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Abstract

Considering random-to-random shuffles as Markov chains, it has al-
ready been proven that the transition matrices of k-random-to-random
and l-random-to-random commute. We set out to provide a simpler, prob-
abilistic proof of the same result, but show that the problem boils down
to a tricky combinatorics question.

1



Contents

1 Set Up 3
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Example: Top-to-Random . . . . . . . . . . . . . . . . . . . . . . 3

2 k-Top-to-Random Shuffle 4
2.1 Forward Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Inverse Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Properties of Tk . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Commutativity of kTTR and lTTR . . . . . . . . . . . . . . . . 10

3 k-Random-to-Random Shuffle 13
3.1 Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Properties of Rk . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Commutativity of kRTR and lRTR . . . . . . . . . . . . . . . . . 16
3.4 Another Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 18

2



1 Set Up

1.1 Terminology

In this paper, we will consider shuffling a deck of n cards as a Markov chain. Its
states are permutations of n cards as in arrangements, or final orderings of the
cards, while its steps are permutations as in bijections. Then, if Xi represents
the ith state of the Markov chain, and σ is an element of the symmetric group
Sn, the probability of transitioning from an ordered deck of card to a permuted
deck of card in one step can be written as P(Xi = σ|Xi−1 = id) where σ is the
said permutation. We will think of this as P (σ), where P represents the proba-
bility distribution on transitions (steps). In fact, P is a probability distribution
on Sn. We will see later that, in addition to saving notation, this is sufficient
since we are only interested in the first row of the transition matrices that we
will study. Now a few definitions.

Definition 1. Denote by Xi the ith state of a given shuffle, and let σ be
a possible state of the said shuffle. Define P (σ) ≡ P(Xi = σ|Xi−1 = id). Then
the support of probability distribution P is called the generating set of the
shuffle and is denoted G. In other words, if σ ∈ G, then P (σ) 6= 0.

Thus, the generating set of a shuffle is the set of permutations (orderings)
of the deck that are reachable from an ordered deck.

Definition 2. A forward description of a shuffle is a random walk on
Sn characterized by a generating set G = {σ1, σ2, . . . , σm} and a probability
distribution P on this generating set.

This means that a forward description is simply a description of how to per-
form a shuffle. Note however that forward descriptions are not unique; several
descriptions may induce the same generating sets and probability distributions.
Definition 2 is only interesting by contrast with definition 3:

Definition 3. Continuing definition 2, let G′ = {σ−11 , σ−12 , . . . , σ−1m }, and
let P ′ be a probability distribution on G′. Then an inverse description of a
shuffle is a random walk on Sn characterized by the generating set G′ and with
the property that P (σi) = P ′(σ−1i ).

Note that G′ is well defined since Sn is a group, so σ−1i exists in Sn and is
unique if written in two-line notation. Once again, we use indefinite articles, as
inverse descriptions need not be unique.

1.2 Example: Top-to-Random

Here is a basic example. Consider the following forward description of a card
shuffle called top-to-random (TTR): take the first card on top of a deck of n
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cards and insert it uniformly randomly back inside the deck. The elements of
the generating set G are permutations of the form

σ =

(
1 2 3 · · · p− 1 p p+ 1 · · · n
2 3 4 · · · p 1 p+ 1 · · · n

)
where p indicates the position in which we have inserted the top card. The
probability distribution on this generating set is uniform: there are n possible
positions where we could place the top card, each yielding a different final
ordering, hence each element of the generating set has probability 1/n, which
we write P (σ) = 1/n for any σ ∈ G.

Now consider the following inverse description: choose a card from the deck
uniformly randomly and place it on top of the deck. Let the generating set of
this random walk be G′ and let the probability distribution be P ′. To verify
that we have indeed described an inverse description, we need to check that if
σ ∈ G, then σ−1 ∈ G′, and that P ′(σ−1) = P (σ). Inverting σ from above, we
get that

σ−1 =

(
2 3 4 · · · p 1 p+ 1 · · · n
1 2 3 · · · p− 1 p p+ 1 · · · n

)
=

(
1 2 3 4 · · · p p+ 1 · · · n
p 1 2 3 · · · p− 1 p+ 1 · · · n

)
which is exactly the type of permutations that we would get by picking a card
from the deck and putting it back on top. To compute P ′(σ−1), note that there
are n possible cards that we can pick out of the deck, and since we do this
uniformly randomly, each card is equally likely to be picked. We must put the
card back on top, so we get a different final ordering for each card we pick. This
means that P ′(σ−1) = 1/n = P (σ). Thus the second description is indeed an
inverse description of TTR.

2 k-Top-to-Random Shuffle

We now wish to generalize top-to-random shuffles to k-top-to-random shuffles
(kTTR).

2.1 Forward Descriptions

Forward Description 1. Separate the top k cards from the rest of the deck
and successively insert them uniformly randomly inside the remaining deck.
This is different from performing a top-to-random shuffle k times since we pick
the top k cards without replacement.

Let {p1, p2, . . . , pk} be the k positions, in increasing order, in which we have
inserted the k top cards, and {a1, a2, · · · , ak} = {1, 2, . . . , k} be the top k cards
in a permuted order. That is, let γ ∈ Sk be permutation of k elements and
define ai = γ(i) for 1 ≤ i ≤ k. Then ai gets moved to the pith spot (1 ≤ i ≤ k),
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Figure 1: 3TTR on 8 cards, description 1

and all unmoved cards remain in their relative order. The jth unmoved card
is the card labelled j + k, and it gets moved to position j + m where m is the
number of moved cards placed above it (for 1 ≤ j ≤ n−k). Now the card before
the ith moved card (which is in spot pi) is the (pi−1− (i−1))th unmoved card
(there are pi− 1 cards, (i− 1) of which were moved), hence the card in position
pi − 1 is the card labelled k + pi − 1 − (i − 1) = k + pi − i (so j = pi − i and
m = i − 1). The card after the ith moved card has label one more than that,
i.e. k + pi − i + 1. Therefore, the elements σ of the generating set G have the
form(

1 2 · · · p1 p1 + 1 · · · pi − 1 pi pi + 1 · · · n
k + 1 k + 2 · · · a1 k + p1 · · · k + pi − i ai k + pi + 1− i · · · n

)
.

Note that if we place two or more cards next to each other, we may get σs of
the form(

1 · · · p1 p1 + 1 · · · pi − 1 pi pi+1 pi + 2 · · · n
k + 1 · · · a1 k + p1 · · · k + pi − i ai ai+1 k + pi + 1− i · · · n

)
and so on. Since pi+1 = pi + 1, the next position is pi + 2. We work with the
former form for simplicity.

Now let P be the probability distribution overG. To compute the probability
of a given generating element, observe that the number of choices for the position
of the ith card is the number of unmoved cards plus the number of moved cards
already placed plus one, i.e. there are (n− k) + (i− 1) + 1 = n− k + i choices.
Since we insert the cards uniformly, each position has probability 1/(n− k+ i).
It follows from the independence of each insertion that

P (σ) =
1

n− k + 1
· 1

n− k + 2
· · · · · 1

n
=

1(
n
k

)
k!
.

Forward Description 2. We now introduce a different method of rein-
serting the cards into the deck. Imagine a new “empty deck:” n empty slots
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that are to be filled. Then proceed as follows: separate the top k cards from the
rest of the deck, permute them uniformly randomly, choose k empty slots from
the empty deck uniformly randomly, place the k top cards into the slots in their
permuted order, and finally place the remaining n − k cards in the remaining
slots in their same relative order.

Figure 2: 3TTR on 8 cards, description 2

The only difference here is that we specify that the k chosen cards are per-
muted uniformly randomly. The derivation of elements σ of the generating set
G is exactly the same than in forward description 1 with the addition that γ is
chosen from Sk uniformly randomly (recall that γ is defined as γ(i) = ai where
{a1, a2, . . . , ak} = {1, 2, . . . , k} are the top k cards in their permuted order). A
simple explanation of why γ is uniformly random lies in calculating P (σ). We
choose k cards independently of choosing a permutation of these k cards, so

P (σ) =
1(
n
k

) · P(γ).

If we want P (σ) to match with forward description 1, then we must have P(γ) =
1
k! . There are k! permutations of k cards, so this implies that γ is chosen
uniformly randomly from Sk.

2.2 Inverse Descriptions

This first description is closely related to forward description 2.

Inverse Description 1. Choose k cards uniformly randomly from the
deck, permute them uniformly randomly, and put them on top.

Let {p1, p2, . . . , pk} be the original positions of the k chosen cards in in-
creasing order. Now let π ∈ Sk be a uniformly randomly chosen permutation
from the symmetric group on k elements. Define ai = pπ(i) for 1 ≤ i ≤ k so
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Figure 3: 3TTR−1 on 8 cards, description 1

that {a1, a2, · · · , ak} designates the permuted order of the k chosen cards, i.e.
{a1, a2, · · · , ak} = {p1, p2, . . . , pk}. Then ai gets moved to the ith spot and all
unmoved cards remain in relative order, that is the jth unmoved cards is in
spot k + j (here 1 ≤ j ≤ n − k). If pi−1 < pi − 1 and pi + 1 < pi+1 (the
ith chosen card is surrounded by unmoved cards), the (pi − 1)th card is the
(pi − 1)− (i− 1)th unmoved card, so it is in position k + pi − i. Similarly, the
(pi+1)th card is the (pi+1− i)th unmoved card so it is in position k+pi− i+1.
If this is not the case and the adjacent previous card has been picked, then the
(pi − 1)th card is the (pi−1)th moved card, so the (pi − 2)th card is in position
k + pi − i. This generalizes to any number of adjacent cards, preceding or suc-
ceeding pi. However we will not list these scenarios for simplicity (it is easy to
apply the same method as what follows to these cases). Then the elements τ of
this description’s generating set H have the form(

1 · · · k k + 1 · · · k + p1 · · · k + pi − i k + pi − i+ 1 · · · n
a1 · · · ak 1 · · · p1 + 1 · · · pi − 1 pi + 1 · · · n

)
.

To justify calling this description the inverse of the forward descriptions which
have generating set G, we need to verify that H = G′. In other words, we need
to check that τ = σ−1 were σ ∈ G. τ−1 has the form(
a1 · · · ak 1 · · · p1 + 1 · · · pi − 1 pi + 1 · · · n
1 · · · k k + 1 · · · k + p1 · · · k + pi − i k + pi − i+ 1 · · · n

)
which is the same as(

1 · · · p1 p1 + 1 · · · pi − 1 pi pi + 1 · · · n
k + 1 · · · x1 k + p1 · · · k + pi − i xi k + pi − i+ 1 · · · n

)
where xi is the card in the pith spot, i.e. π−1(xi) = i and {x1, . . . , xk} =
{1, . . . , k}. We can identify π with γ from the forward description, thus xi =
π(i) = γ(i) = ai, from which it follows that τ−1 has the same form as σ. Thus
H = {σ−1|σ ∈ G} as desired.

Let P ′ be the probability distribution on H. We also need to verify that
P ′(σ−1) = P (σ). To compute P ′(σ−1), observe that uniformly picking k cards
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out of n is done with probability 1/
(
n
k

)
and that picking a permutation of k cards

uniformly randomly is done with probability 1
k! . These two steps are applied

independently, so:

P ′(σ−1) =
1(
n
k

) · 1

k!
=

1(
n
k

)
k!
.

Therefore P ′(σ−1) = P (σ) and we may call these descriptions inverses.

This second (equivalent) description is more closely related to forward de-
scription 1.

Inverse Description 2. Pick a card uniformly randomly from the deck
and put it on top. Do this k times, each time not picking one of the previously
moved cards.

Figure 4: 3TTR−1 on 8 cards, description 2

Let pi be the original position of the ith card we picked (for 1 ≤ i ≤ k). Then
pi is moved to spot k− i+1 and the unmoved cards retain their original relative
order, as in inverse description 1. Therefore the elements τ of this description’s
generating set H have the form(

1 · · · k k + 1 · · · k + p1 · · · k + pi − i k + pi − i+ 1 · · · n
pk · · · p1 1 · · · p1 + 1 · · · pi − 1 pi + 1 · · · n

)
where once again, we may get slightly different forms if adjacent cards are
moved.

To compare this with inverse description 1, we first observe that in this
case, the pi’s are not indexed in increasing order. In fact, if {q1, q2, . . . , qk} are
the positions in increasing order, then pi = qπ(i) where π ∈ Sk is a uniformly
randomly chosen permutation on k elements. This is due to the fact that each
card in {p1, p2, . . . , pk} is equally likely to have been the ith card chosen. To
keep notation consistent, let ai = pk−i+1. Then ai = qπ′(i) where π′ ∈ Sk is
uniformly random as well since it is the composition of π and the permutation
that reverses order. Now we can rewrite τ as(

1 · · · k k + 1 · · · k + p1 · · · k + pi − i k + pi − i+ 1 · · · n
a1 · · · ak 1 · · · p1 + 1 · · · pi − 1 pi + 1 · · · n

)
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and we see that the generating sets of inverse descriptions 1 and 2 are the same.
To compute probabilities, observe that the first card can be chosen among

n possibilities, the second among n − 1, and so on: the ith card (recall that
1 ≤ i ≤ k) can be chosen among n − i + 1 possibilities. Thus, if P ′ is the
probability distribution on H, then:

P ′(τ) =
1

n
· 1

n− 1
· · · · · 1

n− k + 1
=

1(
n
k

)
k!
.

Both inverse descriptions have the same probability distribution on the same
generating sets, so they are equivalent.

2.3 Properties of Tk

First, note that the following are equivalent notations:

1. P(Xi = σj |Xi−1 = σi) where Xi is state i of the Markov chain for kTTR

2. Tk(σi, σj) where Tk is the transition matrix of kTTR

3. [Tk]i,j

Now recall that, at the very beginning of this paper, we mentioned that
P (σ) = P(Xi = σ|Xi−1 = id) was sufficient notation (here, P is the probability
distribution on the generating set of kTTR). We will now see why.

Property 1. Tk(σi, σj) = P (σ−1i σj). In other words, the first row of the
transition matrix determines the entire matrix.

Proof. Consider [Tk]i,j = Tk(σi, σj). The trick is to relabel the cards ac-
cording to τ , which we pick to get τσi = id (there is only one such τ since
permutations are bijections). That means that τ = σ−1i . Thus, σj is rela-
belled as τσj = σ−1i σj . Then Tk(σi, σj) = Tk(id, σ−1i σj) = P (σ−1i σj). Since
P (σ−1i σj) is an entry on the first row of Tk, computing the ith row of Tk is
only a matter of relabelling the cards according to σ−1i . �

Property 2. Tk is doubly stochastic.

Proof. Let σi, σj , τ ∈ Sn. Then, by property 1, the column sums of Tk are:∑
i

Tk(σi, σj) =
∑
i

P (σ−1i σj)

=
∑
i

P ′((σ−1i σj)
−1)

=
∑
i

P ′(σ−1j σi)

=
∑
i

T′k(σj , σi)

= 1.
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the second equality holds by the definition of an inverse description and the last
equality holds because it is the row sum of an inverse description’s transition
matrix. �

Property 3. T′k = Tk
>.

Proof. Tk
> makes sense as a transition matrix since Tk is doubly stochastic.

Then,
T′k(σi, σj) = P ′(σ−1i σj)

= P ((σ−1i σj)
−1)

= P (σ−1j σi)

= Tk(σj , σi)

= Tk
>(σi, σj). �

2.4 Paths

Before we look at compositions of kTTR shuffles, we will introduce the notion
of paths.

Definition 4. Consider a composition of shuffles. That is, let P and Pi

for 1 ≤ i ≤ m be the transition matrices of shuffles with respective generating
sets G and Gi such that P =

∏m
1 Pi. A path to a given generating element σ

of G is a k-tuple (σ1, . . . , σm) where σi ∈ Gi such that
∏1
m σi = σ.

In other words, a path is a way of getting to a generating element. Note that
so far, for kTTR and kTTR−1 shuffles, paths have been indistinguishable from
generating elements since there is only one path leading to each generating
element. Indeed, in the forward description of kTTR, we are constrained to
choosing the top k cards. Thus, for any given generating element of kTTR,
there is only one permutation of these k cards and only one set of positions
where we may put them to end up with the given generating element. Similarly,
given a generating element of kTTR−1, we know which cards must be selected
from the deck to be placed on top. Then, there is a unique permutation that
will arrange them in the correct order before we place them on top. We see
that in both cases, paths correspond one-to-one with generating elements. For
that reason, we will always take kTTR and kTTR−1 shuffles as the elementary
building blocks of paths.

2.5 Commutativity of kTTR and lTTR

Let kTTR have transition matrix Tk and generating set Tk, and lTTR have
transition matrix Tl and generating set Tl. We are interested to see whether
performing kTTR followed by lTTR is different from performing lTTR first and
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then kTTR. First, a couple of remarks.

Remark 1. kTTR followed by lTTR, which we will denote (k, l)TTR, is not
the same as (k + l)TTR since the former allows replacement between the first
set of k cards and the second set of l cards while the latter does not. Indeed,
with (k, l)TTR we may end up moving less than k + l distinct cards.

Remark 2. (k, l)TTR is an example of a process where paths and generating
elements are distinguishable. For example, take (1, 2)TTR on n = 4 cards. Here,
a path is a pair (σ, τ) with σ ∈ T1 and τ ∈ T2. Now consider σ1 = τ1 = id,

σ2 = τ2 =

(
1 2 3 4
2 1 3 4

)
and

σ3 =

(
1 2 3 4
2 3 1 4

)
, τ3 =

(
1 2 3 4
3 1 2 4

)
.

It turns out that τ1σ1 = τ2σ2 = τ3σ3 = id, i.e. several paths result in the same
generating element (see figure 5 on next page).

Now let lTTR ◦ kTTR (abbreviated by (k, l)TTR) have transition matrix
Tk,l, i.e. Tk,l = TkTl, and have probability distribution Pk,l on generating set
Tk,l. Then Tk,l = Tl,k if the following to conditions hold:

1. Tk,l = Tl,k.

2. If θ ∈ Tk,l (hence θ ∈ Tl,k), then Pk,l(θ) = Pl,k(θ).

Fact 1. Tk,l =
⋃min{k,l}
m=0 Tk+l−m.

Proof. Consider θ ∈ Tk,l. A path representation of θ will indicate which
cards were moved in each kTTR and lTTR shuffle, thus we may condition on
the total number of cards moved. If m denotes the number of overlapping cards
(cards that were moved by kTTR and then again by lTTR), then k + l − m
distinct cards were moved by the path representation of θ, so θ ∈ Tk+l−m has
the form(

1 2 · · · p1 p1 + 1 · · · pi − 1 pi pi + 1 · · · n
k + 1 k + 2 · · · a1 k + p1 · · · k + pi − i ai k + pi + 1− i · · · n

)
where {a1, a2, · · · , ak} = {1, 2, . . . , k + l −m}. Note that path representations
are not unique, but that it is not a problem since the union need not be disjoint.

�

Fact 1 implies condition 1. Condition 2 requires more work. Let’s begin
with the following 4 steps. Let σ ∈ Tk and τ ∈ Tl:

(1) Pk,l(θ) =
∑

paths

Pk,l(στ) where the sum extends over the set of paths (σ, τ)

to the generating element θ.
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Figure 5: paths and generating elements are distinguishable for (k, l)TTR

(2) Pk,l(στ) =
∑
m
Pk,l(στ | m)Pk,l(m) where m is the overlap as described in

Fact 1.

(3) Pk,l(στ | m) is symmetric in k and l. The probability is calculated as
follows: choose m of the top k cards and insert them among the top l
cards (so that they will be picked again with lTTR), then place the other
k−m cards of the top k cards among the bottom n− l cards of the deck.
Next, perform the lTTR shuffle by placing the new l top cards among the
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entire deck:

Pk,l(στ | m)

=
1(
k
m

) · 1(
l
m

)
m!
· 1(

n−l
k−m

)
(k −m)!

· 1(
n
l

)
l!

=
(k −m)!m!(l −m)!m!(n− l − k +m)!(k −m)!(n− l)!l!

k!l!m!(n− l)!(k −m)!n!l!

=
(k −m)!(l −m)!m!(n− l − k +m)!

k!l!n!
.

(4) Pk,l(m) is hypergeometric, which is also symmetric in k and l. This prob-
ability is calculated as such: choose m cards out of the k that will be
moved twice, choosing the other l −m cards out of the remaining n − k,
this over the total possible choices of picking l cards out of n.

Pk,l(m) =

(
k
m

)(
n−k
l−m

)(
n
l

)
=

k!(n− k)!l!(n− l)!
m!(k −m)!(l −m)!(n− k − l +m)!n!

.

From (1) and (2), we get that Pk,l(θ) =
∑

paths

∑
m
Pk,l(στ | m)Pk,l(m). Com-

bined with (3) and (4), this tells us that Pk,l(θ) = Pl,k(θ) holds if the following
conjecture is true:

Conjecture 1. #{στ | στ ∈ Gk,l} = #{τσ | τσ ∈ Gl,k}. That is, the
number of paths to each generating element is the same in both shuffles.

3 k-Random-to-Random Shuffle

Consider the process with transition matrix Tk
>Tk, which we will denote Rk.

For this process, we perform kTTR−1 first, followed by kTTR. We call this a
k-random-to-random shuffle, or kRTR. Loosely speaking, this process takes k
cards from anywhere inside a deck of n cards and replaces them (also anywhere)
inside the deck. Here are two possible descriptions of this process.

3.1 Descriptions

Referring back to inverse description 1 and forward description 1, we see that
kRTR picks k cards uniformly randomly from the deck, permutes them, puts
them on top, and then successively inserts them back into the deck uniformly
randomly. However, permuting the cards before inserting them back is redun-
dant since we have already seen in forward description 2 of kTTR that inserting
the cards back this way gives rise to a uniformly random permutation. Thus,
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our first description is as follows:

Description 1. Pick k cards uniformly randomly, take them out of the
deck, and successively insert them back uniformly randomly one by one.

Figure 6: 3-RTR on 8 cards, description 1

If we refer back to inverse description 1 and forward description 2 instead,
and once again omit the redundant step of permutating the k cards a second
time, we get the following description:

Description 2. Pick k cards uniformly randomly, take them out of the
deck and permute them, choose k empty slots, place the k cards in the empty
slots in their permuted order, and finally place the remaining n− k cards in the
remaining slots in their same relative order.

Figure 7: 3-RTR on 8 cards, description 2

Since we use equivalent forward and inverse kTTR descriptions in each kRTR
description, these two descriptions are equivalent.
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3.2 Properties of Rk

Property 4. Rk(σi, σj) = P (σ−1i σj) i.e. the first row of Rk determines the
entire matrix.

The proof is the same as for kTTR.

Property 5. Rk is a doubly stochastic matrix.

Proof. The product of doubly stochastic matrices is doubly stochastic: let
A and B be doubly stochastic matrices, then∑

i

[AB]i,j =
∑
i

∑
x

Ai,xBx,j

=
∑
x

∑
i

Ai,xBx,j

=
∑
x

Bx,j

= 1

and similarly with column sums. Now recall that Tk is doubly stochastic, so
Tk
> is doubly stochastic. Then Rk = T′kTk = Tk

>Tk is a product of doubly
stochastic matrices, hence Rk is doubly stochastic. �

Property 6. Rk is symmetric.

Proof. Recall that T′k = Tk
>. Then,

Rk
> = (T′kTk)>

= (Tk
>Tk)>

= Tk
>(Tk

>)>

= Tk
>Tk

= T′kTk

= Rk. �

Property 7. R′k = Rk.

Proof. Intuitively, it follows from the fact that kRTR = kTTR−1 ◦ kTTR
that kRTR−1 = kRTR. More rigorously, all we need to show is that kRTR and
kRTR−1 have the same paths. We do this by finding a bijection between the
paths of both shuffles. Let σ1 and σ2 be any two generating elements of kTTR.
Then (σ−11 , σ2) is an arbitrary path of kRTR. Now the inverse function gives
us the desired correspondence: (σ−12 , (σ−11 )−1) = (σ−12 , σ1) is a valid path of
kRTR−1. �
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Property 7 implies that R′k = Rk
>, as for Tk, since Rk

> = Rk. It is also
the reason that we do not distinguish between forward and inverse descriptions
of kRTR.

3.3 Commutativity of kRTR and lRTR

Let’s recall and define some notation. Let iTTR have generating set Ti and
transition matrix Ti. Let iRTR have generating set Gi and transition matrix
Ri. Let jRTR ◦ iRTR be abbreviated by (i, j)RTR, and let its generating set
be Gi,j and transition matrix be Ri,j. Thus, Ri,j = RiRj = Ti

>TiTj
>Tj.

Finally, let Pi be the probability distribution on Gi, and Pi,j the probability
distribution on Gi,j .

Mirroring the analysis on the commutativity of kTTR and lTTR, we want
to verify the following two conditions:

1. Gk,l = Gl,k.

2. If θ ∈ Gk,l (hence θ ∈ Gl,k), then Pk,l(θ) = Pl,k(θ).

Fact 2. Gk,l =
⋃min{k,l}
m=0 Gk+l−m.

Proof. We use the same conditioning argument as for (k, l)TTR, reproduced
here: Consider θ ∈ Gk,l. A path representation of θ will indicate which cards
were moved in each kRTR and lRTR shuffle, thus we may condition on the total
number of cards moved. If m denotes the number of overlapping cards (cards
that were moved by kRTR and then again by lRTR), then k + l −m distinct
cards were moved by the path representation of θ, so θ ∈ Gk+l−m. Note that
path representations are not unique, but that it is not a problem since the union
need not be disjoint. �

Fact 2 implies condition 1. Now let σ1, σ2 ∈ Tk and τ1, τ2 ∈ Tl,

(1) Pk,l(θ) =
∑

paths

Pk,l(σ
−1
1 σ2τ

−1
1 τ2) where the sum extends over the set of

paths (σ−11 , σ2, τ
−1
1 , τ2) to the generating element θ.

(2) Pk,l(σ
−1
1 σ2τ

−1
1 τ2) =

∑
m
Pk,l(σ

−1
1 σ2τ

−1
1 τ2 | m)Pk,l(m) where m is the over-

lap as described in Fact 2.

(3) Pk,l(σ
−1
1 σ2τ

−1
1 τ2 | m) is symmetric in k and l. The probability is calcu-

lated as follows: choose k cards from the deck and reinsert them, then
choose m cards from the previous k and l−m cards from the other n− k
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and reinsert those l cards.

Pk,l(σ
−1
1 σ2τ

−1
1 τ2 | m)

=
1(
n
k

) · 1(
n
k

)
k!
· 1(

k
m

)(
n−k
l−m

) · 1(
n
l

)
l!

=
k!(n− k)!k!(n− k)!m!(k −m)!(l −m)!(n− k − l +m)!l!(n− l)!

n!n!k!k!(n− k)!n!l!

=
(n− k)!(n− l)!m!(k −m)!(l −m)!(n− k − l +m)!

n!n!n!
.

(4) Pk,l(m) is still hypergeometric, which is also symmetric in k and l. This
probability is calculated in exactly the same way as for TTR shuffles.

(1) and (2) imply that Pk,l(θ) =
∑

paths

∑
m
Pk,l(σ

−1
1 σ2τ

−1
1 τ2 | m)Pk,l(m). Thus,

Pk,l(θ) = Pl,k(θ) follows from the symmetries described in (3) and (4) and the
following conjecture:

Conjecture 2.
#{σ−11 σ2τ

−1
1 τ2 | σ−11 σ2τ

−1
1 τ2 ∈ Gk,l} = #{τ−11 τ2σ

−1
1 σ2 | τ−11 τ2σ

−1
1 σ2 ∈

Gl,k}. That is, the number of paths to each generating element is the same in
both shuffles.

With random-to-random shuffles, we may break this down further by using
the next two facts:

Fact 3. If θ ∈ Gk,l, then θ−1 ∈ Gk,l.

Proof. By fact 1, θ ∈ Gk+l−m for some m ≤ min{k, l}. Then θ = σ−11 σ2
where σ1, σ2 ∈ Tk+l−m, therefore θ−1 = σ−12 σ1 ∈ Gk+l−m ⊂ Gk,l. �

Fact 4. If θ ∈ Gk,l, then θ−1 ∈ Gl,k.

Proof. Recall that a path in lRTR ◦ kRTR can be expressed as θ =
σ−11 σ2τ

−1
1 τ2 for some σ1, σ2 ∈ Tk and τ1, τ2 ∈ Tl. It follows that θ−1 =

τ−12 τ1σ
−1
1 σ2 is an element of Gl,k. �

Thus, proving condition 2 can be reduced to finding a bijection between path
inverses in (k, l)RTR. Indeed, fact 3 gives us a bijection between the paths of θ
in Gk,l and θ−1 in Gl,k. Thus, if we could find a bijection between the paths of
θ in Gk,l and θ−1 in Gk,l, we would have a bijection between paths of θ in Gk,l
and θ in Gl,k, proving conjecture 2.

Remark 3. As a side note, “Tk, Tl
> commute ⇒ Tk

>Tk, Tl
>Tl com-

mute” is only a one way implication. For a counter example of the other direc-
tion, take k = l = 1 so that Tk and Tl are transition matrices for 1TTR. Then
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Tk
>Tk = Tl

>Tl obviously commute, but T1
>T1 moves only one card while

T1T1
> can move two cards.

3.4 Another Perspective

Fact 5. Suppose A and B are symmetric matrices. Then A and B commute
if and only if AB is symmetric.

Proof. Since A and B are symmetric, A> = A and B> = B. Then
(AB)> = B>A> = BA. Thus, AB is symmetric if A and B commute, and A
and B commute if AB is symmetric. �

This means that we could show that kRTR and lRTR commute by showing
that Rk,l is symmetric. From the same relabelling trick we used to show that
only the first row of transition matrices matters, we can get that

[Rk,l]i,j = [Rk,l]j,i

⇒ Rk,l(σi, σj) = Rk,l(σj , σi)

⇒ Rk,l(id, σ
−1
i σj) = Rk,l(id, σ

−1
j σi).

Let θ = σ−1i σj . Then θ−1 = (σ−1i σj)
−1 = σ−1j σi. Thus, finding a bijection

between inverses in the generating set of (k, l)RTR would show that Rk,l is
symmetric, hence that kRTR and lRTR commute. This is what we concluded
in the previous section.

References

[1] D. Aldous and P. Diaconis, Shuffling Cards and Stopping Times, The Amer-
ican Mathematical Monthly, Vol. 93, No. 5 (May, 1986), pp. 333-348.

[2] Daskalakis, Probability and Computation, Lecture 5, (Feb 16 2010),
http://people.csail.mit.edu/costis/6896sp11/lec5s.pdf.

18


