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Abstract

This paper compares the permutation and boo strap tests in the setting of a
two sample testing of the equality of sample mean. Since Romano[4], Bradley
and Tibshirani[2] already showed that the tests yield similar results in large
sample hypothesis testings, but few, if any, literature investigated in the small
sample cases, we will compare the permutation and bootstrap tests in the
situation of a testing of the two sample mean in relatively small samples. For
this paper, these samples will have equal size and variance. Specifically, we
will investigate the relative value of the Type I Error rates and Type II Error

rates of the permutation and bootstrap tests, and will use simulation results
to investigate the required sample size for the tests to show similar results.
We will also provide simulation results to visually understand the results
proven by Romano, Bradley and Tibshirani of the large sample testing.
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1 Introduction

1.1 Introduction to Paper

Permutation tests and bootstrap tests are two major ways of computer based
non-parametric statistical tests that could be used under much less restric-
tive conditions than traditional parametric tests. In this paper, we will use
mainly simulations to compare six tests under two di↵erent conditions. These
six tests include the permutation test, the concatenated bootstrap test, the
separated bootstrap test, and their respective studentized versions. The two
situations are Normal samples and Exponential samples of various sample
sizes. We will compare them using both the standards of Type I Error and
Power, in the context of comparing the mean of two samples. We hope this
paper will serve as a supplement of Romano’s paper in the focus on small
samples, and hope it will provide reference for selecting between the various
available permutation and bootstrap tests, and provide further understand-
ing of the permutation and bootstrap tests.

1.2 Permutation Test

Permutation Tests are usually used to test whether the two samples came
from the same distribution. They rely on the assumption that the two sam-
ples came from the identical distribution, so that when the data are per-
muted, the new samples are still assumed to have the same distribution
under the null assumption. Consider the case where we have two samples
with x1, x2, ..., xm

⇠ i.i.d. F
x

and y1, y2, ..., yn ⇠ i.i.d. F
y

, and we want to test
whether F

x

is distributed the same as F
y

. In this case, we could implement
a permutation test, with test statistics of either:

T1 = x̄� ȳ or T2 =
x̄� ȳq
S

x

2

m

+ S

y

2

n

(1)

We will call the permutation method using test statistic T1 the regular
permutation and the method using test statistic T2 the studentized permu-
tation.

To carry out the permutation methods, first use equation (1) to compute
the test statistic T 0

a

from the observed samples [1], where a=1,2. Then con-
catenate the two samples into one sample z1, z2, ...z(m+n). Next use Monte
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Carlo sampling to randomly sample B permutations from all permutations
of {1, ...,m+ n}. For each permutation b of the B permutations, let

Xb

i

= Z
b

(i) where i = 1, ...,m (2)

Y b

j

= Z
b

(j +m) where j = 1, ..., n (3)

and compute T b

a

based on equation (1).
The p-value is then given by

p� value =
#{b : T b

a

� T 0
a

}+ 1

B + 1
(4)

1.3 Concatenated Sampling Bootstrap Test

The bootstrap test has the advantage of not requiring a special symmetry
that is needed for a permutation test, which means that it could be carried
out more generally [2]. Similar to section 1.2, we will call the test using test
statistic T1 the regular concatenated sampling bootstrap and the test using
test statistic T2 the studentized concatenated sampling bootstrap.

To carry out the concatenated sampling bootstrap test, we also require
that the two samples come from the same distributions, since the sampling
will be similar to the permutation test, just with replacement. First we
compute the test statistic T 0

a

from the observed samples, where a=1,2, and
the test statistics are calculated from equation (1). Next we concatenate
the two samples into one sample z1, z2, ...z(m + n), and let this sample’s
distribution be F

z

. Then we randomly sample B samples with replacement
from F

z

. For each b of the B samples, let

Xb

i

= Z
b

(i) where i = 1, ...,m (5)

Y b

j

= Z
b

(j +m) where j = 1, ..., n (6)

and compute T b

a

based on equation (1).
The p-value is then given by equation (4) as in section 1.2.

1.4 Seperated Sampling Bootstrap Test

The seperated sampling boostrap test is usually carried out when we want
to test a hypothesis regarding the two sample means. It is preferred in
this situation of testing the equality of two sample means because it does not
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interchange samples and thus each generated sample would be representative
only of the observed sample that it came from. Thus using the seperated
sampling bootstrap test, we can avoid interchanging two samples which came
from di↵erent distributions. Again here we will call the method using test
statistic T1 as the regular seperated sampling bootstrap, and the method
using test statistic T2 as the studentized seperated sampling bootstrap.

In order to carry the seperated bootstrap test out, first we would need to
compute the test statistic T 0

a

from the observed samples based on equation
(1), where a=1,2, and then we would subtract x̄ from every x and ȳ from
every y. After removing the sample mean from both samples, we would
acquire two new samples, and two distribution functions F̂

x

and F̂
y

based on
the new sample. Then for every b = 1, 2, ..., B, we generate xb

1, x
b

2, ..., x
b

m

⇠
i.i.d. F̂

x

and yb1, y
b

2, ..., y
b

n

⇠ i.i.d. F̂
y

. Finally, for each b, we will compute the
test statistic according to equation (1) in section 1.2, and the p-value would
again be given by equation (4) in section 1.2.

1.5 Description of Paper

Although the above mentioned tests would function well with di↵erent con-
ditions, in many situations, however, it is very di�cult to know or investigate
what conditions the data actually satisfies prior to implementing the tests.
Thus in this paper, we will compare the six tests together in the situation of a
one-sided testing of the equality of the two sample means. We will be carry-
ing out simulations in R using the methods described in sections 1.2 through
1.4 and in the context of specific cases as described in the following sections.
Chapters 2-5 of this paper will be providing details about comparing the six
tests when the two samples are of equal size and has same variance, in the
context of both a Normal and a non-Normal situation. At the end, Chapter
6 will o↵er explanations of the results as well as conclusions.
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2 Comparing Type I Error in Testing the Equal-

ity of Means of Two Normal Samples

2.1 Testing H
0

: µ
x

= µ
y

vs H
1

: µ
x

> µ
y

with two Nor-
mal Distributions

Consider the case where we have two samples, x1, x2, ..., xm

⇠ i.i.d. Normal(µ
x

, �
x

2)
and y1, y2, ..., yn ⇠ i.i.d. Normal(µ

y

, �
y

2). This case could arise in many sit-
uations, for instance if we want to compare the mean of a group of students’
test scores to that of another group, or if we want to compare the mean of
the height of a certain group of people to that of another group. In any case,
we are interested in testing the following hypothesis:

H0 : µ(x) = µ(y) vs H1 : µ(x) > µ(y) (7)

The first criteria of our comparison is to see how much Type I Error each
test makes. Type I Error is the probability that we falsely rejected our null
hypothesis when it is actually true. Thus a lower Type I Error would be
desirable.

In order to investigate the Type I Error of each of the tests, we would gen-
erate two samples x1, x2, ..., xm

⇠i.i.d. Normal(µ
x

, �
x

2), and y1, y2, ..., yn ⇠i.i.d.
Normal(µ

y

, �
y

2), with µ
x

= µ
y

so that the null hypothesis is true. We will
record the density plots of the p-values of the various tests, and then record
the actual Type I Error rates with the various tests at the level of 5%.

Furthermore, since both samples came from the Normal Distribution, we
could implement the z-test, which would serve as a great reference for our
six tests.

In the circumstance described above where µ
x

= µ
y

, and the variance of

the two samples are known to be �
x

2 and �
y

2, x̄� ȳ ⇠ Normal(0, �x

2

m

+ �

y

2

n

),
so the test statistic z = x̄�ȳq

�

x

2

m

+
�

y

2

n

⇠ Normal(0, 1).

From the above result, we know that a z-test with the Z statistic provided
above could be implemented in this case with p-value equals to the area to
the right of the Z value under the Standard Normal density curve. And
specifically, in the case of a 5% test, we would reject H0 if z is � 1.645, i.e.
the 95-th percentile of the Standard Normal Distribution.

Thus, we will use the six tests, as we discussed in Chapter 1, and the
z-test, to test the above hypothesis.
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2.2 Normal Sample Type I Error

In this section we will consider the case where �
x

2 = �
y

2 = 1 and B = 10, 000.
We will vary the sample sizes from m = n = 10, to m = n = 50, to
m = n = 100, and then to m = n = 1000. The whole process is again
repeated J=5,000 times. Note that B and J are large because we want more
reliable simulation results, as few very unusual samples will not e↵ect the
result as much. We will show the p-value density plots of the four cases in
Figure 1, and provide the specific detailed values of the Type I Error rates
in Tables 1-4.
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Figure 1: Normal P-Value Density from p=0 to p=0.05 (from left to right
respectively: m = n = 10,m = n = 50,m = n = 100,m = n = 1000), with
permutation as green, studentized permutation as darkgreen, concatenated
bootstrap as red, studentized concatenated bootstrap as brown, seperated
boostrap as blue, studentized seperated bootstrap as purple, and ztest as
black
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Table 1: Type I Errors of Normal Samples, with m=n=10 and �
x

2 = �
y

2 = 1

Test Total

Trials

Number

of Re-

jections

Type I

Error

Margin of

Error

Perm.reg 5000 241 0.0482 0.005936896

Perm.stud 5000 242 0.0484 0.005948576

Boot.con.reg 5000 265 0.0530 0.006209777

Boot.con.stud 5000 241 0.0482 0.005936896

Boot.sep.reg 5000 339 0.0678 0.006968391

Boot.sep.stud 5000 234 0.0468 0.005854341

Z.test 5000 249 0.0498 0.006029555

Table 2: Type I Errors of Normal Samples, with m=n=50 and �
x

2 = �
y

2 = 1

Test Total

Trials

Number

of Re-

jections

Type I

Error

Margin of

Error

Perm.reg 5000 261 0.0522 0.006165335

Perm.stud 5000 265 0.053 0.006209777

Boot.con.reg 5000 264 0.0528 0.006198704

Boot.con.stud 5000 260 0.052 0.006154162

Boot.sep.reg 5000 275 0.055 0.006319174

Boot.sep.stud 5000 257 0.0514 0.00612049

Z.test 5000 252 0.0504 0.006063854
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Table 3: Type I Errors of Normal Samples, with m=n=100 and �
x

2 = �
y

2 =
1

Test Total

Trials

Number

of Re-

jections

Type I

Error

Margin of

Error

Perm.reg 5000 239 0.0478 0.005913453

Perm.stud 5000 240 0.048 0.005925189

Boot.con.reg 5000 245 0.049 0.005983446

Boot.con.stud 5000 239 0.0478 0.005913453

Boot.sep.reg 5000 246 0.0492 0.005995014

Boot.sep.stud 5000 241 0.0482 0.005936896

Z.test 5000 234 0.0468 0.005854341

Table 4: Type I Errors of Normal Samples, withm=n=1000 and �
x

2 = �
y

2 =
1

Test Total

Trials

Number

of Re-

jections

Type I

Error

Margin of

Error

Perm.reg 5000 250 0.05 0.006041015

Perm.stud 5000 253 0.0506 0.006075233

Boot.con.reg 5000 246 0.0492 0.005995014

Boot.con.stud 5000 253 0.0506 0.006075233

Boot.sep.reg 5000 250 0.05 0.006041015

Boot.sep.stud 5000 249 0.0498 0.006029555

Z.test 5000 249 0.0498 0.006029555
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As can be seen from Figure 1 and Tables 1-4, starting from m = n = 100,
the test results start to become extremely similar. Thus the simulation results
show that 100 is a good size to be considered large for the results of the test
to be extremely similar, given that the samples are of equal variance of 1
and equal size. It could also be noted that when the sample sizes are small,
for instance when m = n = 10, the three studentized tests have very similar
Type I Error Rates, which roughly match the curve of the z-test. For the
non-studentized versions, the seperated bootstrap test has the highest Type I
Error, followed by the concatenated bootstrap test, and then the permutation
test, although the di↵erence of the later two is not as significant.

It should come at no surprise that at the large sample case wherem = n =
1000, that all the Type I Error rates are extremely similar and stayed around
5%, as we are carrying out our tests at the 5% level, and that Romano pointed
out that the tests will have similar results in large samples [4]. Figures 2 and
3 will further illustrate this idea.
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Figure 2: Normal Sample P-Value Density Plot with m = n = 10, �
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Figure 3: Normal Sample P-Value Density Plot with m = n = 1000, �
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2 = 1
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3 Comparing Power in Testing the Equality

of Means of Two Normal Samples

3.1 Using two Normal Distributions to test H
0

: µ
x

=
µ
y

vs H
1

: µ
x

> µ
y

and compare Power by increas-
ing µ

x

In this chapter we will consider how to select from the six tests based on their
Power, i.e. their ability to reject the Null Hypothesis when it is actually false.

Let x1, x2, ..., xm

⇠ i.i.d. Normal(µ
x

, �
x

2), and let y1, y2, ..., yn ⇠ i.i.d.
Normal(µ

y

, �
y

2). To investigate the Power, i.e. to create a situtation where
the null hypothesis is false, we need to generate two samples with di↵erent
means. To achieve this goal, and w.l.o.g., assume that µ

y

= 0, and �
x

2 =
�
y

2 = 1. Then for each µ
x

= µ from 0 to 2.5, with increments of 0.1 in the
m = n = 10 case (or each µ from 0 to 0.25, with increments of 0.0125 in the
m = n = 1000 case), we will carry out all six tests to test our hypothesis.
We set B=10,000, and for each µ

x

we will do each test 1,000 times. Note
that here the Z statistic need to be adjusted accordingly to z = (x̄�ȳ)�µq

�

x

2

m

+
�

y

2

n

as the di↵erence of µ
x

� µ
y

= µ. For each µ we will record four data points,
including the 90-th, 50-th and 10-th percentiles of the p-values of our test,
as well as a power of each test in the context of a one-sided testing at the
level of 5%.

Our goal is to observe both the p-value plots and the power plots to see
if we can find any trends in them through our simulations.

3.2 P-value plots and Power plots with m = n = 10

As can be seen from Figure 5, in the case of small samples, we have very sim-
ilar power curves at the very right(i.e. when µ is larger than 2.0 in this case).
However, in the middle part of the graph, the curves di↵er from each other.
The line representing the Power of the seperated sampling bootstrap(the
blue line) runs on the top. The other lines run under it in a cluster in the
middle of the graph. This result could show that the seperated bootstrap
test has very high Power compared to the other tests in small sample testing.
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3.3 P-value plots and Power plots with m = n = 1000
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Figure 6: Normal Sample P-value Bands, withm=n=1000 and �
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When the sample size is large, as can be seen from Figures 6 and 7, the
six tests, together with the z-test, all yield similar p-value plots and power
curves. Thus Figures 6 and 7 clearly showed the result proven by Romano.
Thus we conclude that all the choices are similar in the aspect of Power when
sample sizes are large.
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4 Comparing Type I Error in Testing the Equal-

ity of Means of Two Exponential Samples

4.1 Using two Exponential Distributions to test H
0

:
µ
x

= µ
y

vs H
1

: µ
x

> µ
y

Not only can the permutation and bootstrap tests be used on Normal Sam-
ples, they could also be used on samples that are skewed and have long tails.
We will be considering the Exponential distribution here. We will again use
the six tests which we discussed in Chapter 1 to test the above hypothesis.
First, we will generate two samples, x1, x2, ..., xm

⇠i.i.d. Exponential(�)+µ,
i.e. an exponential distribution with parameter � that is shifted to the right
by µ, and y1, y2, ..., yn ⇠i.i.d. Exponential(�). Then we will use the six test
statistics to test the goal hypothesis. This case could arise in many situa-
tions, for instance if we want to compare the time it takes to cure a certain
disease for a group of patients who used a certian medicine, to the time of
another group of patients who have not used that medicine.

In order to test the Type I Error, we will set µ = 0, so that we could
gurantee that H0 is true.

4.2 Type I Error

In this section we will consider the case where � = 1 and B = 10, 000. We
will vary the sample sizes from m = n = 10, to m = n = 100, and then to
m = n = 1000 (m = n = 50 is skipped because we already found out that 50
is not quite large enough for the tests to show very similar results in section
2.2). The whole process is again repeated J=5,000 times. Note that B and
J are large because we want more reliable simulation results, as few very
unusual samples will not e↵ect the result as much. We will show the p-value
density plots of the four cases in Figure 8, and provide the specific detailed
values of the Type I Error rates in Tables 5-7.
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Figure 8: Exponential P-Value Density from p=0 to p=0.05 (from left to right
respectively, m = n = 10,m = n = 100,m = n = 1000, with permutation
as green, studentized permutation as darkgreen, concatenated bootstrap as
red, studentized concatenated bootstrap as brown, seperated boostrap as
blue, and studentized seperated bootstrap as purple)
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Table 5: Type I Errors of Exponential Samples, with m=n=10 and �
x

2 =
�
y

2 = 1

Test Total

Trials

Number

of Re-

jections

Type I

Error

Margin of

Error

Perm.reg 5000 239 0.0478 0.005913453

Perm.stud 5000 233 0.0466 0.005842431

Boot.con.reg 5000 260 0.0520 0.006154162

Boot.con.stud 5000 232 0.0464 0.005830492

Boot.sep.reg 5000 314 0.0628 0.006724485

Boot.sep.stud 5000 327 0.0654 0.006852749

Table 6: Type I Errors of Exponential Samples, with m=n=100 and �
x

2 =
�
y

2 = 1

Test Total

Trials

Number

of Re-

jections

Type I

Error

Margin of

Error

Perm.reg 5000 257 0.0514 0.00612049

Perm.stud 5000 255 0.051 0.006097914

Boot.con.reg 5000 258 0.0516 0.00613174

Boot.con.stud 5000 254 0.0508 0.006086587

Boot.sep.reg 5000 259 0.0518 0.006142964

Boot.sep.stud 5000 277 0.0554 0.006340769
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Table 7: Type I Errors of Exponential Samples, with m=n=1000 and �
x

2 =
�
y

2 = 1

Test Total

Trials

Number

of Re-

jections

Type I

Error

Margin of

Error

Perm.reg 5000 249 0.0498 0.006029555

Perm.stud 5000 243 0.0486 0.005960227

Boot.con.reg 5000 243 0.0486 0.005960227

Boot.con.stud 5000 241 0.0482 0.005936896

Boot.sep.reg 5000 247 0.0494 0.006006555

Boot.sep.stud 5000 251 0.0502 0.006052447

Here, although Tables 5-7 show that the numerical values of the Type I

Error rates tend similar when m = n = 100, Figure 8 still showed some
minor di↵erence in the p-value density curves of the tests at this sample size.
Therefore, we should conclude that the sample size for the tests to behave
similar results in this case is around or a little above m = n = 100, given
that the samples are of equal variance of 1 and equal size. It could also be
noted from Figure 8 that the studentized and non-studentized versions of the
bootstrap test have the highest Type I Error when sample sizes are small,
for instance m = n = 10.

Similar to the Normal case, when sample sizes are large, all Type I Error

rates are extremely similar and stayed around 5%, as we are carrying out our
tests at the 5% level, and that Romano pointed out that the tests will have
similar results in large samples [4]. Figures 9 and 10 will further illustrate
this idea.
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5 Comparing Power in Testing the Equality

of Means of Two Exponential Samples

5.1 Using two Exponential Distributions to test H
0

:
µ
x

= µ
y

vs H
1

: µ
x

> µ
y

and compare power by
increasing the shift µ

In this chapter we will consider how to select from the six tests based on
their Power, i.e. their ability to reject the null hypothesis when it is actually
false.

Let x1, x2, ..., xm

⇠i.i.d. Exponential(�) + µ, and y1, y2, ..., yn ⇠i.i.d.
Exponential(�). Similar to Chapter 3, for each µ from 0 to 3, with in-
crements of 0.1 when m = n = 10 (or each µ from 0 to 0.25, with increments
of 0.0125 with m = n = 1000), we will carry out all six tests to test our
hypothesis. We set B=10,000, and for each µ we will do each test 1,000
times. For each µ we will record four data points, including the 90-th, 50-th
and 10-th percentiles of the p-values of our test, as well as a power of each
test in the context of a one-sided testing at the level of 5%.

Our goal is to observe both the p-value plots and the power plots to see
if we can find any trends in them through our simulations.
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5.2 P-value plots and Power plots with m = n = 10
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As can be seen from Figure 12, in the case of small samples, we have again
very di↵erent curves in the middle. The line representing the power of the
seperated sampling bootstrap(the blue line) runs on the top. Then we have
another cluster of lines below the blue line, with the line representing the
concatenated sampling bootstrap(the red line) relatively on the top of the
cluster. The line representing the seperated studentized boostrap(the purple
line) test runs on the bottom for µ from 1.0 to 2.5.
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5.3 P-value plots and Power plots with m = n = 1000
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Similar to Section 3.3, when the sample sizes are large, the six tests all
yield similar p-value plots and power curves, as can be seen from Figure 14.
Thus Figure 14 also illustrated the result proven by Romano. Therefore we
conclude that all the choices are similar in the aspect of Power when sample
sizes are large in this Exponential sample case.
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6 Explanations and Conclusions

6.1 Explanations on the Observed Results

Consider Chapters 2 and 4, where we were interested in comparing the Type I
Error of the six tests. As pointed out by Ernest[3], Bradley and Tibshirani[2],
the permutation test is an exact test, meaning that if we set a test at ↵ level,
then the Type I Error of the permutation test is going to be less than or equal
to ↵. Thus in sections 2.2 and 4.2, we can find p-values of permutation tests,
which are carried out at the 5% level, smaller than(or approximately exactly)
0.05. Note that althought some values are larger than 5%, for instance the
0.0522 in Table 2, we have to also take into consideration the Margin of Error.
So in the case of the 0.0522 in Table 2, once we subtract the Margin of Error,
0.006, we will get a lower bound of 0.0462, which does not contradict the
idea that the permutation test is an exact test. The p-value density plots
with small sample sizes also showed a lower density for the permutation test,
which means that it rejected the least amount of times, i.e. it has the lowest
Type I Error of the tests. The bootstrap tests, on the other hand, are only
guranteed to be accurate as the sample size goes to infinity [2]. This is
why we could see such a large Type I Error in the case of the bootstrap
methods in the setting of small sample testings. When we consider the case
of large samples, on the other hand, since the distribution functions of the
permutation and bootstrap tests were uniformly close in the sense that the
supremum of their di↵erence tends to 0 as sample size gets large [4], it is not
surprising to see that in both of the large sample cases we have very similar
density curves and very similar Type I Error when the tests are carried out
at the 5% level, which illustrated Romano’s ideas.

Then we will consider Chapters 3 and 5, where we were comparing the
Power. Since we are using the same test statistic as the one we used to test
for Type I Error, analogous results from the concept of Type I Error will still
hold here[4]. Thus we could see in the small sample case that the permutation
test is still the test that rejects very conservatively, and the bootstrap tests
reject the null hypothesis more aggresively, resulting in a higher power when
the null hypothesis is actually false. Also, as before, we could observe a
huge similarity of the power curves for large samples, which again confirmed
Romano’s idea using simulations.
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6.2 Conclusions

We can conclude from the above simulation results that when we are compar-
ing small samples of same size and equal variances, the seperated bootstrap
test has the highest Type I Error rate and Power, the concatenated bootstrap
test, although similar to the remaining tests, have a relatively high Type I

Error rate and Power. The other tests behave similarly from the simulation
results.

We could also conclude that starting at the sample size of 100 when the
samples are of equal variance of 1 and equal sample size, the choice of the
test would not make much di↵erence.
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