
Numerical Performance of Time-Frequency Transforms in Lossy
Audio Coding

Michael Olsen∗

June 7, 2015

Abstract
Time-frequency analysis and the transforms that it gives rise to play an important role in digital signal

processing. In lossy audio compression, for instance, it has been found that working in the transform
domain leads to methods that achieve a much higher level of signal compression than could be achieved
in the temporal domain. This article gives an introduction to time-frequency analysis through the basic
theory of Fourier analysis, wavelets and Gabor frames. The results of a numerical investigation into lossy
audio file compression comparing the discrete wavelet, Gabor and cosine transforms are then discussed.
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1 Introduction
In time-frequency analysis, we are primarily concerned with analyzing and manipulating signals f , where f is
some function from R→ R or from R→ C. Typically x represents time and f(x) represents a measurement
of some phenomenon occurring at time x such as the amplitude of an electrical current, the displacement of
a vibrating string or the change in air pressure caused by a sound wave propagating through the air.

Although it is not difficult to discretize an analog (continuous) signal, via sampling the signal at regular
intervals, it can be quite storage intensive. As has been shown in the Shannon-Whittaker Sampling Theorem
(see [1] Section 2.4), in order to be able to accurately recreate a discretized signal, it needs to be sampled
at twice the rate of the highest frequency component. Thus, in the case of digital audio, since the top of
the range of human hearing is around 20,000 Hz (cycles/second), an analog audio signal would need to be
sampled at least 40,000 times per second to ensure that every audible frequency component can be accurately
recreated during any subsequent reconstruction. This is one of the primary reasons that CD quality audio
has a sample rate of 44,100 Hz.

While storing 44,100 samples per second on a modern computer is totally feasible, it still adds up to
a large amount of disk space when taking into consideration a large digital audio collection. Thus, being
able to compress a digital audio file to a minimal size while still retaining a high perceptual quality becomes
quite important. Most modern lossy compression algorithms use an orthogonal time-frequency transform
such as the discrete wavelet or cosine transforms. This paper, after giving a mathematical introduction to
time-frequency analysis and a few of the main time-frequency transforms, investigates whether or not using
an over-complete frame transform of an audio file will result in time-frequency domain properties that can
be exploited and therefore lead to better file compression results.

2 Background

2.1 Fourier Series
In Fourier analysis, we are concerned with whether we can take a function f and represent it via a collection
of simpler functions. Since, from a musical point of view, many signals are periodic and repeat over some
period of fixed length a > 0, it would be desirable if we could represent a signal f as a linear combination of
sinusoidal functions. More specifically, given a signal f : R → R, with fixed period a > 0, we would like to
represent f in the form

∞∑
n=1

an sin(2πnx/a) + bn cos(2πnx/a), (2.1)

where an, bn ∈ R and x represents time. Also, using Euler’s formula e2πinx/a = cos(2πnx/a)+ i sin(2πnx/a),
we could also express this sum as

∞∑
n=1

αne
2πinx/a, (2.2)

where the coefficients αn ∈ C.
Can we represent such a function f in the form of equations 2.1 and 2.2? Furthermore, if so, which

functions f can we represent in this manner. Finally, given a series representation of such a function f , will
it actually convergence to the value of the original function for all values x?

Since the issues of convergence of Fourier series can be quite subtle due to differences between different
classes of functions and the different methods in which convergence can be considered to deal with those
classes of functions, we will approach the topic in a way that allows for convergence of a large class of
functions with respect to an integral norm. This is referred to as mean-square convergence or, more precisely,
convergence in the L2-sense.

From linear algebra, we know that in an N -dimensional vector space V , any vector v ∈ V can be
represented as a linear combination of orthogonal basis vectors {e1, . . . , eN} (see [1] Section 0.2, for further
information). Furthermore, if we have a vector space equipped with an inner product and we have an
orthonormal basis (a basis in which every basis element has unit norm) for that inner product space, then
the following property from [1] holds:
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Theorem 1. Suppose V0 is a subspace of a finite inner product space V . Suppose {e1, ..., eN}, where N is
a positive integer, is an orthonormal basis for V0, then

v =

N∑
j=1

〈v, ej〉ej . (2.3)

Proof. Since {e1, ..., eN} is an orthonormal basis for V0, for any v ∈ V0 we can write v as a linear combination
of the basis elements of V0, thus v =

∑N
j=1 αjej for some scalars αj . If we take the inner product of both

sides with a certain basis vector ek, we have

〈v, ek〉 = 〈
N∑
j=1

αjej , ek〉

=

N∑
j=1

αj〈ej , ek〉 by the linearity of the inner product

= αk〈ek, ek〉 since the eis are orthonormal
= αk.

Now, substituting our inner product expression for α back into the original expression for v gives the desired
result.

It should be noted that the preceding theorem holds in an infinite dimensional, separable Hilbert space
but the proof in that setting is more involved because one has to deal with the convergence of an infinite
summation (see [8] Section 4.4.3 for further information).

Can we find an orthonormal basis that is made up of periodic functions such as 2.1 and 2.2? As the
following theorem from [11] shows, we can get part way there since the sequence of exponentials over the
integers satisfy orthogonality relations.

Theorem 2. Given a > 0, the collection of functions of the form {e2πinx/a}n∈Z satisfy the following orthog-
onality relations ∫ a

0

e2πinx/ae−2πimx/a =

{
0 if m 6= n,

a if m = n.
(2.4)

Proof. Let a > 0, then if m = n, we have∫ a

0

e2πinx/ae−2πimx/a dx =

∫ a

0

e2πi(n−m)x/a dx

=

∫ a

0

e0 dx

=

∫ a

0

dx = a.

Otherwise, if m 6= n, letting k = n−m, we have∫ a

0

e2πinx/ae−2πimx/a dx =

∫ a

0

e2πi(n−m)x/a dx

=

∫ a

0

e2πikx/a dx

=
−ia
2πk

[
e2kπix/a

]a
0

=
−ia
2πk

(1− 1) = 0 since e2kπi = 1 for all values of k.
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Now that we have an orthogonal sequence (which can easily be made orthonormal), we need to know
if we can use this sequence as the basis of an inner product space that contains the functions that we are
interested in representing. If so, we can confidently represent any function f in that space in the form of 2.2
(or 2.1).

Luckily, such a space does exist and we define it below.

Definition 1. For an interval a ≤ t ≤ b, the space L2([a, b]) is the set of all square integrable functions
defined on [a, b]; in other words,

L2([a, b]) =

{
f : [a, b]→ C;

∫ b

a

|f(t)|2 dt <∞

}
, (2.5)

with inner product given by

〈f, g〉 =

∫ b

a

f(t)g(t) dt for f, g ∈ L2([a, b]). (2.6)

(definition from [1] pages 4-5).
Using the fact that {e2πinx/a}n∈Z satisfies the following definition from [11] (for any finite interval a > 0),

we have almost accomplished our goal.

Definition 2. A collection of functions {gn(x)}n∈N, L2 on an interval I is a (general) orthogonal system
on I provided that

a.
∫
I

gn(x)gm(x) dx = 0 if n 6= m, and

b.
∫
I

gn(x)gn(x) dx =

∫
I

|gn(x)|2 dx > 0.

The collection {gn(x)}n∈N is a (general) orthonormal system on I provided that it is an orthogonal system
on I and

a.
∫
I

gn(x)gm(x) dx = 0 if n 6= m, and

b.
∫
I

gn(x)gn(x) dx =

∫
I

|gn(x)|2 dx = 1.

We have already shown that {e2πinx/a}n∈Z satisfies the orthogonal system requirements of Definition
2. It can easily be shown that making the slight modification

{
a(−1/2)e2πinx/a

}
n∈Z yields an orthonormal

system over any finite interval of length a > 0.
Now, we just need to determine whether for any arbitrary function f ∈ L2([a, b]), we can write f in the

form given in Theorem 1. The following theorem from [11] gives us the conditions under which we can do
so but first we introduce some notation.

Definition 3. Given n ∈ N, we say that a function f(x) defined on an interval I is Cn on I if it is n-times
continuously differentiable on I. f(x) is C∞ on I if it is Cn on I for every n ∈ N.

We say that f(x) is Cnc on I if it is Cn on I and compactly supported, C0
c on I if it is C0 on I and

compactly supported, and C∞c on I if it is C∞ on I and compactly supported.

Definition 4. Given a collection of functions {gn(x)}, L2 on an interval I, the span of {gn(x)}, denoted
span{gn(x)}, is the collection of all finite linear combinations of the elements of {gn(x)}. The mean-square
closure of span{gn(x)}, denoted span{gn(x)} is defined as follows: A function f(x) ∈ span{gn(x)} if for
every ε > 0, there is a function g(x) ∈ span{gn(x)} such that ‖f − g‖2 < ε.

Definition 5. Let {gn(x)} be an orthonormal system on I. Then {gn(x)} is complete on I provided that
every function f(x) defined on I is in span{gn(x)}.

And now the theorem:
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Theorem 3. Let {gn(x)} be an orthonormal system on an interval I. Then the following are equivalent.

a. {gn(x)} is complete on I.

b. For every f(x), L2 on I,
f(x) =

∑
n∈N
〈f, gn〉gn(x) (2.7)

in L2 on I.

c. Every function f(x), C0
c on I, is in span{gn(x)}.

d. For every function f(x), C0
c on I,

‖f‖22 =

∫
I

|f(x)|2 dx =
∑
n∈N
|〈f, gn〉|2. (2.8)

Proof. See [11] pages 54 - 55.

Now, we just need to show that {e2πinx/a}n∈Z is complete. This result comes in the form of the following
theorem from [11] Section 2.3 whose proof is omitted for brevity’s sake.

Theorem 4. The trigonometric system {e2πinx/a}n∈Z is complete on any interval of length a > 0.

Thus, with a complete, orthonormal system, a function f is equal to its projection onto the inner product
space whose basis is the orthonormal system (in the L2-sense). This means that the L2-norm of f is equal
to the L2-norm of its series expansion and therefore will agree with its series expansion for all but finitely
many points x. Now, we can define the Fourier series and Fourier coefficients of a signal f .

Definition 6. Given a function f(x), L2 on [0, a], the Fourier series of f(x) is given by

f(x) =
∑
n∈N

c(n)e2πinx/a, (2.9)

where we call the set {c(n)}n∈N the Fourier coefficients of f(x).

(Definition from [11] integrating the results from above).
Since we are in an inner product space, we know from the proof of Theorem 1 that the Fourier coefficients

are given by c(n) = 〈f, e2πinx/a〉 and are thus led to the following:

Definition 7. Given a function f(x), L2 on [0, a] the Fourier coefficients of f(x) are defined by

c(n) =
1

a

∫ a

0

f(x)e−2πinx/a dx, for n ∈ Z. (2.10)

Since we have found that we can successfully represent a signal on a finite interval as a sum of sines
and cosines, it follows that if the signal is an audio signal over time, then the Fourier series of f breaks f
down into a linear combination of its frequency components and the Fourier coefficients give us the strengths
(amplitudes) of those frequency components. Thus, if we want a simple method to compress a signal, we
can find the Fourier series of that signal and then throw out any coefficients with values below a desired
threshold.

While Fourier analysis is very useful for a great many real life applications, it does have some inherent
limitations. First, since we are breaking the signal down into trigonometric components that do not have
compact support (i.e. the interval on which they are non-zero is infinite), we are only getting a picture of
what the frequency components of the signal are overall (i.e. for the entire signal). If we want to know what
the frequency composition of the signal is at a certain point in time, the Fourier series of the signal is not
going to give us the answers. One way to get around this limitation is to try and find an orthonormal system
that is made up of building blocks that do have compact support. This notion leads to the idea of wavelets.
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2.2 Wavelets
Although Fourier series are useful for many applications, sometimes we want to know about or need to work
with localized sections of a signal. For example, suppose that a signal has a spike of high frequency energy
at one or more points over an interval of interest and we would like to remove those irregularities. The
Fourier series of the signal will tell us that high frequency content exists in the signal but it will not tell us
where it exists. Therefore, if we arbitrarily remove high frequency coefficients from the Fourier series of the
signal, they will be removed from the entire signal and we may loss important high frequency content from
a different portion of the signal.

As was mentioned at the end of the previous section, the reason that Fourier series are not suited to this
task is because the basis functions do not have compact support. Since they are trigonometric functions,
they oscillate infinitely. This leads to the question of whether or not we can find basis functions with compact
support that do still satisfy the orthogonality relations that made the sequence {e2πinx/a}n∈Z so useful to
work with. The answer is yes and one such example is the Haar basis which is historically considered to be
the first orthonormal wavelet basis.

Basically, we will start with a single building block and will shift it in time and scale it in frequency to
create a family of basic building blocks with which we can work. Before defining the Haar basis, we need to
define the three fundamental operations in time-frequency analysis: translation, modulation and dilation.

Definition 8. We define the following operations on functions f : R→ C.

Translation: Taf(x) = f(x− a), a ∈ R.

Modulation: Mbf(x) = e2πibxf(x), b ∈ R.

Dilation: Drf(x) = r1/2f(rx), r > 0.

(Definition courtesy of [5].)
Regarding an audio signal, translation is an operation that shifts a signal in time, modulation shifts the

frequency of the signal and dilation either narrows or widens the signal in time. In wavelet analysis, dilation
and translation are the main time-frequency operations.

Now we can define the basic building blocks with which we will be working:

Definition 9. The Haar scaling function is defined as

φ(x) =

{
1 if 0 ≤ x < 1,

0 elsewhere.
(2.11)

(Definition courtesy of [1].)
This is clearly just the characteristic function on the interval [0, 1] otherwise known as the unit step

function. It is not very useful by itself however using the dilation and translation operations defined above
we are able to create a useful system of functions. We now give the resulting definition from [11].

Definition 10. Let φ(x) be defined as in Definition 9, and for each j, k ∈ Z, define

φj,k(x) = 2j/2φ(2jx− k) = D2JTkφ(x). (2.12)

The collection {φj,k(x)}j,k∈Z is referred to as the Haar system on R. For each j ∈ Z, the collection
{φj,k(x)}k∈Z is referred to as the system of scale j Haar scaling functions.

Now that we have a system, lets identify the space in which they operate using a definition from [1]:

Definition 11. Suppose j is any nonnegative integer. The space of step functions at level j, denoted by Vj,
is defined to be the space spanned by the set

{..., φ(2jx+ 1), φ(2jx), φ(2jx− 1), φ(2jx− 2), ...},

over the real numbers. Vj is the space of piecewise constant functions of finite support whose discontinuities
occur at k/2j for k ∈ Z.
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Thus, V0 is the family of piecewise continuous unit step functions with discontinuities at possibly integer
values and V1 is the family of piecewise continuous unit step functions with possible discontinuities at k/2 for
k ∈ Z. It also follows that V0 ⊂ V1, since φ(x) = φ(2x) + φ(2x− 1) and that argument extends inductively
to show

V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · ·

Furthermore, as the following theorem from [1] shows us, the scale j Haar scaling functions form an or-
thonormal basis of Vj .

Theorem 5. The set of functions {2j/2φ(2jx− k)} is an orthonormal basis of Vj.

Proof. In order to proof the theorem, it suffices to show that the functions {2j/2φ(2jx−k)} are orthonormal
since, by Definition 11, they clearly span Vj . Now, fix j ≥ 0 and suppose that k = m, then

〈2j/2φ(2jx− k), 2j/2φ(2jx−m)〉 = 〈2j/2φ(2jx− k), 2j/2φ(2jx− k)〉

=

∫ ∞
−∞

(
2j/2φ(2jx− k)

)2
dx

= 2j
∫ ∞
−∞

(
φ(2jx− k)

)2
dx

= 2j
∫ k+1

2j

k

2j

dx

= 2j [x]
k+1

2j

k

2j

= 1.

Otherwise, if k 6= m, then 2j/2φ(2jx − k) and 2j/2φ(2jx − m) have disjoint support, so 〈2j/2φ(2jx −
k), 2j/2φ(2jx−m)〉 = 0 and the result is proved.

Now, if we have a function that can be closely approximated by the system Vj for sufficiently large j, if
a spike occurs in our function and we would like to eliminate it, then we need a method with which we can
isolate it from the rest of the function. Thus, we would like to remove all components of width 1/2j which
means that we need to see which components can be represented as linear combinations of components of
Vj+1, Vj+2,...

We can make use of the following linear algebra concepts from [1] to move towards this goal.

Definition 12. Suppose V0 is a subspace of an inner product space V . The orthogonal complement of V0,
denoted V ⊥0 , is the set of all vectors in V that are orthogonal to V0; that is

V ⊥0 = {v ∈ V ; 〈v, w〉 = 0 for every w ∈ V0}.

Theorem 6. Suppose V0 is a finite dimensional subspace of an inner product space V . Each vector v ∈ V
can be written uniquely as v = v0 + v1, where v0 belongs to V0 and v1 belongs to V ⊥0 ; that is,

V = V0 ⊕ V ⊥0 .

Proof. See [1] page 18.

Therefore, for our space of piecewise continuous unit step functions Vj , we need to find the orthogonal
complement of Vj−1 in Vj to identify the parts of the function that can only be made from the components
of Vj . The resulting family of functions are called the Haar wavelets as the following definition and theorem
from [1] show.

Definition 13. The Haar wavelet is the function

ψ(x) = φ(2x)− φ(2x− 1). (2.13)
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Theorem 7. Let Wj be the space of functions of the form∑
k∈Z

akψ(2jx− k), ak ∈ R, (2.14)

where we assume that only a finite number of ak are nonzero. Wj is the orthogonal complement of Vj in
Vj+1 and

Vj+1 = Vj ⊕Wj .

Proof. See [1] pages 164 - 165.

Thus, we have a method for isolating spikes in a function that can be represented using the family of
unit step functions Vj . In real life though, we would like to be able to apply these techniques to real world
functions that could be smooth and continuous. As the following theorem from [1] will show, this is possible
in theory.

Theorem 8. The space L2(R) can be decomposed as an infinite orthogonal direct sum

L2(R) = V0 ⊕W0 ⊕W1 ⊕ · · · . (2.15)

In particular, each f ∈ L2(R) can be written uniquely as

f = f0 +

∞∑
j=0

wj ,

where f0 belongs to V0 and wj belongs to Wj.

Thus, for any L2 function that we would like to work with, we can approximate it arbitrarily closely using a
suitably large j. Then we can decompose it into the orthogonal direct sum given above and begin eliminating
unwanted components that meet certain criteria. With the dilation operation, this type of analysis is known
as a multi-resolution analysis because we can “zoom” in on certain features in time. Therefore, wavelets give
us a method of overcoming the lack of localization inherent in Fourier series.

Sometimes, however, a basis can be restrictive and does not give us the flexibility that we may desire.
Suppose, for example, that we are compressing a signal and then transmitting it to a destination over a
communications line. If we use either Fourier series or wavelets, we are transmitting the exact amount of
information necessary for the receiver to reconstruct the signal. What happens if one or more pieces of
data are either lost or modified during transmission? In that case, it might not even be possible for the
receiver to reconstruct the signal effectively or the signal may be incorrectly reconstructed. Thus, it might
be desirable to transmit more data than is theoretically necessary to give our transmission some redundancy
and a greater chance of being reconstructible. It is thinking along these lines that led to the idea of frames
and, in particular, Gabor frames.

2.3 Gabor Frames
Gabor systems, and more specifically Gabor frames, are an interesting class of functions generated by finding
an appropriate window function g ∈ L2(R) and then constructing a family of functions from translations
and modulations of that window function g. When an appropriate system has been created, one is then
able to analyze a signal f in terms of the time-frequency plane R2 and determine where the energy of f is
concentrated to a certain level of accuracy. Such a representation has uses in signal transmission, analysis,
de-noising and compression. Before we can discuss Gabor systems and Gabor frames however, we first need
to introduce some general frame theory.

We begin with the definition of a Hilbert space taken from [5] and then provide the general definition of
a frame given by [4]:

Definition 14. A Hilbert space H is a normed inner product space whose norm is induced by the dot product
of the space. A Hilbert space H must also be complete with respect to that induced norm.
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Definition 15. A frame for a Hilbert space H is a sequence of vectors {xi} ⊂ H for which there exist
constants 0 < A ≤ B <∞ such that, for every x ∈ H,

A‖x‖2 ≤
∑
i

|〈x, xi〉|2 ≤ B‖x‖2. (2.16)

The constants A and B are known respectively as the lower and upper frame bounds. We will often presume
without stating it that A and B are the optimal frame bounds for a frame. A frame is called a tight frame if
the optimal lower and upper frame bounds are equal and is called a Parseval frame if A = B = 1.

The following definition from [4] makes clear the relationship between frames and bases.

Definition 16. Let H have dimension n and let {xi}ki=1 be a frame for H having k elements. The redundancy
of the frame is the quantity k

n , which must be greater than or equal to 1.

Thus, if k/n = 1, we have k = n and {xi}ki=1 is a basis for H, otherwise, if k/n > 1, we have k > n and
it is clear that {xi}ki=1 is not a basis for H since it contains more vectors than the dimension of H.

Given a frame for a Hilbert space H it is natural to wonder how one can express the vectors in H in
terms of the frame elements. The answer comes from the following proposition from [4]:

Proposition 1. Let {xi}ki=1 be a frame for H. Then there exists a frame {yi}ki=1 such that every x ∈ H can
be reconstructed with the formula:

x =

k∑
i=1

〈x, yi〉xi =

k∑
i=1

〈x, xi〉yi. (2.17)

Such a frame {yi}ki=1 is called a dual frame to {xi}ki=1.

Proof. See [4] pages 100 - 102

As the preceding proposition tells us, each frame has one or more dual frames associated with it. Yet, the
problem of how to find this dual frame still remains to be answered. If we do not have a method of identifying
the dual frame corresponding to a certain frame then the reconstruction formula provided in Proposition 1
is of little practical value. In order to overcome this obstacle we need to introduce the functional operators
relating to our frame {xi}ki=1. First, we define the analysis operator (definition from [4]).

Definition 17. Let {xi}ki=1 ⊂ H. The matrix (operator) Θ : H → Ck defined by

Θx =


〈x, x1〉
〈x, x2〉

...
〈x, xk〉

 =

k∑
i=1

〈x, xi〉ei, (2.18)

is called the analysis matrix (or operator) of {xi}ki=1, where {ei}ki=1 is the standard orthonormal basis for
Ck.

This operator gives us a method for mapping vectors in H to their corresponding coefficient vectors in
Ck. Can we go in the reverse direction? The answer is yes as the following definition from [4] shows.

Definition 18. The adjoint Θ∗ of the analysis operator Θ, which will map Ck → H, is called the synthesis
operator. The operator S = ΘΘ∗ : H → H is called the frame operator.

Using properties of the frame operator S will allow us to reach our goal of definitively finding a dual
frame to any frame {xi}ki=1 and thus allow us to utilize the reconstruction formula 2.17. Lets now define a
dual frame of a frame {xi}ki=1 using the definition from [4].

Definition 19. Let {xi}ki=1 be a frame for a Hilbert space H. A sequence {yi}ki=1 in H is called a dual frame
for {xi}ki=1 if {yi}ki=1 satisfies the reconstruction formula 2.17.

If yi = S−1xi, i = 1, 2, ..., k. then it is called the canonical dual frame. If {yi}ki=1 is not the canonical
dual frame, it is called an alternate dual frame.
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It can be shown that if S is positive and invertible on H that Sx =
∑k
i=1〈x, xi〉xi for all x ∈ H (See [4]

Chapter 3.3 for further information). Then, by noting that x = S−1Sx, we get the reconstruction formula:

x = S−1Sx = S−1
k∑
i=1

〈x, xi〉xi =

k∑
i=1

〈x, S−1xi〉xi =

k∑
i=1

〈x, xi〉S−1xi (2.19)

for all x ∈ H. Therefore, for any frame {xi}ki=1 for H, we can always compute the canonical dual frame
{S−1xi}ki=1. This leads to the importance of the frame bounds A and B. As detailed in [4] (pages 107-
108), if A and B represent the optimal lower and upper frame bounds and the frame operator S, then the
eigenvalues of S, λmin and λmax are those optimal frame bounds and the quantity B/A = λmax/λmin is
called the condition number of S and gives an indication of how accurate a numerical computation of S−1
will be.

It should be noted that a majority of the general frame theory just discussed can be transferred to the
infinite dimensional setting. For a detailed exposition of these results the reader is referred to [2], Chapter
5. Now that we are equipped with some general frame theory, we are ready to move into the main topic of
this section: Gabor systems and Gabor frames. First, we will define a Gabor system using the definition
from [5].

Definition 20. A lattice Gabor system, or simply a Gabor system for short, is a sequence in L2(R) of the
form

G(g, a, b) = {e2πibnxg(x− ak)}k,n∈Z, (2.20)

where g ∈ L2(R) and a, b > 0 are fixed. We call g the generator or the atom of the system and refer to a, b
as the lattice parameters.

Now, it is clear that a Gabor system provides us with translations and modulations of some window
function g in L2(R), but that alone is not of much use. We would prefer that the sequence have some
additional properties that we could exploit, such as being a frame. As it turns out, some Gabor systems can
be frames as the following definition from [2] illustrates:

Definition 21. A Gabor frame is a frame for L2(R) of the form {MbnTakg}k,n∈Z where a, b > 0 and
g ∈ L2(R) is a fixed function.

Thus, a Gabor frame is just a Gabor system that also happens to be a frame. Now, in order to use
Gabor frames to analyze a signal, we need the explicit definition of the frame operator. We give it using the
definition from [3]

Definition 22. If G(g, a, b) is a Gabor frame, then its frame operator is

Sf =
∑∑
k,n∈Z

〈f, MbnTakg〉MbnTakg, (2.21)

for any function f ∈ L2(R).

It can be shown that the frame operator commutes with both Mbn and with Tak for k, n ∈ Z and so we
also get that S−1 commutes with Mbn and with Tak which leads to the following lemma from [5]:

Lemma 1. If G(g, a, b) is a Gabor frame for L2(R), then its canonical dual frame is G(γ, a, b) where
γ = S−1g.

Thus, we now have a formula for the inverse frame operator (from [3]):

Corollary 1. With the assumptions and results from Lemma 1, the inverse frame operator is given by

S−1f =
∑∑
k,n∈Z

〈f, MbnTakγ〉MbnTakγ. (2.22)

Thus, it is clear that for every Gabor system G(G, a, b), we can always find that canonical dual frame
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using the atom g and the inverse of the frame operator S. With wavelet frames, in contrast, it is typically
very difficult to invert the wavelet frame operator S and even when possible the resulting dual frame does
not always turn out to be a wavelet frame (The interested reader is directed to [2] Chapter 12 for further
information).

Similar to Fourier series, Gabor frames also have a series expansion and coefficient formula. They are
presented below (as taken from [3])

Proposition 2. If G(g, a, b) is a frame for L2(R), then there exists a dual window γ ∈ L2(R), such that the
dual frame G(g, a, b) is G(γ, a, b). Consequently, every f ∈ L2(R) possesses the expansions

f =
∑∑
k,n∈Z

〈f, TakMbng〉TakMbnγ =
∑∑
k,n∈Z

〈f, TakMbnγ〉TakMbng. (2.23)

It follows from the properties of inner product spaces that the Gabor coefficients of f with respect to G(g, a, b)
are given by

ckn = 〈f, TakMbng〉. (2.24)

Gabor frames give us two benefits over Fourier series and wavelets. The first being the frame property
which gives us redundancy in the signal representation yet still allows us to represent the signal as a linear
combination of frame elements. Secondly, when we represent a signal using Gabor frames, the choice lattice
parameters a and b control the size of the time-frequency lattice with the Gabor coefficients giving the
energy in each grid component. Therefore, this system is as close as we can get to localizing a signal in both
time and frequency (due to limitations imposed by the Uncertainty Principle, see [3] Chapter 2 for further
information).

3 Numerical Investigation

3.1 Audio Coding
Compression is a technique in which one tries to store a digital file with a smaller amount of data than is
already being used. There are two main compression schemes: lossless compression and lossy compression.
Lossless compression is a form of compression where the original file can still be completely recovered from
its compressed version which means that there is no loss of data. Lossless compression typically takes
advantage of statistical redundancy in a data file using an encoding scheme like Huffman coding. Contrarily,
lossy compression entails throwing out data from the original file, that is deemed to be removable, in order
to maximize space savings by getting the compressed version of the file to be as small as possible. This is,
however, a non-invertible operation and it is not possible to recover the original file from the compressed
version.

In audio file compression (more commonly called audio coding) the most common lossy file coding scheme
is the MPEG 1 Layer III (MP3) digital coding format. This audio coding scheme exploits a variety of
techniques including the use of psychoacoustic modeling to exploit masking properties of the human ear
in identifying certain transform coefficients that can be eliminated without audible loss of sound quality.
Additionally, bit allocation and entropy coding are also employed to maximize the space savings after the
inaudible coefficients have been removed.

3.2 Motivation
The purpose of this numerical investigation is to investigate three different discrete time-frequency trans-
form techniques and determine which technique yields the most suitable transform (time-frequency) domain
representation of digital music files. Suitability is determined by applying a simple lossy coding algorithm
using each transform technique and compared observed quality measurements. The investigation consisted
of transforming digital audio files from the temporal domain into the transform domain using the different
transform techniques. The controllable parameters of each transform technique were varied over a suitably
large range of values to determine the best parameter choice for each audio file and transform technique.
Next, the transform domain signals were thresholded by nullifying a certain percentage of low energy trans-
form coefficients. Then, the signal-to-noise ratio (SNR) and compression ratio of the coded audio files
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were recorded. Finally, the results of the numerical process were analyzed to determine the best transform
technique per file and overall.

3.3 Transform Types
The three transforms that were chosen for testing were the fast wavelet transform (FWT), the modified
windowed discrete cosine transform (MWDCT), and the discrete Gabor transform (DGT). These three
transforms were chosen to be able to determine if a frame-based transform (the DGT) would perform better
than basis-based transforms (the FWT and the DCT). In other words, does overcompleteness give additional
flexibility in the transform domain representation that can be exploited to achieve better compression ratios
with a higher sound quality level?

Fast Wavelet Transform: The FWT is a discrete wavelet transform that uses a filter bank approach
to reduce the computational complexity of the discrete wavelet transform. A short overview of the FWT
will be provided (the interested reader is directed to [6], chapter 7 for further detail). The FWT uses a
multi-resolution approximation procedure similar in spirit to the multi-resolution analysis presented with
the Haar wavelet in section 2.2. The algorithm uses a filter called a conjugate mirror filter which acts as
the wavelet scaling function. This scaling function is then used to construct an orthonormal wavelet basis
of L2(R). With that basis, any finite signal f ∈ L2(R) can be expanded using the basis functions. The
algorithm, commonly known as Mallat’s algorithm, is presented below (from [6]):

Theorem 9 (Mallat’s Algorithm). At the decomposition

aj+1[p] =

∞∑
n=−∞

h[n− 2p]aj [n], (3.1)

dj+1[p] =

∞∑
n=−∞

g[n− 2p]aj [n]. (3.2)

At the reconstruction,

aj [p] =

∞∑
n=−∞

h[p− 2n]aj+1[n] +

∞∑
n=−∞

g[p− 2n]dj+1[n]. (3.3)

The details of the math underlying this algorithm is beyond the scope of this article. For the interested
reader, a[n] is defined in equation 7.21 on page 306, h[n] is defined in equation 7.29 on page 309 and g[n] is
defined in equation 7.71 on page 323 of [6].

Finally, combining Mallat’s algorithm with filters h and g such that h is a bi-orthogonal low-pass filter
and g is bi-orthogonal high-pass filter, one gets the FWT which has a computational complexity of O(N)
for a signal of length N .

Modified Windowed Discrete Cosine Transform: The discrete cosine transform (DCT) is related
to the discrete Fourier transform (DFT) due to the fact that it also uses trigonometric functions as a basis.
As the name suggests, the first noticeable difference is that it only uses cosine functions. We make that
specific using the definition from [7].

Definition 23. The basis functions of the discrete cosine transform are given by

ank = c(k)

√
2

M
cos

[(
n+

1

2

)
kπ

M

]
, (3.4)

where

c(k) ≡

{
1/
√

2 if k = 0,

1 otherwise,
(3.5)

where M is the length of one block of a signal x(n) and ank is the nth sample of the kth basis function with
n, k both ranging between 0 and M − 1.
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The main difference between the DCT and the DFT is that the DCT has twice as many frequency
components as the DFT over the same period (i.e. over the interval [0, π] for a signal of periodicity π).

The modified discrete cosine transform is a discrete cosine transform that is based on a filter bank
implementation that uses an oddly-stacked filter bank (this means shifting frequency of the basis functions
defined above by π/2M where M is the number of frequency channels. This frequency shifted version of
the DCT is known as the DCT-IV). The definition of the WMDCT used in this paper’s implementation and
taken from [9] is given below:

Definition 24. With discrete signal f of length L, number of frequency channels M and number of trans-
lation coefficients N , the following holds for m = 0, ...,M − 1 and n = 0, ..., N − 1

c(m+ 1, n+ 1) =


√

2

L−1∑
l=0

f(l + 1) cos

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − nM + 1) if m+ n is even,

√
2

L−1∑
l=0

f(l + 1) sin

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − nM + 1) if m+ n is odd,

(3.6)

where g is a suitable window function.

As noted in [6], the DCT-IV has an algorithmic complexity of O(N log2(N)). It is also important to note
that the MDCT is used in the MPEG-1 Layer III (MP3) audio coding algorithm.

Discrete Gabor Transform: Given a finite discrete signal f , let M be the number of frequency channels,
a be the translation increment, and L be the length of transform performed which is the smallest integer
multiple of a and M that is larger than the length of f . With the restriction that L = Mb = Na where
a, b, N, M ∈ Z, the discrete Gabor transform is given in [9] by

c(m+ 1, n+ 1) =

L−1∑
l=0

f(l + 1)g(l − an+ 1)e−2πilm/M (3.7)

where m = 0, ...,M − 1 and n = 0, ..., N − 1 and l − an is computed modulo L. For a complex signal f ,
the DGT returns an M ×N lattice of complex time-frequency coefficients. Since the wave files used in this
investigation are real-valued, the real DGT was used which only returns non-negative frequency channels.
This results in M ′ = bM/2c + 1 frequency channels being returned. Since the DGT returns conjugate
pairs of complex-valued coefficients, the real DGT only returns the positive (a+ bi) complex coefficients of
each conjugate pair. The algorithmic complexity of the DGT is given as O(NM log2(N)) in [10] where M
and N are as defined above. Thus, if M is close to N , the DGT approaches an algorithmic complexity of
O(N2 log2(N)) which is by far the largest of the three transforms being tested.

3.4 Thresholding
Lossy compression was accomplished by thresholding small valued coefficients in the transform domain. The
thresholding technique consisted of nullifying the smallest x% of coefficients from the transform domain
representation of the signal by means of a hard thresholding algorithm provided by [9] resulting in (1− x)%
of the total coefficients being retained for x values between 0.05 and 0.95.

3.5 Implementation
Four different audio files, all around one minute in length, were chosen for testing the lossy audio coding
scheme. One was a recording of a solo violin playing an arpeggio, the next was an excerpt of a classical
symphony piece, the third an excerpt of a pop song and the final was an excerpt of a Latin percussion
ensemble.

Implementation of the numerical analysis of the lossy audio coding scheme was approached in multiple
steps:
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3.5.1 Lossy Audio Coding Algorithm

Firstly, a MatLab function called Compression.m was created. The main purpose of this script was to run
the lossy audio coding scheme, using one particular time-frequency transform, against a single audio file and
returning numerical results of the process.

As input, the script takes the audio file location, time step interval a, number of frequency channels M ,
number of filter bank iterations J , time-frequency coefficient thresholding percentage and transform type.
The transform type parameter is an integer between 1 and 3 with 1 = FWT, 2 = WMDCT and 3 = DGT.
Parameter a is only required for the DGT, parameter J is only required for the FWT and parameter M is
required for both the WMDCT and the DGT. For simplicity, the function was programmed to only accept
a mono (one channel) audio file.

For the FWT, the Daubechies db8 wavelet was used as the generating wavelet in the function as it
generates a compactly supported orthogonal family of wavelets that can be used in the Mallat algorithm
(Theorem 9). For the WMDCT, an orthonormal Wilson type window was chosen as [9] indicates that it is
an appropriate basis choice for that transform. Finally, for the DGT, a Gaussian window (φ(x) = 21/4e−πx

2

)
was chosen for the window function as it is known to minimize the Uncertainty Principle (see [3] page 53).

Regarding output, the function returns the compression ratio, the signal-to-noise ratio (see 3.5.3 for
definitions of both) and an array representing the lossy coded version of the input audio file. That array can
then be separately converted back into an audio file using MatLab’s wavwrite function.

When the function is executed, the first step is the import of the audio file into a matrix array in memory
using MatLab’s built-in wavread function. Next, if the array is 1-dimensional (a vector) and the file was
therefore monophonic, the L2-norm of the original audio file is calculated and stored. Then, the specified
time-frequency transform is performed using the relevant input parameters resulting in the creation of a
time-frequency lattice matrix (in the case of the WMDCT and DGT) or a time-frequency filter bank tree
cell array (in the case of the FWT).

The amount of time-frequency coefficients to threshold is then calculated based on the size of the time-
frequency lattice or filter bank tree and the user provided threshold percentage. The thresholding is then
performed using the largestn function from [9] which performs a hard-thresholding algorithm (see [6] for
further information about hard-thresholding). After thresholding has been performed, the number of non-
zero time-frequency coefficients is determined using the nonzeros and numel built-in MatLab functions and
then the compression ratio is calculated.

Since the real DGT returns a matrix of complex-valued coefficients whereas the FWT and WMDCT
both return real-valued coefficients, additional steps were necessary when performing the thresholding and
CR calculations for the real DGT so that the real DGT could be accurately compared to the other two
real-valued transforms. This process involved transforming the complex-valued coefficient matrix into a real-
valued coefficient matrix of twice the size which stored the real and imaginary parts of the complex-valued
coefficients separately as real numbers. The thresholding and subsequent compression ratio calculations were
then performed against this new matrix.

For the FWT, since it returns a cell array, the author found it necessary to perform additional steps to
convert the cell array into a matrix array, perform the thresholding on the matrix array and then transform
that array back into a cell array prior to performing the inverse transform. These steps were accomplished
using the built-in MatLab functions cell2mat and mat2cell.

After the compression ratio has been calculated, the function then performs the appropriate inverse
transform on the thresholded time-frequency lattice or time-frequency filterbank tree. Next, the L2-norm of
the error (the difference in sample values between the original and compressed matrix array representations
of the audio file) is calculated and from that value and the value of the L2-norm of the original signal, the
signal-to-noise ratio is computed.

Lastly, the compression ratio, signal-to-noise ratio and matrix array representation of the lossy coded
audio file is returned by the function.

*The full MatLab function listing of Compression.m is provided in A.1.
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3.5.2 Numerical Analysis Batch Processing Algorithm

In order to numerically analyze the three different transform types and determine which transform type
performed best overall against the four chosen audio files it was necessary to run each transform type against
each audio file using a wide range of parameter values. For the FWT, the number of filter bank iterations
tested are given by J = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For the WMDCT and DGT, the number of frequency
channels tested is given by M = {32, 64, 128, 256, 512, 1024}. For the DGT, the time-step increment a also
needed to be chosen. This choice, however, needed to be more judicious than that of the other parameters
as a poor choice would lead to a time-frequency lattice containing a number of coefficients far in excess of
the original number of sample values in the analyzed audio file. Such a situation would not be conducive to
audio coding where one is trying to minimize the number of retained coefficients.

Since both the FWT and WMDCT use orthogonal basis elements, the number of coefficients in the
transform domain is equal to the number of sample values in the original audio file. Due to the over-
completeness of the DGT, one can end up with more coefficients in the transform domain than original
sample values. Therefore, in order to keep the number of coefficients in the transform domain to a minimum,
an upper limit of 125% the number of samples in the audio file was set to bound the size of the time-frequency
lattice obtained from the transform. From the definition of the DGT, we have Mb = Na = L where L is the
length of the transform performed,M is the number of frequency channels, N the number of time-intervals, b
the frequency modulation amount and a the time increment. Since it is additionally required that a < M , it
was found that MN < 1.25L =⇒ M/1.25 < a. Combining this with the requirement that a < M gives the
restriction M/1.25 < a < M on the choice of time increment a. After testing the DGT using the smallest,
largest and average acceptable a values satisfying this inequality, it was found that the choice a = M − 1
yielded the best results. This makes sense when one notices that this choice of a minimizes N and thus
results in the smallest possible M ×N lattice for a particular choice of M meeting the above restrictions.

Since, for each file, the FWT would result in a 2×19×J matrix and the WMDCT and DGT would result
in a 2×19×M matrix (with 19 representing the number of threshold percentages tested and 2 representing the
signal-to-noise and compression ratios returned per threshold value and J or M value), it became necessary
to automate the process of running these numerical tests and so a MatLab script (RunCompression.m) was
written to accomplish this task.

The function of the script is relatively straightforward. First, the file paths and names of the four audio
files to be tested are stored in a cell array. A second cell array is created to store the file name without the
file type suffix from each of these file paths. The a, J, M and threshold percentage parameter value ranges
are stored in four vectors.

Next, a for loop cycles through each transform type and performs the transform against each possible
combination of relevant parameters. The results of these tests are stored in matrix arrays programmatically
named with the acronym of the transform type used and with the file name.

*The full MatLab script listing of RunCompression.m is provided in A.2.

3.5.3 Performance Measurements

The final process in the numerical analysis was to analyze the results obtained from running the MatLab
scripts and determine which transform type best implemented the lossy audio coding scheme.

Two performance measures were used to determine the best output of each transform technique and
choice of coefficients. The first was signal-to-noise ratio (SNR) which can be thought of as a measurement
of how audible the error resulting from the coefficient thresholding is in the compressed version of the file.
The SNR is given by:

SNR = 20 log10

‖s‖2
‖s− ŝ‖2

(3.8)

where ‖ · ‖2 is the L2-norm, s is the original audio file, ŝ is the compressed audio file, and s− ŝ is the error
resulting from compression. The second measurement is the compression ratio (CR) which is a measure of
how great the space savings of the coding algorithm are in comparison to the size of the original file. The
CR is defined by

CR =
total number of audio file samples

total number of non-zero transform coefficients
. (3.9)
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Now, for each audio file, transform type and threshold percentage, the best pair of SNR and CR values
per all J orM needed to be determined so that a SNR vs CR plot could be generated which would graphically
illustrate the best transform technique overall and/or which transform technique performed best for each
threshold value and each audio file.

As the SNR ratios typically varied between 30 and 300 dB and the CR varied from 1 to 20, in order
to equally weight both measurements when determining the best result per each threshold percentage, a
weighted norm needed to be used.

The process for determining the best SNR to CR value for one particular threshold value will be illustrated
for the FWT. LetX be a 2×J matrix storing all the SNR and CR values for each possible filter bank iteration
value J . Then for 1 ≤ i ≤ J , let x(i) = (x1i x2i)

ᵀ where x1i is the i-th SNR value and x2i is the i-th CR
value. Let α1 = 1/‖x1‖22 be the inverse of the square of the 2-Norm of the J SNR values and α2 = 1/‖x2‖22
be the inverse of the square of the 2-Norm of the J CR values. Now let

D =

[
α1 0
0 α2

]
(3.10)

be the weighting matrix. Then the weighted norm (W-norm) is defined as ‖x(i)‖W = ‖x(i)ᵀDx(i)‖2 and
the best result is given by max

1≤i≤J
‖x(i)‖W .

Repeating this process for all threshold percentages then leads to the final 2× 19 matrix of SNR and CR
results per file per transform type. Using these results, the best SNR vs CR function for each of the three
transform techniques per audio file was plotted. A MatLab script was created to plot, per audio file, the
best results from each of the three transform techniques. These plots follow in the next section.

4 Results
The best performance function plot for each audio file and the three transform types is shown below. The
best performance function is defined to be the highest SNR and CR overall per each threshold percentage
and transform type as was defined in section 3.5.3.
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5 Conclusion
It is clear from the plots in the preceding section that the DCT yielded the overall best performance on
all four files tested. While the energy localization property of the DGT seemed to offer promise, further
analysis into the choice of window function and lattice parameters would be required to determine whether
that potential benefit would be able to counter the effect of the larger coefficient lattice that it generates. It
is also interesting to note that the DGT behaved particularly poorly at compressing the percussion ensemble
audio file. This seems to indicate that the Gaussian window used in the analysis is not particularly well-suited
to transforming non-harmonic sounds with a widely distributed frequency spectrum.

Another point to note is that this investigation did not incorporate the use of a psycho-acoustic model
or other adaptive thresholding technique or the use of encoding to further reduce the size of the compressed
files.

Also, for this investigation, algorithmic complexity of the three transforms was not taken into consider-
ation when rating the performance of the lossy audio coding algorithm. As was noted in Section 3.3, the
DGT has the largest computational complexity of the three transform types and the FWT has the lowest
computational complexity.

Thus, taking into consideration the performance results and computation considerations, it is quite
evident why the DCT is used as the time-frequency transform in the popular MP3 lossy audio coding
algorithm. Unless further gains can be made in reducing the computational complexity of the DGT or further
maximizing the energy localization in the transform domain lattice, the DGT will remain unimplemented in
modern lossy audio coding algorithms.
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A Appendices

A.1 Contents of function Compression.m

1 function [CR, SNR, CF] = Compression( FN, a, M, J, CompPct, TType )
2 %This function runs a compression scheme that transforms a mono audio file
3 %into a time−frequency representation using one of three time−frequency
4 %transforms and then compresses the audio file by thresholding (nullifying)
5 %a certain percentage of the transform domain coefficients
6 %%%%%%%%%%%%%%%% Author: Michael Jorgen Olsen, 4/29/2015 %%%%%%%%%%%%%%%%%
7
8 %%%%%%%%%%%%%%%%%% input parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 % FN = audio file name (including path if not in the default MatLab
10 % directory)
11 % a = time increment (only for Gabor transform). Takes integer values >= 1
12 % M = number of frequency channels in T−F representation (for Gabor and
13 % WMDCT). Takes integer values >= 1
14 % J = number of filterbank iterations (only for wavelet fransform). Takes
15 % integer values >= 1
16 % CompPct = percentage of threshold coefficients to nullify. Takes values
17 % between 0 and 1)
18 % TType = transform type. 1 = FWT (fast wavelet transform), 2 = WMDCT
19 % (windowed modified discrete cosine transform), 3 = DGT (discrete
20 % Gabor transform)
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22
23 %%%%%%%%%%%%%%%%%%%%%%% output parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 % CR = compression ratio. Defined to be: (audio file length in
25 % samples)/(number of nonzero coefficients after thresholding)
26 % SNR = signal to noise ratio. Defined to be: 20log((input norm)/(error
27 % norm)
28 % CF = array storing compressed file (can use wavwrite afterwards to create
29 % an actual audio file)
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31
32 % read in audio file. y = array of sample values
33 y = wavread(FN);
34 % get length of file and number of channels. L(1) = length, L(2) = number
35 % of channels
36 L = size(y);
37
38 % only run compression algorithm on mono audio files
39 if L(2) == 1
40 % Calculate L2 norm of original signal
41 InputL2Norm = norm(y,'fro');
42
43 % Compute coefficients for the appropriate transform
44 if TType == 1
45 % set filterbank tree properties (use DB8 wavelet)
46 wtDef = {'db8',J,'dwt'};
47 % perform FWT
48 [coefs, wfInfo] = wfbt(y,wtDef);
49 elseif TType == 2
50 winLen = dwiltlength(L(1),M);
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51 % get an orthogonal window of the appropriate length
52 g = wilorth(M,winLen);
53 % perform WMDCT
54 coefs = wmdct(y,g,M);
55 elseif TType == 3
56 % perform DGT
57 complexCoefs = dgtreal(y,'gauss',a,M);
58 else
59 % notify user that they've not selected a valid transform id number
60 error('Compression:transChk','The provided transform id is not valid. Only values 1

= FWT, 2 = WMDCT and 3 = DGT are recognized.')
61 end
62
63 % if using Wavelet transform
64 if TType == 1
65 % transfer coefficients to a matrix
66 wfbtMatrix = cell2mat(coefs);
67 % store the dimensions of each cell column
68 columns = zeros(1,length(coefs));
69 for i = 1:length(coefs)
70 columns(i) = length(coefs{i});
71 end
72 % set percentage of transform coefficients to retain
73 x = floor(CompPct * length(wfbtMatrix));
74 % threshold the matrix
75 wfbtThreshMatrix = largestn(wfbtMatrix,x);
76 % transform matrix back to cell array
77 threshCoefs = mat2cell(wfbtThreshMatrix,columns,1);
78 % calculate the compression ratio
79 CR = L(1)/numel(nonzeros(wfbtThreshMatrix));
80 elseif TType == 2
81 % set percentage of transform coefficients to retain
82 x = floor(CompPct * numel(coefs));
83
84 % store the thresholded version of the T−F lattice
85 threshCoefs = largestn(coefs,x);
86
87 % calculate the compression ratio
88 CR = L(1)/numel(nonzeros(threshCoefs));
89 else
90 % set percentage of transform coefficients to retain
91 x = floor(CompPct * numel(complexCoefs));
92
93 % store the thresholded version of the T−F lattice
94 threshCoefs = largestn(complexCoefs,x);
95
96 % since the real DGT returns complex coefficients, extract the real
97 % and imaginary parts of the complex coefficients and store them
98 % all in a matrix twice the size of the complex coefficient matrix
99 coefs = zeros(2*size(threshCoefs,1),size(threshCoefs,2));
100 coefs(1:size(threshCoefs,1),:) = real(threshCoefs);
101 coefs((size(threshCoefs,1)+1):(2*size(threshCoefs,1)),:) = imag(threshCoefs);
102
103 % calculate the compression ratio based on the number of non−zero
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104 % values in the real/imag pair coefficient matrix
105 CR = L(1)/numel(nonzeros(coefs));
106 end
107
108 % Perform inverse transform to create compressed file
109 if TType == 1
110 % calculate the inverse wavelet transform
111 tmp = iwfbt(threshCoefs,wfInfo);
112 % return array of compressed file that is same length as input file
113 CF = tmp(1:L(1),1);
114 elseif TType == 2
115 % calculate the appropriate dual window
116 gd = wildual(g,M);
117 % calculate the inverse WMDCT transform
118 tmp = iwmdct(threshCoefs,gd);
119 % return array of compressed file that is same length as input file
120 CF = tmp(1:L(1),1);
121 elseif TType == 3
122 % calculate the inverse DGT transform and create return array
123 CF = idgtreal(threshCoefs,'gaussdual',a,M,L(1));
124 else
125 error('Compression:transChk','The provided transform id is not valid. Only values 1,

2, 3 are recognized.')
126 end
127
128 % calculate the residual difference between the compressed and original
129 % signals
130 ResL2Norm = norm(y−CF,'fro');
131
132 % calculate the SNR ratio of signal to noise in compressed signal
133 SNR = 20*log10(InputL2Norm/ResL2Norm);
134 else
135 % notify user that they must provide mono audio file
136 error('Compression:fileChk','The provided audio file must be mono')
137 end
138
139 end

A.2 Contents of script RunCompression.m

1 % this script runs the lossy coding algorithm contained in Compression.m
2 % against four different monophonic audio files using a broad range of
3 % parameters for each of the three different time−frequency transforms used
4 % in Compression.m. For each file and transform type, the results are
5 % output to a 3−dimension matrix array whose name includes the acronym of
6 % the transform type used and also includes the name of the audio file
7 % processed.
8
9 %%%%%%%%%%%%%%%% Author: Michael Jorgen Olsen, 4/29/2015 %%%%%%%%%%%%%%%%%
10
11 % string array of file locations to be processed
12 fNames = cell(1,4);
13 fNames{1} = 'F:\Mike\Documents\MATLAB\147_demo.wav';
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14 fNames{2} = 'F:\Mike\Downloads\SQAM_FLAC\Waves\SingleInstruments\08−Mono.wav';
15 fNames{3} = 'F:\Mike\Downloads\SQAM_FLAC\Waves\PopMusic\69−Mono.wav';
16 fNames{4} = 'F:\Mike\Downloads\SQAM_FLAC\Waves\Orchestra\65−Mono.wav';
17 % string array to hold just file names without paths
18 sfNames = cell(1,4);
19 % populate sfNames with file names
20 % will be used for naming results matrices
21 for i = 1:4
22 strTempName = fNames{i};
23 strBackSlash = strfind(strTempName,'\');
24 strEnd = strfind(strTempName,'.wav');
25 strTempName = strrep(strTempName(strBackSlash(end)+1:strEnd−1),'−','');
26 sfNames{i} = strTempName;
27 end
28
29 % parameters to be passed to Compression.m
30 % number of frequency channels (used for WMDCT and DGT)
31 M = [32 64 128 256 512 1024];
32 % time increment interval, M − 1 is best choice (used for DGT)
33 a = M − 1;
34 % number of filterbank iterations (used for FWT)
35 J = [1 2 3 4 5 6 7 8 9 10];
36 % number of threshold values (95% − 5%)
37 CRs = [0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1

0.05];
38
39 % cycle through transform types
40 for t = 3:3
41 % set parameter holding first 3 chars of output matrix name
42 if t == 1
43 strType = 'Fwt';
44 elseif t == 2
45 strType = 'Dct';
46 else
47 strType = 'Dgt';
48 end
49 % cycle through audio files
50 for k = 1:length(fNames)
51 %allocate a 3−dimensional array to hold SNR and Comp Ratio per M
52 strTempName = sfNames{k};
53 strFileName = fNames{k};
54 numChannels = length(M);
55 numIterations = length(J);
56 % create
57 if t == 1
58 str = sprintf('%sResults%s = zeros(2,%d,%d);',strType,strTempName,length(CRs),

numIterations);
59 else
60 str = sprintf('%sResults%s = zeros(2,%d,%d);',strType,strTempName,length(CRs),

numChannels);
61 end
62 eval(str);
63
64 % if FWT
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65 if t == 1
66 % run for all J values for FWT
67 for h = 1:numIterations
68 % run for all CR values
69 for i = 1:length(CRs)
70 % create dynamic cmd to run function w/correct parameters and populate
71 % correct row in correct matrix with resultant SNR and CR values
72 str = sprintf('[CompRat SigToNoise OutFile] = Compression(''%s'',%d,%d,%

d,%f,%d);',strFileName,0,0,J(h),CRs(i),t);
73 eval(str);
74 str = sprintf('%sResults%s(1,%d,%d) = CompRat;',strType,strTempName,i,h)

;
75 eval(str)
76 str = sprintf('%sResults%s(2,%d,%d) = SigToNoise;',strType,strTempName,i

,h);
77 eval(str)
78 end
79 end
80 else %if DCT or DGT
81 % run for all M values for DCT and DGT
82 for h = 1:numChannels
83 % run for all CR values
84 for i = 1:length(CRs)
85 % create dynamic cmd to run function w/correct parameters and populate
86 % correct row in correct matrix with resultant SNR and CR values
87 if t == 2
88 str = sprintf('[CompRat SigToNoise OutFile] = Compression(''%s'',%d

,%d,%d,%f,%d);',strFileName,0,M(h),0,CRs(i),t);
89 eval(str);
90 str = sprintf('%sResults%s(1,%d,%d) = CompRat;',strType,strTempName,

i,h);
91 eval(str)
92 str = sprintf('%sResults%s(2,%d,%d) = SigToNoise;',strType,

strTempName,i,h);
93 eval(str)
94 else
95 str = sprintf('[CompRat SigToNoise OutFile] = Compression(''%s'',%d

,%d,%d,%f,%d);',strFileName,a(h),M(h),0,CRs(i),t);
96 eval(str);
97 str = sprintf('%sResults%s(1,%d,%d) = CompRat;',strType,strTempName,

i,h);
98 eval(str)
99 str = sprintf('%sResults%s(2,%d,%d) = SigToNoise;',strType,

strTempName,i,h);
100 eval(str)
101 end
102 % run the compression function and populate to appropriate array and
103 % row
104 end
105 end
106 end
107 end
108 end
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