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1 Introduction

In the early 1900s, Henri Poincaré proposed a topological problem that would later be known

as the Poincaré conjecture. We usually see the standard phrasing of the conjecture as follows:

Every simply connected closed 3-manifold is homeomorphic to the 3-sphere.

By simply connected, we mean that any closed path on the manifold can be continuously

shrunk to a point, while staying in the manifold.

Later on, in the 1980s, William Thurston presented a more general problem, known as

the geometrization conjecture, which stated that any closed 3-manifold can be divided into

pieces that fall into one of eight possible geometric structures called Thurston geometries.

At around the same time, Richard Hamilton introduced Ricci flow, which was a process that

shaped the metric of a manifold. Using Ricci flow, Grigori Perelman was able to prove the

geometrization conjecture in 2003, which in turn implied the Poincaré conjecture.

In this paper, our aim is to introduce the Ricci soliton equation and study a recently

proved result by William Wylie about the fundamental group of Riemannian manifolds that

satisfy one version of the Ricci soliton equation.

2 Notation and Background

Unless otherwise stated, we will denote (M, g) to be a connected, oriented, and complete

Riemannian manifold with a positive-definite metric g. In other words,M cannot be rewrit-

ten as a union of two or more disjoint nonempty open subsets (connected), and every Cauchy

sequence onM converges to a point inM. Intuitively, the latter part means thatM is not

missing any points inside or on the boundary of M. We may also use Mn when specifying

that the manifold is n-dimensional. Let T (M) be its tangent bundle, and let TpM denote

the tangent plane to M at a point p ∈M. χ(M) will represent the space of smooth vector

fields on M. We will often use g in place of the inner product 〈 , 〉 when emphasizing the

metric. It should be noted that much of the material in this paper has been derived from

the references on the last page.

2.1 Connections

Recall that a connection ∇ : χ(M) × χ(M) → χ(M) is a bilinear map such that for all

X, Y ∈ χ(M) and for any smooth function f on M , the following two properties are satisfied:

∇fXY = f∇XY,
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2.2 Pullback and Pushforward 2 NOTATION AND BACKGROUND

∇XfY = f∇XY +X(f)Y.

∇XY is called the covariant derivative of Y in the direction of X.

From the Fundamental Theorem of Riemannian Geometry, we know that for every Rie-

mannian manifold (M, g), there exists a unique connection ∇ (called the Levi-Civita con-

nection) with the following two conditions:

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉,

∇XY −∇YX = [X, Y ].

Here, X〈Y, Z〉 signifies that we start with the inner product of two vector fields Y, Z and

then differentiate in the X direction. In addition, [ , ] represents the Lie bracket, which is

defined by [X, Y ]f = (XY − Y X)f . In general, we say that a connection is torsion-free if it

satisfies the second property.

2.2 Pullback and Pushforward

Let φ : M → N be a smooth map, and let X be a vector field on M. Then X assigns

to each point p ∈ M a tangent vector Xp ∈ Tp(M). For each point p ∈ M, we can push

forward Xp to get a vector φ∗Xp ∈ Tφ(p)N . In general, we cannot push forward X to obtain

a vector field over N because φ is not necessarily surjective or injective.

Building upon the pushforward map φ∗ : TpM→ Tφ(p)N , we arrive at a dual linear map

(φ∗)
∗ : T ∗φ(p)N → T ∗pM;

we call this the pullback of φ, and to simplify notation, we write φ∗ in place of (φ∗)
∗. Here,

T ∗pM is the dual space to TpM (we call it the cotangent space at p). Now suppose that

ω ∈ T ∗φ(p)M is a covector and we have a vector Y ∈ TpM. Then by definition,

(φ∗ω)(Y ) = ω(φ∗Y ).

In contrast to how the pushforward behaves, one can show that smooth covector fields always

pull back to smooth covector fields.

In the special case where M = N , the pushforward corresponds to a change in coordi-

nates for a vector field. The pullback would correspond to switching differentials from one

coordinate system to another by applying the chain rule (for example, when integrating in

polar vs cartesian coordinates).

2.3 First Variation of Arclength

Let γ : [a, b] → M be a piecewise smooth curve. By definition, the length of γ, denoted

L(γ), is given by

L(γ) =

∫ b

a

∥∥γ′(t)∥∥ dt.
Proposition 1: The length of γ is independent of parametrization.
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2.3 First Variation of Arclength 2 NOTATION AND BACKGROUND

Proof. Let γ be a reparametrization of γ. Then there exists a diffeomorphism α : [c, d] →
[a, b] such that γ = γ ◦α. Furthermore, assume that α is a regular curve, such that α′(t) 6= 0

for all t ∈ [c, d]. Then without loss of generality assume that α′(t) > 0 (If α′(t) < 0, then we

have two sign changes in the calculations, which cancel out). Then

L(γ) =

∫ d

c

∥∥γ′(t)∥∥ dt =

∫ d

c

∥∥∥∥ ddt(γ ◦ α)(t)

∥∥∥∥ dt
=

∫ d

c

∥∥γ′(α(t))α′(t)
∥∥ dt

=

∫ d

c

∥∥γ′(α(t))
∥∥α′(t)dt,

and using the change of variables α(t) = s (so that α′(t)dt = ds), it follows that

L(γ) =

∫ b

a

∥∥γ′(s)∥∥ ds = L(γ).

Let p, q ∈ M; if we define the distance d(p, q) between the two points to be the infimum

of the lengths of all curves from p to q, then M becomes a metric space.

Let ϕ : [a, b]× (−ε, ε)→M be smooth, for some ε > 0. Define ϕ(t, s) = γs(t), such that

ϕ
∣∣
[a,b]×{0} = γ0 : [a, b]→M;

we call ϕ a smooth variation of γ0. Let T and V be the fields of tangent vectors on [a, b]×
(−ε, ε) with respect to the first and second variables. Then

T = ϕ∗

( ∂
∂t

)
, V = ϕ∗

( ∂
∂s

)
.

Assume that γ is a smooth and
∥∥γ′(t)∥∥ 6= 0. We may also assume without loss of generality

that γ is parametrized proportional to arclength when s = 0, i.e.
∥∥γ′0(t)

∥∥ = c, a constant.

The first variation formula describes the rate of change in arclength over the family of

curves γs, where s ∈ (−ε, ε). We start with

d

ds
L(γs) =

d

ds

∫ b

a

∥∥γ′s(t)∥∥ dt =
d

ds

∫ b

a

〈γ′s(t), γ′s(t)〉1/2dt

=

∫ b

a

d

ds
〈T, T 〉1/2dt

=

∫ b

a

1

2
〈T, T 〉−1/2 · d

ds
(〈T, T 〉)dt

=
1

2

∫ b

a

‖T‖−1 · V (〈T, T 〉)dt

=

∫ b

a

‖T‖−1 · 〈∇V T, T 〉dt.
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2.4 Riemann Curvature Tensor 2 NOTATION AND BACKGROUND

Using the fact that [T, V ] = ∇TV − ∇V T = [ ∂
∂t
, ∂
∂s

]ϕ = 0 (because partial derivatives

commute), we have
d

ds
L(γs)

∣∣
s=0

=
1

c

∫ b

a

〈∇TV, T 〉dt,

where ‖T‖ = c at s = 0. By integrating the equation

∂

∂t
〈V, T 〉 = T 〈V, T 〉 = 〈∇TV, T 〉+ 〈V,∇TT 〉,

it follows that

〈V, T 〉
∣∣b
a

=

∫ b

a

〈∇TV, T 〉dt+

∫ b

a

〈V,∇TT 〉dt.

Hence, we obtain the first variation formula

d

ds
L(γs)

∣∣
s=0

=
1

c

(
〈V, T 〉

∣∣b
a
−
∫ b

a

〈V,∇TT 〉dt
)
.

Recall that intuitively, a geodesic is a curve that is locally length-minimizing. In other

words, the (covariant) derivative of the tangent vector along the curve should vanish. This

leads us to the following definition.

Definition: A geodesic on M is a curve γ(t) such that ∇γ′γ
′ = 0.

In section 2.1, we defined a connection to be a map that takes in vector fields. Since γ′

only gives a vector field along a curve, we must extend γ′ to a smooth neighborhood of γ

(the resulting vector field extension V can be arbitrary), apply the covariant derivative of V

in the direction of V , and then restrict it to the curve. In fact, the extended equation gives

values that only depend on the curve.

2.4 Riemann Curvature Tensor

Definition: The Riemann curvature tensor identifies a point p ∈ M with a trilinear map

Rm : TpM× TpM× TpM→ TpM such that if X, Y, Z are vector field extensions of vectors

x, y, z ∈ TpM, respectively, then

Rm(x, y)z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

In fact, Rm(x, y, z) does not depend on the choice of the vector field extension. By compu-

tation, Rm satisfies the First Bianchi identity :

Rm(x, y)z + Rm(y, z)x+ Rm(z, x)y = 0.

In its present form, we have defined the Riemannian curvature as a (3, 1)-tensor. We can

obtain a 4-tensor by simply writing

Rm(x, y, z, w) = g(Rm(x, y)z, w).
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2.5 Second Variation of Arclength 2 NOTATION AND BACKGROUND

A related notion is sectional curvature.

Definition: Fix p ∈M, and let P ⊂ TpM be a 2-dimensional plane with an orthonormal

basis {e1, e2}. Then we define the sectional curvature of P to be

K(P ) = g(Rm(e1, e2)e2, e1).

The brief computation below shows that K(P ) is independent of the choice of orthonormal

basis, i.e. it only depends on P ; suppose

{a1 = ce1 + de2, a2 = −de1 + ce2}

is another orthonormal basis for P , where c = cos(θ) and d = sin(θ) for some angle θ. Then

by the symmetry of Rm,

g(Rm(a1, a2)a2, a1) = g(Rm(ce1 + de2,−de1 + ce2)(−de1 + ce2), ce1 + de2)

= (c2 − (−d2))g(Rm(e1, e2)(−de1 + ce2), ce1 + de2)

= (c2 + d2)2g(Rm(e1, e2)(e2), e1)

= g(Rm(e1, e2)e2, e1)

2.5 Second Variation of Arclength

Assume that γ : [a, b]→M is a geodesic. Let ϕ : [a, b]×(−ε, ε)×(−δ, δ)→M be smooth, for

some ε, δ > 0, and define ϕ(t, v, u) = γu,v(t) such that ϕ(t, 0, 0) = γ(t) and ϕ is a 2-parameter

variation of γ. If L(γv,u) denotes the arclength of the curve that sends t 7→ ϕ(t, v, u), then

by definition

L(γv,u) =

∫ b

a

‖T‖ ds.

Assume that γ is parametrized by arclength, so that ‖γ′‖ = 1. Similar to above, let

T = ϕ∗

( ∂
∂t

)
, V = ϕ∗

( ∂
∂v

)
, U = ϕ∗

( ∂
∂u

)
be the fields of tangent vectors on [a, b]× (−ε, ε)× (−δ, δ) with respect to t, v, and u. From

the proof of the first variation formula, recall that

∂

∂v
L(γv,u) =

∫ b

a

‖T‖−1 · 〈∇TV, T 〉ds.

Differentiating both sides with respect to u, we see that

∂2

∂u∂v
L(γv,u) =

∫ b

a

∂

∂u

(
‖T‖−1 · 〈∇TV, T 〉

)
ds

=

∫ b

a

∂

∂u

(
〈T, T 〉−1/2

)
· ∂
∂u

(
〈T, T 〉

)
· 〈∇TV, T 〉

7



2.5 Second Variation of Arclength 2 NOTATION AND BACKGROUND

+‖T‖−1 · U
(
〈∇TV, T 〉

)
ds

=

∫ b

a

−〈T, T 〉−3/2 · 〈∇UT, T 〉 · 〈∇TV, T 〉

+‖T‖−1 · (〈∇U∇TV, T 〉+ 〈∇TV,∇UT 〉)ds

=

∫ b

a

−‖T‖−3 · 〈∇TU, T 〉 · 〈∇TV, T 〉

+‖T‖−1 · (〈∇U∇TV, T 〉+ 〈∇TV,∇UT 〉)ds.

We can rewrite this integral in terms of the Riemann curvature tensor using the definition

Rm(U, T )V = ∇U∇TV −∇T∇UV −∇[U,T ]V.

Using the fact that [U, T ] = 0 because the partial derivatives commute,

∂2

∂u∂v
L(γv,u) =

∫ b

a

−‖T‖−3 · 〈∇TU, T 〉 · 〈∇TV, T 〉

+‖T‖−1 · (〈Rm(U, T )V, T 〉+ 〈∇T∇UV, T 〉+ 〈∇TV,∇UT 〉)ds.

Since γ is a geodesic that is parametrized by arclength, ‖T‖
∣∣
(0,0)

= 1 and ∇TT
∣∣
(0,0)

= 0.

Hence, we arrive at the second variation formula:

∂2

∂u∂v
L(γv,u)

∣∣
(0,0)

=

∫ b

a

〈Rm(U, T )V, T 〉+ 〈∇T∇UV, T 〉+ 〈∇TV,∇UT 〉

− 〈∇TU, T 〉 · 〈∇TV, T 〉ds.

=

∫ b

a

−T 〈∇UV, T 〉 − 〈Rm(U, T )T, V 〉+ 〈∇TV,∇TU〉

− T 〈U, T 〉 · T 〈V, T 〉)ds.

= −〈∇UV, T 〉
∣∣b
a
−
∫ b

a

〈∇TV,∇TU〉ds

+

∫ b

a

〈Rm(U, T )T, V 〉 − T 〈U, T 〉 · T 〈V, T 〉ds.

Now let us define

(∇TV )⊥ = ∇TV − 〈∇TV, T 〉T

as the projection of ∇TV onto an orthonormal vector field to T .

Corollary: Fix two points p and q. Suppose we revert back to a 1-parameter family γv of

piecewise smooth paths from p to q such that γ(0) is a geodesic parametrized by arclength.

Then we can rewrite the second variation of arclength as

∂2

∂v2
L(γv)

∣∣
v=0

=

∫ b

a

(∣∣∣(∇TV )⊥
∣∣∣2 − 〈Rm(V, T )T, V 〉

)
ds. (2.1)
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2.6 Covering Maps 2 NOTATION AND BACKGROUND

2.6 Covering Maps

Let us now touch on a topic that will be used later on.

Definition: Let X, X̃ be topological spaces. A covering map π : X̃ → X must satisfy the

following properties: (1) X̃ is path connected and locally path connected, (2) π is surjective

and continuous, and (3) ∀p ∈ X, there exists a neighborhood U of p such that U is connected

and each component of π−1(U) is mapped homeomorphically onto U via π. Then we say

that U is evenly covered by π, and X̃ is a covering space of X.

Proposition: If X is a connected and locally simply connected topological space (i.e.

X admits a basis of simply connected open sets), then there exists a simply connected

topological space X̃ and a covering map π : X̃ → X; these are unique up to homeomorphism.

X̃ under this proposition is called the universal covering space of X.

Definition: A covering transformation (also known as a deck transformation) of π is a

homeomorphism ϕ : X̃ → X̃ such that π ◦ ϕ = π. The group of deck transformations of the

universal cover π is isomorphic to the fundamental group π1(X).

2.7 Fundamental Group

Definition: Let I = [0, 1] be an interval, and let X be a topological space. Two paths

f, g : I → X are said to be path homotopic (denoted f ∼ g) if they are homotopic relative

to the set {0, 1}. In other words, f ∼ g if there exists a homotopy (continuous map)

H : I × I → X such that

H(s, 0) = f(s) and H(s, 1) = g(s), ∀s ∈ I,

H(0, t) = f(0) = g(0) and H(1, t) = f(1) = g(1), ∀t ∈ I,

the second line meaning that f and g begin on the same point and end on the same point.

In fact, for any p, q ∈ X, path homotopy gives an equivalence relation on the set of all paths

from p to q. We call the equivalence class (denoted [f ]) of a path f its path class.

Suppose f, g are two paths such that f(1) = g(0). We define their composition to be the

path

(f ◦ g)(s) =

f(2s) 0 ≤ s ≤ 1/2,

g(2s− 1) 1/2 ≤ s ≤ 1.

A loop in X based at a point p ∈ X is a path f : I → X such that f(0) = f(1) = p.

Definition: The fundamental group of X based at p is the set of path classes of loops

based at p with the group operation of composition as described above. We will denote it

by π1(X, p). If X is path connected, then the fundamental groups of X based at distinct

points p 6= q are isomorphic.
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3 INTRODUCTION TO RICCI FLOW

3 Introduction to Ricci Flow

Ricci flow was first introduced in Richard Hamilton’s foundational paper, Three-manifolds

with positive Ricci curvature (1982). The idea is that Ricci flow tends to smooth out uneven

distributions by shaping the metric of a manifold. Objects become more ”round”, and the

aim is for regions of a manifold to decompose into one of the eight Thurston geometries.

3.1 Ricci Curvature

Informally speaking, the Riemann curvature tensor measures the variation between the ge-

ometry given by the Riemannian metric and the geometry of standard Euclidean space. On

the other hand, Ricci curvature takes the trace and measures the deviation between the

volume of a ball in a Riemannian manifold versus one in Euclidean space.

Definition: The Ricci tensor identifies the tangent plane TpM (for some p ∈ M) with

a symmetric bilinear map. Let {ei} be an orthonormal basis of TpM (using Einstein’s

summation convention to simplify notation). From the Riemann curvature tensor, we take

the trace of the linear map x 7→ Rm(x, y)z to get

Ric(y, z) =
∑
i

〈Rm(ei, y)z, ei〉.

In the case that y = z, given that we pick an orthonormal basis such that e1 = y, the Ricci

curvature is the sum of the sectional curvatures of planes that pass through e1 and a different

vector ei (where i 6= 1).

We will now introduce the Lie derivative, which intuitively measures how an object (a

function, a differential form, or in general a tensor) changes as it passes through some vector

field. This generalizes the idea of a directional derivative, which is only well defined in

Euclidean space.

Definition: Suppose X and W are smooth vector fields on M and ϕ(t) :M→M is a

one-parameter family of diffeomorphisms such that ϕ(0) is the identity map and

d

dt
[ϕ(t)] = X.

Then for any p ∈ M, we may define a vector (LXW )p called the Lie derivative of W with

respect to X at p, by

(LXW )p =
d

dt

∣∣∣
t=0

(ϕ∗−t)Wϕt(p),

where we pull W back to the point p using the flow ϕ of X and then differentiate.

In the case of two vector fields, say Y and Z, the Lie derivative of the metric g with

respect to a vector field X is defined as

(LXg)(Y, Z) = g(∇YX,Z) + g(Y,∇ZX).

10



3.2 Ricci Solitons 3 INTRODUCTION TO RICCI FLOW

If we choose Y = ∂
∂xi

and Z = ∂
∂xj

, where the components of the metric are written as

gij = g( ∂
∂xi
, ∂
∂xj

), then the Lie derivative can be written as

(LXg)ij = ∇iXj +∇jXi.

Furthermore, if X = ∇f is a gradient vector field, then the Lie derivative simplifies to

(L∇fg) = ∇(∇f) +∇(∇f) = 2∇2f. (3.1)

3.2 Ricci Solitons

As Hamilton had stated in 1982 in his foundational paper about Ricci flow, the process is

governed by a partial differential equation (PDE) that evolves the metric tensor:

∂

∂t
(g(t)) = −2Ricg (3.2)

with g(0) = g0, where g0 is the initial metric. From PDEs, we see that this model is very

similar to the equation
∂u

∂t
= k∆u

for heat and diffusion (where k is a proportionality constant). Because of the negative sign

in equation (3.2), we see that the metric solution shrinks in the direction of positive Ricci

curvature, and expands in the direction of negative Ricci curvature.

Definition: A solution g(t) of the Ricci flow equation on Mn is called a Ricci soliton if

there exists a positive function σ(t) (essentially a scaling factor) and a family ϕ(t) :Mn →
Mn of diffeomorphisms (time dependent) such that

g(t) = σ(t)ϕ(t)∗g(0). (3.3)

Ricci solitons can be thought of as ”fixed points” of the Ricci flow, taking into account

internal symmetries and rescalings. In other words, we can imagine a manifold with an

evolution function in the quotient space of Riemannian metrics modulo diffeomorphisms and

rescalings. We will derive the general Ricci soliton equation as follows. First, we differentiate

equation (3.3) to get

∂

∂t
(g(t)) =

∂

∂t
[σ(t)]ϕ(t)∗g(0) + σ(t) · ∂

∂t
[ϕ(t)∗g(0)].

Using the definition of the Lie derivative with X = d
dt

[ϕ(t)], substituting the Ricci flow

equation, and setting t = 0, we obtain

−2Ricg = σ′(0)g0 + σ(0)(LXg0). (3.4)

Now we can substitute σ′(0) = −λ and drop the subscripts. Through rescaling the Ricci

curvature and applying ϕ(0) as the identity diffeomorphism, it follows that

Ricg + (LXg) = λg. (3.5)

11



3.3 Gradient Ricci Solitons 4 RECENT WORK:

This gives one form of the general Ricci soliton equation. We say that g is shrinking, steady,

or expanding if λ > 0, λ = 0, or λ < 0, respectively. These names suggest exactly what we

expect from a geometric point of view. If λ > 0, then over time the metric approaches zero.

If λ = 0, then we obtain a limiting solution, as in the cigar soliton. Finally, if λ < 0, the

metric expands without bound.

3.3 Gradient Ricci Solitons

Substituting equation (3.1) into equation (3.4) without rescaling constants, we arrive at the

defining equation for a gradient Ricci soliton.

Definition: A gradient Ricci soliton (GRS) is a quadruple (Mn, g, f, λ) that satisfies the

condition

Ricg +∇2f =
λ

2
g,

with the same classification as above for λ = 1 (shrinking), λ = 0 (steady), and λ =

−1 (expanding). Note that GRS are only defined for Ricci solitons with the additional

assumption that X = ∇f is a gradient vector field.

3.4 Simple Examples of Solitons

One notable example of a steady Ricci soliton in dimension n = 2, due to Hamilton, is called

the cigar soliton Σ, where we examine R2 with the metric

gΣ =
dx2 + dy2

e4t + x2 + y2
,

which satisfies the Ricci flow equation (3.2). With the 1-parameter group of diffeomorphisms

φt : R2 → R2 defined by

φt(x, y) = (e−2tx, e−2ty),

gΣ satisfies the Ricci soliton equation (3.3), so it is an example of the steady case. The cigar

soliton is so named because it limits to a cylinder.

The easiest example to visualize is when Ricg = λ
2
g and f = 0, such that we arrive at a

shrinking GRS called the round sphere.

On Rn (for n ≥ 3), there are higher dimensional examples of steady GRS called Bryant

solitons, which are symmetric with respect to rotations. Unfortunately these are more diffi-

cult to visualize.

4 Recent Work:

In his recent paper, William Wylie proved that if a complete Riemannian manifold M
induces a vector field such that the sum of the Ricci tensor and the Lie derivative of the

12
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metric on the vector field is bounded from below by some positive multiple of the metric,

then the fundamental group of M is finite. The equation that he focused on is

Ricg + LXg ≥ λg (4.1)

for some λ > 0, which is one case of equation (3.5). As we recall, this corresponds to the

shrinking Ricci soliton. Garćıa-Ŕıo and Fernández-López have already proved this statement

under the additional assumption that ‖X‖ is bounded by showing that M is compact, and

hence has a finite fundamental group, but Wylie was able to generalize their argument to

the noncompact case.

4.1 Theorem 2 (Wylie)

IfM is a complete Riemannian manifold that satisfies equation (4.1), then the fundamental

group of M is finite.

4.2 Proofs of Intermediate Results

From this point on, assume that (M, g) is a complete Riemannian manifold.

Definition Let p ∈M, and let Br(c) denote the open ball of radius r centered at a point

c. We will define

Hp = max{0, sup{Ricy(v, v)}},

where the supremum is taken over all vectors y and v such that y ∈ B1(p) and ‖v‖ = 1.

Taking the maximum ensures that Hp ≥ 0.

Lemma 3: Let p, q ∈ M such that r = d(p, q) > 1, and let γ be the minimal geodesic

from p to q parametrized by arclength. Then∫ r

0

Ric(γ′(s), γ′(s))ds ≤ 2(n− 1) +Hp +Hq.

Proof (of Lemma 3). Let φ be a piecewise smooth function such that φ(0) = φ(r) = 0. Let

γ : [0, r]→Mn be a geodesic parametrized by arclength such thatK > 0 and Ric ≤ (n−1)K.

If {Ei}n−1
i=1 is a parallel orthonormal frame along γ (and orthonormal to T = γ′), then the

second variation of arclength equation (2.1) reduces to

0 ≤
∫ r

0

(∣∣∣(∇γ′(φEi))
⊥
∣∣∣2 − 〈Rm(φEi, γ

′)γ′, φEi〉
)
ds

for 1 ≤ i ≤ n− 1. Summing over all such i gives us

0 ≤
n−1∑
i=1

∫ r

0

(∣∣∣(∇γ′(φEi))
⊥
∣∣∣2 − 〈Rm(φEi, γ

′)γ′, φEi〉
)
ds

≤
∫ r

0

[
n−1∑
i=1

∣∣∣∣∂φ∂s
∣∣∣∣2 − (φ2

n−1∑
i=1

〈Rm(Ei, γ
′)γ′, Ei〉

)]
ds

13
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≤
∫ r

0

((n− 1)(φ′(s))2 − φ2(s)Ric(γ′(s), γ′(s)))ds. (4.2)

In particular, let

φ(s) =


s 0 ≤ s ≤ 1,

1 1 ≤ s ≤ r − 1,

r − s r − 1 ≤ s ≤ r.

Let us add

∫ r

0

Ric(γ′(s), γ′(s))ds to both sides of equation (4.3), obtaining∫ r

0

Ric(γ′(s), γ′(s))ds ≤
∫ r

0

(n− 1)(φ′(s))2ds

+

∫ r

0

(1− φ2(s))Ric(γ′(s), γ′(s))ds (4.3)

Using the fact that

φ′(s) =


1 0 ≤ s ≤ 1,

0 1 ≤ s ≤ r − 1,

−1 r − 1 ≤ s ≤ r,

we simplify the first term in the right-hand side of equation (4.3) to see that∫ r

0

(n− 1)(φ′(s))2ds =

∫ 1

0

(n− 1)ds+

∫ r

r−1

(n− 1)ds = 2(n− 1). (4.4)

Likewise, since φ(s) = 1 in the interval 1 ≤ s ≤ r−1, the second term in the right-hand side

of equation (4.3) simplifies to yield∫ r

0

(1− φ2(s))Ric(γ′(s), γ′(s))ds =

∫ 1

0

(1− φ2(s))Ric(γ′(s), γ′(s))ds

+

∫ r

r−1

(1− φ2(s))Ric(γ′(s), γ′(s))ds (4.5)

In the interval 0 ≤ s ≤ 1, we have that 0 ≤ φ(s) ≤ 1 and by definition Ric(γ′(s), γ′(s)) ≤ Hp,

so from the right-hand side of equation (4.5) it follows that∫ 1

0

(1− φ2(s))Ric(γ′(s), γ′(s))ds ≤
∫ 1

0

(1 ·Hp)ds = Hp.

Similarly, in the interval r−1 ≤ s ≤ r, we have that 0 ≤ φ(s) ≤ 1 and Ric(γ′(s), γ′(s)) ≤ Hq,

so from the right-hand side of equation (4.5) it follows that∫ r

r−1

(1− φ2(s))Ric(γ′(s), γ′(s))ds ≤
∫ r

r−1

(1 ·Hq)ds = Hq.

Piecing together these two inequalities together with equations (4.3), (4.4), and (4.5) yields∫ r

0

Ric(γ′(s), γ′(s))ds ≤ 2(n− 1) +Hp +Hq.

14
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Now our goal is to derive an upper bound on the distance d(p, q) between p and q that

depends only on ‖X‖, Hp, and Hq.

Theorem 4: For any p, q ∈M,

d(p, q) ≤ max
{

1,
1

λ

(
2(n− 1) +Hp +Hq + 2

∥∥Xp

∥∥+ 2
∥∥Xq

∥∥)}.
Proof of Theorem 4. Let us assume as before that d(p, q) > 1 and γ is the minimal geodesic

from p to q. From equation (4.1), we see that∫ r

0

Ric(γ′(s), γ′(s))ds ≥
∫ r

0

[
λg(γ′(s), γ′(s))− LXg(γ′(s), γ′(s))

]
ds

≥ λ

∫ r

0

∥∥γ′(s)∥∥ ds− ∫ r

0

[
g(∇γ′(s)X, γ

′(s)) + g(γ′(s),∇γ′(s)X)
]
ds

≥ λd(p, q)−
∫ r

0

[
2
d

ds
g(X, γ′(s))

]
ds

≥ λd(p, q)− 2
[
g(X, γ′(s))

]r
0

≥ λd(p, q)− 2gq(X, γ
′(r)) + 2gp(X, γ

′(0)). (4.6)

Using the fact that −gp(X, γ′(0)) ≤
∥∥Xp

∥∥ and gq(X, γ
′(0)) ≤

∥∥Xq

∥∥, equation (4.6) becomes∫ r

0

Ric(γ′(s), γ′(s))ds ≥ λd(p, q)− 2
∥∥Xp

∥∥− 2
∥∥Xq

∥∥ .
Recall from Lemma 3 that∫ r

0

Ric(γ′(s), γ′(s))ds ≤ 2(n− 1) +Hp +Hq,

so

2(n− 1) +Hp +Hq ≥ λd(p, q)− 2
∥∥Xp

∥∥− 2
∥∥Xq

∥∥ .
We solve for d(p, q) to get

1 < d(p, q) ≤ 1

λ

(
2(n− 1) +Hp +Hq + 2

∥∥Xp

∥∥+ 2
∥∥Xq

∥∥),
which proves Theorem 4.

4.3 Proof of Theorem 2

Proof. Let φ : M̃ → M be the covering map, where M̃ is the universal covering of M.

Then equation (4.1) holds for M̃ under the pullback metric φ∗g and pullback vector field,

X̃. Fix p̃ ∈ M̃, write φ(p̃) = p, and let h ∈ π1(M) correspond to a deck transformation on

M̃.

Since the open balls B1(p̃) and B1(h(p̃)) are isometric,

Hp̃ = Hh(p̃) and
∥∥∥X̃p̃

∥∥∥ =
∥∥∥X̃h(p̃)

∥∥∥ .
15



5 CONCLUSION

By the definition of φ, there exists a neighborhood Br(p) (without loss of generality, we can

assume that the neighborhood is an open ball of radius r > 0) such that every component

of φ−1(Br(p)) is mapped homeomorphically onto Br(p) via φ. Taking the distance between

p̃ and h(p̃) and applying Theorem 4 gives us the upper bound

d(p̃, h(p̃)) ≤ max
{

1,
1

λ

(
2(n− 1) +Hp̃ +Hh(p̃) + 2

∥∥Xp̃

∥∥+ 2
∥∥Xh(p̃)

∥∥)}.
= max

{
1,

2

λ

(
(n− 1) +Hp̃ + 2

∥∥Xp̃

∥∥)} = N (4.7)

for any h ∈ π1(M). N is independent of h, so if π1(M) were infinite, then there could only

be finitely many h ∈ π1(M) such that Br(h(p̃)) ∈ B(N+2r+1)(p̃), because of volume consider-

ations (in other words, for a given r > 0, we can only fit finitely many non-overlapping balls

of radius r into a ball of finite radius N + 2r + 1).

So there must exist h′ ∈ π1(M) such that d(p̃, h′(p̃)) ≥ N + 2r + 1; let us choose h′ such

that d(h(p̃), h′(p̃)) = 2r. From the triangle inequality, we have that

d(p̃, h′(p̃)) ≤ d(p̃, h(p̃)) + d(h(p̃), h′(p̃)),

so it follows that

d(p̃, h(p̃)) ≥ d(p̃, h′(p̃))− d(h(p̃), h′(p̃))

≥ N + 2r + 1− 2r

= N + 1,

which is a contradiction of equation (4.7). Hence, the fundamental group of M is finite,

which proves Theorem 2.

5 Conclusion

We hope that this paper provides some geometric insight into the study of Ricci solitons.

As a method begun by Richard Hamilton, Ricci flow continues to lead to areas of active

research in geometry, analysis, topology, and other related fields.
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