (N + 2, N + 4) by f(N + 2, N + 4, 1) to obtain the equality in
SN+4 for

m = b(N + 3) +N + 3.

This equality uses all m = b(N + 4) transpositions in SN+4.

6 Appendix: A proof of the Parity Theorem

Recall that the Parity Theorem states the following. If a permutation is
written as a product of transpositions in two ways, then the number of trans-
positions is either even in both cases or odd in both cases.

Proof. Let Sn denote the group of all permutations of the set

[n] = {1, 2, · · · , n}.
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For σ ∈ Sn, where n ≥ 2, we define the set of inversions of σ ∈ Sn by

Iσ =

{
{i, j} : i 6= j, and

σ(i)− σ(j)

i− j
< 0

}
.

Then the number of inversions of σ is the cardinality of Iσ. Define the
mapping ε : Sn −→ {±1} by

ε(σ) =

{
1, if the number of inversions of σ is even

−1, if the number of inversions of σ is odd.

And define the parity of σ to be ε(σ) = (−1)|Iσ |. It is not hard to show that

Iστ = Iσ ∆ σ−1(Iτ ),

where ∆ denotes the symmetric difference and σ{i, j} = {σ(i), σ(j)} for
{i, j} ∈ [n]2, the set of 2-element subsets of [n]. Noting that |σ−1(Iτ )| = |Iτ |,
we have

|Iστ | = |Iσ|+ |σ−1(Iτ )| − 2|Iσ ∩ σ−1(Iτ )|
= |Iσ|+ |Iτ | − 2|Iσ ∩ Iτ |.

Thus, |Iστ | ≡ |Iσ|+ |Iτ | (mod 2), which implies

(−1)|Iστ | = (−1)|Iσ |+|Iτ | = (−1)|Iσ | + (−1)|Iτ |

and hence ε(στ) = ε(σ)ε(τ). Moreover, ε(I) = (−1)0 = 1. Therefore, the
mapping ε is a homomorphism. When ς = (12), we have ε(ς) = (−1)1 = −1.
Notice that ς is order inverting on {1, 2} and order preserving on all other
doubletons in [n]2. Let σ = (ij) be an arbitrary transposition in Sn, and let
γ be a permutation in Sn such that γ maps {1, 2} onto {i, j}, then we have
σ = γςγ−1. Thus, ε(σ) = ε(γςγ−1) = ε(γ)ε(ς)ε(γ)−1 = −1. Therefore, if we
have a permutation P = t1t2 · · · tr = s1s2 · · · sv, then apply ε to both sides we
obtain ε(t1) · · · ε(tr) = ε(s1) · · · ε(sv), which implies (−1)r = (−1)v and hence
r ≡ v (mod 2). Since r and v are both even or odd, the result follows.
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