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1 Introduction

A random matrix is simply a matrix, all of whose entries are random.

This means that X is an n ⇥ n matrix with entries Xij (1  i, j  n) that

are random variables.

The eigenvalues of symmetric matrices with random independent entries

are well-understood.

In the 1950s, Wigner’s semicircle law was first observed by Eugene Wigner

[4].

Definition 1. Let {Yi,j}1ij and we assume

• {Yi,j}1ij are independent

• The diagonal entries {Yi,}1i are identically-distributed, and the o↵-

diagonal entries {Yi,j}1<i<j are identically-distributed.

• E[Y 2
ij] < 1 for all i, j

Let

[Yn]ij =

8
<

:
Yij, i  j

Yji, i > j

With E[Y 2
12] > 0, then the matrices Xn = n�1/2

Yn are Wigner matrices.

No matter what distribution the entries of Wigner matrix have, the den-

sity of eigenvalues converges to a universal distribution, known as Wigner’s

semicircle law:

�t(dx) =
1

2⇡t

p
(4t� x2)+dx

Figure 1: The density of eigenvalues of an instance of X4000, a Gaussian
Wigner matrix.
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However, when the entries of the random matrix are correlated, few things

are well-understood by now. Therefore, in this paper, our aim is to study the

empirical eigenvalue distribution of square random models with some struc-

tured correlations. To be more specific, we study the eigenvalue distribution

of band matrices whose bands on diagonals are independent of each other,

but the identically distributed entries along each band are correlated.

The asymptotic empirical eigenvalue distribution can be understood by

considering the limits of the matrix moments in expectation:

lim
n!1

1

n
ETr[Xk]

where k 2 N.
Why do these matrix moments relate to the eigenvalue distribution? First,

we need to understand what a histogram is.

There are some data points �1,�2, . . . ,�n. These data points need to be

put into some “bins” or intervals, and the number of the points in each bin

should be counted so that we could know the heights of the bins.

For example, in the interval [a, b], we need to count

# {j 2 {1, . . . , n} : �j 2 [a, b]}

We can use the indicator function 1[a,b]. It is defined by

1[a,b](x) =

8
<

:
1, if a  x  b

0, otherwise

To get the desired count, we need to add all indicator functions up as

follows:

# {j 2 {1, . . . , n} : �j 2 [a, b]} = 1[a,b](�1) + 1[a,b](�2) + · · ·+ 1[a,b](�n)

Now, we have the height of interval [a, b]. To get the whole histogram, we

should compute the random variables:

C[a,b] :=
nX

j=1

1[a,b](�j)

for all a, b. Since the �j are eigenvalues of a random matrix, it is very hard

to compute them exactly. Therefore, we approximate the function C[a,b] by

a sequence of polynomials Pm. As the degree of polynomials becomes higher

and higher, we can find a sequence of polynomials with Pm(x) ! 1[a,b](x) for

every x.
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Then, we have

C[a,b] :=
nX

j=1

1[a,b](�j) = lim
m!1

nX

j=1

Pm(�j)

To get C[a,b], we need to compte

nX

j=1

P (�j)

for every polynomial P (x) = a0+a1x+a2x
2+· · ·+akx

k for some real numbers

a0, a1, . . . , ak. Then

nX

j=1

P (�j) =
nX

j=1

(a0 + a1�j + a2�j
2 + · · ·+ ak�j

k)

= na0 + a1

nX

j=1

�j + a2

nX

j=1

�2
j + · · ·+ ak

nX

j=1

�k
j

So we need to know
nX

j=1

�k
j

for each moment k.

Now, we have X, a n ⇥ n symmetric random matrix. It is orthogonally

diagonalizable:

X = QDQ�1

where Q is the eigenvector matrix and D is diagonal with the eigenvalues on

the diagonal:

D =

2

6664

�1 0 . . . 0

0 �2 . . . 0

0 0 . . . 0

0 0 . . . �n

3

7775

Then,

Xk = QDkQ�1 = Q

2

6664

�k
1 0 . . . 0

0 �k
2 . . . 0

0 0 . . . 0

0 0 . . . �k
n

3

7775
Q�1

And thus,

Tr(Xk) = Tr(QDkQ�1) = Tr(Q�1QDk) = Tr(Dk)
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since Tr(AB) = Tr(BA) in general. Hence,

Tr(Xk) = Tr

2

6664

�k
1 0 . . . 0

0 �k
2 . . . 0

0 0 . . . 0

0 0 . . . �k
n

3

7775
=

nX

j=1

�k
j

Therefore, if we know the matrix moments:

Tr(Xk)

for each integer k, then we know the quantities
Pn

j=1 �
k
j , so we know all quan-

tities
Pn

j=1 P (�j) for polynomials P . Then we are able to approximate the

height of each bin or interval [a,b] as closely as we need.

SinceX is a random matrix with random variables as entries in our model,

we cannot compute Tr(Xk) exactly. However,

ETr[Xk]

can be computed exactly in our model. Then we can prove that Var(Tr(Xk))

is small as matrix size n ! 1. The variance calculation is done in the paper

[2]. So we really do know the limit shape of the histogram by computing

1

n
ETr[Xk]

after normalization.

We know that

Tr(Xk) =
nX

i1,i2,i3,...,ik=1

Xi1i2Xi2i3Xi3i4 . . . Xiki1 (1)

take expectation of both sides of equation (1), then

ETr(Xk) =
nX

i1,i2,i3,...,ik=1

E[Xi1i2Xi2i3Xi3i4 . . . Xiki1] (2)

In this paper, we will first define the maximally correlated band ran-

dom matrix which we work on, and then give the proof that the limits of

this matrix moments in expectation are the moments of Gaussian.
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2 Notation and Background

2.1 Band Matrix

In order to guarantee that the matrix has real eigenvalues, we will make

the assumption that X is a symmetric n ⇥ n matrix, i.e. Xij = Xji, where

1  i, j  n. Let [Ym] be a sequence of random variables, where 0  m 
n� 1.

Definition 2. Define a n⇥ n matrix with entries

Xi,i+m = Xi,i�m =
1p
n
Ym

as a random band matrix, which have the following form:

2

666666664

X1,1 X1,2 . . . . . . . . . X1,n

X1,2 X2,2 . . . . . . . . . X2,n

. . . . . . . . . . . . Xi,i+m . . .
...

...
...

...
...

...

. . . . . . Xi,i+m . . . . . . . . .

X1,n X2,n . . . . . . . . . Xn,n

3

777777775

is equivalent to

1p
n

2

666666664

Y0 Y1 . . . . . . . . . Yn�1

Y1 Y0 . . . . . . Ym Yn�2

. . . . . . . . . . . . . . . . . .
...

...
...

...
...

. . . Ym . . . . . . . . . . . .

Yn�1 Yn�2 . . . . . . . . . Y0

3

777777775

We call this matrix: maximally correlated band matrix.

The maximally correlated band matrix is given the following assumptions:

• Entries Ym are independent of each other.

• Entries Ym on the diagonals are identically-distributed standard normal

random variables.

2.2 Wick’s Theorem

To calculate the limiting matrix moments in expectation, we apply Wick’s

Theorem.
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Wick’s theorem is a method of reducing high-order moments to combina-

tional expressions involving only covariances of Gaussian random variables.

It is used for the formula expressing the higher moments of a Gaussian dis-

tribution in terms of the second moments.

Definition 3. Define P2(2k) as all pairings of {1, 2, ..., 2k}. Let ⇡ be one of

the 2k integers’ possible pairings in P2,

⇡ = {{↵1, �1} , {↵2, �2} , . . . , {↵k, �k}}

Note that

# {P2(2k)} = (2k � 1)!! = (2k � 1)(2k � 3)(2k � 5) . . . (5)(3)(1)

Theorem 1. Wick’s Theorem

Let X1, X2, . . . , X2k be jointly independent normal random variables. Then

E[X1X2 . . . X2k] =
X

⇡2P2(2k)

Y

{↵,�}2⇡

E[X↵X�]

Example 2.1. when k = 4, i1, i2, i3, i4 2 {1, n} and Xij are the entries of a

matrix, then according to equation (2):

ETr(X4) =
nX

i1,i2,i3,i4

E[Xi1i2Xi2i3Xi3i4Xi4i1]

where by Wick’s theorem

E[Xi1i2Xi2i3Xi3i4Xi4i1]

= E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] + E[Xi1i2Xi3i4]E[Xi2i3Xi4i1] + E[Xi1i2Xi4i1]E[Xi2i3Xi3i4]

(3)

Three pairings of four variables can be expressed graphically.

Xi1i2
Xi2i3

Xi3i4
Xi4i1

Xi1i2
Xi2i3

Xi3i4
Xi4i1

Xi1i2
Xi2i3

Xi3i4
Xi4i1
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In conclusiion, by Wick’s Theorem, we can express the convergence of

matrix moments in expectation as follows:

1

n
ETr[X2k] =

1

n

nX

i1,...,i2k=1

E[Xi1,i2Xi2,i3...Xi2k,i1]

=
1

n

nX

i1,...,i2k=1

X

⇡2P2(2k)

Y

{↵,�}2⇡

E[Xi↵,i↵+1Xi� ,i�+1] (4)

3 Models

In this section, we will study the empirical eigenvalue distribution by ap-

plying specific random variables into the band matrices.

3.1 Model

Here is a histogram of the eigenvalues of a 4000 ⇥ 4000 matrix sampled

from the maximally correlated band model (Definition 2) with Gaussian en-

tries:

Figure 2: The density of eigenvalues of an instance of X4000, a Gaussian band
matrix.

Theorem 2 (Kemp, Tong, 2017). Let Xn be a maximally correlated band

matrix according to Definition 2. The limit matrix moments are the moments
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of a Gaussian distribution:

lim
n!1

1

n
ETr[Xk] =

8
<

:
0, k odd

(k � 1)!!, k even

where k = 1, 2, 3, ......

The full proof of this theorem will be presented in Section 3.2.

Before the proof, some propositions are needed.

Proposition 1. Let X be a maximally correlated band matrix, where Xi,i+m =

Xi,i�m = 1p
nYm. Let {↵, �} be a block in pairing

⇡ = {{↵, �} , {↵2, �2} , . . . , {↵k, �k}}

Because of the independence of entries, term E[Xi↵,i↵+1Xi� ,i�+1] in equation

(3) does not equal to zero if and only if

|i↵ � i↵+1| = |i� � i�+1|

Proof. If

|i↵ � i↵+1| 6= |i� � i�+1|

then

E[Xi↵,i↵+1Xi� ,i�+1] = E[Xi↵,i↵+1]E[Xi� ,i�+1]

=
1p
n
· 1p

n
· E[Y|i↵�i↵+1|]E[Y|i��i�+1|]

=
1

n
· 0 · 0

= 0

Therefore, to get a non-zero E[Xi↵,i↵+1Xi� ,i�+1], there are two cases of the

indices:

• Positive case: i↵ � i↵+1 = i� � i�+1

• Negative case: i↵ � i↵+1 = i�+1 � i�

Proposition 2. Only the pairings of the indices which are under the negative

case:

i↵ � i↵+1 = i�+1 � i�
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contribute to leading order of the results in Theorem 3.

The proof of this proposition will be presented in Section 3.2. Before

proving the general k-th moment, a specific example with k = 4 will be

explained first.

Example 3.1. When k = 4, there are four indices: i1, i2, i3, i4 2 {1, n}. The
matrix moment’s expectation can be expressed as:

1

n
ETr[X4] (5)

=
1

n

nX

i1,i2,i3,i4=1

E[Xi1i2Xi2i3Xi3i4Xi4i1] (6)

=
1

n

nX

i1,...,i2k=1

(E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] + E[Xi1i2Xi3i4]E[Xi2i3Xi4i1]

+ E[Xi1i2Xi4i1]E[Xi2i3Xi3i4]) (7)

Then, from the proposition 1, we see that there are four cases of these

four indices:

• Case I:

If |i1 � i2| = |i2 � i3| = |i3 � i4| = |i4 � i1|,
then, E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] 6= 0, E[Xi1i2Xi3i4]E[Xi2i3Xi4i1] 6= 0,

E[Xi1i2Xi4i1]E[Xi2i3Xi3i4] 6= 0

• Case II:

If |i1 � i2| = |i2 � i3| 6= |i3 � i4| = |i4 � i1|,
then, E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] 6= 0, E[Xi1i2Xi3i4]E[Xi2i3Xi4i1] = 0,

E[Xi1i2Xi4i1]E[Xi2i3Xi3i4] = 0

• Case III:

If |i1 � i2| = |i3 � i4| 6= |i2 � i3| = |i4 � i1|,
then, E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] = 0, E[Xi1i2Xi3i4]E[Xi2i3Xi4i1] 6= 0,

E[Xi1i2Xi4i1]E[Xi2i3Xi3i4] = 0

• Case IV:

If |i1 � i2| = |i4 � i1| 6= |i2 � i3| = |i3 � i4|,
then, E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] 6= 0, E[Xi1i2Xi3i4]E[Xi2i3Xi4i1] = 0,

E[Xi1i2Xi4i1]E[Xi2i3Xi3i4] 6= 0

To calculate the large-n limit of equation (7), we discuss each case sepa-

rately and then sum them up to get the leading term of the limit.

Case I:

|i1 � i2| = |i2 � i3| = |i3 � i4| = |i4 � i1| = m
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where m = 0, 1, 2, ..., n� 1

Under this case, equation (7) can be expressed as:

1

n

nX

i1,...,i4=1

E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] + E[Xi1i2Xi3i4]E[Xi2i3Xi4i1]

+ E[Xi1i2Xi4i1]E[Xi2i3Xi3i4]

=
1

n
·
n�1X

m=0

(
1

n
· 1
n
· E[Y 2

m]
2 +

1

n
· 1
n
· E[Y 2

m]
2 +

1

n
· 1
n
· E[Y 2

m]
2)

= 3 · 1
n
· 1

n2
·
n�1X

m=0

E[Y 2
m]

2

= 3 · 1
n
· 1

n2
·O(n2)

= O

✓
1

n

◆
(8)

As n ! 1, O
�
1
n

�
! 0. Therefore, this case does not contirbute to the

leading term of the convergence.

Case II:

|i1 � i2| = |i2 � i3| 6= |i3 � i4| = |i4 � i1|

We change the absolute value into positive and negative cases:

i1 � i2 = ±(i2 � i3) 6= i3 � i4 = ±(i4 � i1)

The reason why we do this change is that we want to convert the relation

between the indices into a system of equations. Then we now reduce the

matrices which consist of the coe�cients of the system to get the rank or

nullity of the matrices. This value will give us the leading order under each

case, so that we can tell the indices under which case will contribute to the

leading term in the limit.

There are three possible subcases:

II.1: (both equations are with positive sign)

8
<

:
i1 � i2 = +(i2 � i3)

i3 � i4 = +(i4 � i1)

II.2: (one of equations is with positive sign)

8
<

:
i1 � i2 = +(i2 � i3)

i3 � i4 = �(i4 � i1)
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or 8
<

:
i1 � i2 = �(i2 � i3)

i3 � i4 = +(i4 � i1)

The reason these two cases are put together is that there are only two rows

in the coe�cients matrices, where one matrix can be acquired by changing

the order of another matrix’s row.

II.3: (both equations are with negative sign)

8
<

:
i1 � i2 = �(i2 � i3)

i3 � i4 = �(i4 � i1)

Then, we convert the system of equations into coe�cient matrices and

solve the rank or nullity of the matrices.

II.1: :

Moving all the terms to the left side of the equation, we have the following

matrix equation:

"
1 �2 1 0

1 0 1 �2

#
2

6664

i1

i2

i3

i4

3

7775
=

"
0

0

#

Then, we have the coe�cient matrix:

"
1 �2 1 0

1 0 1 �2

#

By reduction and calculation, the rank is 2 and nullity is 4� 2 = 2.

The nullity of the matrix gives us the dimension of the null space, then

we have the number of solutions. When we have the order of number of the

solutions, we can justify whether the case contribute to the limit’s leading

term to prove proposition 2.

II.2: :

Similarly, we have

"
1 0 �1 0

1 0 �2 1

#
2

6664

i1

i2

i3

i4

3

7775
=

"
0

0

#
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The coe�cient matrix is: "
1 0 �1 0

1 0 �2 1

#

whose rank is 2 and nullity is 4� 2 = 2.

II.3: :

In this case, i2 and i4 are canceled in the equation, it gives i1 = i3.

"
1 0 �1 0

1 0 �1 0

#
2

6664

i1

i2

i3

i4

3

7775
=

"
0

0

#

Therefore, we have three free parameters:

i1, i2, i4

The nullity of the coe�cient matrix is 3.

Under this case, because of the property of i.i.d random variables,

E[Xi1i2Xi3i4]E[Xi2i3Xi4i1] = E[Xi1i2]E[Xi2i3]E[Xi3i4]E[Xi4i1] = 0

and

E[Xi1i2Xi4i1]E[Xi2i3Xi3i4] = E[Xi1i2]E[Xi2i3]E[Xi3i4]E[Xi4i1] = 0

Then, equation (7) can be expressed as:

1

n

nX

i1,...,i4=1

E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] + E[Xi1i2Xi3i4]E[Xi2i3Xi4i1]

+ E[Xi1i2Xi4i1]E[Xi2i3Xi3i4])

=
1

n
·
n�1X

m=0

(
1

n
· 1
n
· E[Y 2

m]
2 + 0 + 0)

= ·1
n
· 1

n2
·
n�1X

m=0

E[Y 2
m]

2

= ·1
n
· 1

n2
· (O(n3) +O(n2))

= 1 +O

✓
1

n

◆
(9)

Only in II.3, the nullity of the coe�cient matrix is 3. This case gives

O(n3) in the calculation above. As n ! 1, O
�
1
n

�
! 0. The leading term

is contributed by the II.3, under which, both of the coe�cient equations are
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using the negative sign.

Case III:

|i1 � i2| = |i3 � i4| 6= |i2 � i3| = |i4 � i1|

We change the absolute value into positive and negative cases:

i1 � i2 = ±(i3 � i4) 6= i2 � i3 = ±(i4 � i1)

There are three possible subcases as well:

III.1: (both equations are with positive sign)

8
<

:
i1 � i2 = +(i3 � i4)

i2 � i3 = +(i4 � i1)

III.2: (one of equations is with positive sign)

8
<

:
i1 � i2 = +(i3 � i4)

i2 � i3 = �(i4 � i1)

or 8
<

:
i1 � i2 = �(i3 � i4)

i2 � i3 = +(i4 � i1)

III.3: (both equations are with negative sign)

8
<

:
i1 � i2 = �(i3 � i4)

i2 � i3 = �(i4 � i1)

Similarly, in III.1 and III.2 the rank of the matrix is 2 and nullity is 2,

but under III.3 gives that the rank of the matrix is 1 and nullity is 3.

Therefore, under Case III, because of the property of i.i.d random vari-

ables,

E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] = E[Xi1i2]E[Xi2i3]E[Xi3i4]E[Xi4i1] = 0

and

E[Xi1i2Xi4i1]E[Xi2i3Xi3i4] = E[Xi1i2]E[Xi2i3]E[Xi3i4]E[Xi4i1] = 0

14



Then, equation (7) can be expressed as:

1

n

nX

i1,...,i4=1

E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] + E[Xi1i2Xi3i4]E[Xi2i3Xi4i1]

+ E[Xi1i2Xi4i1]E[Xi2i3Xi3i4]

=
1

n
·
n�1X

m=0

(0 +
1

n
· 1
n
· E[Y 2

m]
2)

=
1

n
· 1

n2
·
n�1X

m=0

E[Y 2
m]

2

=
1

n
· 1

n2
· (O(n3) +O(n2))

= 1 +O

✓
1

n

◆
(10)

Same as Case II, only under III.3, the nullity of the coe�cient matrix is 3,

which gives O(n3). As n ! 1, O
�
1
n

�
! 0. The leading term is contributed

by III.3, under which, both of the coe�cient equations are using the negative

sign.

Case IV:

|i1 � i2| = |i4 � i1| 6= |i2 � i3| = |i3 � i4|

We change the absolute value into positive and negative cases:

i1 � i2 = ±(i4 � i1) 6= i2 � i3 = ±(i3 � i4)

There are three possible subcases as well:

IV.1: (both equations are with positive sign)

8
<

:
i1 � i2 = +(i4 � i1)

i2 � i3 = +(i3 � i4)

IV.2: (one of equations is with positive sign)

8
<

:
i1 � i2 = +(i4 � i1)

i2 � i3 = �(i3 � i4)

or 8
<

:
i1 � i2 = �(i4 � i1)

i2 � i3 = +(i3 � i4)
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IV.3: (both equations are with negative sign)

8
<

:
i1 � i2 = �(i4 � i1)

i2 � i3 = �(i3 � i4)

Similarly, in IV.1 and IV.2 the rank of the matrix is 2 and nullity is 2,

but under IV.3 gives that the rank of the matrix is 1 and nullity is 3.

Therefore, under Case IV, because of the property of i.i.d random vari-

ables,

E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] = E[Xi1i2]E[Xi2i3]E[Xi3i4]E[Xi4i1] = 0

and

E[Xi1i2Xi3i4]E[Xi2i3Xi4i1] = E[Xi1i2]E[Xi2i3]E[Xi3i4]E[Xi4i1] = 0

Then, equation (7) can be expressed as:

1

n

nX

i1,...,i4=1

E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] + E[Xi1i2Xi3i4]E[Xi2i3Xi4i1]

+ E[Xi1i2Xi4i1]E[Xi2i3Xi3i4]

=
1

n
·
n�1X

m=0

(0 +
1

n
· 1
n
· E[Y 2

m]
2)

=
1

n
· 1

n2
·
n�1X

m=0

E[Y 2
m]

2

=
1

n
· 1

n2
· (O(n3) +O(n2))

= 1 +O

✓
1

n

◆
(11)

Same as Case II, only under IV.3, the nullity of the coe�cient matrix is 3,

which gives O(n3). As n ! 1, O
�
1
n

�
! 0. The leading term is contributed

by IV.3, under which, both of the coe�cient equations are using the negative

sign.

Now, we finish discussing all the cases and sum equation (8), (9), (10),

(11) up, then
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1

n
ETr[X4] =

1

n

nX

i1,...,i4=1

E[Xi1i2Xi2i3]E[Xi3i4Xi4i1] + E[Xi1i2Xi3i4]E[Xi2i3Xi4i1]

+ E[Xi1i2Xi4i1]E[Xi2i3Xi3i4]

=

✓
O

✓
1

n

◆◆
+

✓
1 +O

✓
1

n

◆◆
+

✓
1 +O

✓
1

n

◆◆
+

✓
1 +O

✓
1

n

◆◆

= 3 +O

✓
1

n

◆

As n ! 1, O
�
1
n

�
! 0. The leading term 3 is contributed by II.3, III.3 and

IV.3, under which, both of the coe�cient equations are using the negative

sign.

3.2 Proof

Proof. Recall the equation:

1

n
ETr[X2k] =

1

n

nX

i1,...,i2k=1

E[Xi1,i2Xi2,i3...Xi2k,i1] (12)

=
1

n

nX

i1,...,i2k=1

X

⇡2P2(2k)

Y

{↵,�}2⇡

E[Xi↵,i↵+1Xi� ,i�+1] (13)

=
1

n
· 1

nk
· P (n) (14)

=
1

nk+1
· P (n) (15)

where P (n) is a polynomial function of n and

|i↵ � i↵+1| = |i� � i�+1|

We need to find what relation between the indices will give O(nk+1) which

can be canceled with 1
nk+1 and contribute to the leading term of the conver-

gence.

Based on the idea in Example 3.1, we separate the relation between in-

dices into several cases.

• All {↵, �} in ⇡ satisfy i↵+1 = i�

• Part of the {↵, �} in ⇡ satisfy i↵+1 = i�

17



• All {↵, �} in ⇡ satisfy i↵+1 6= i�

The reason why cases depend on whether i↵+1 = i� is that the cancellation

of the terms in the system of equations might a↵ect the rank of corresponding

coe�cient matrices.

Case I: All {↵, �} in ⇡ satisfy i↵+1 = i�.

We change the absolute value into positive and negative cases as we did

in Example 3.1:

i↵ � i↵+1 = ±(i� � i�+1)

I.1: : All of {↵, �} take the positive sign, i.e. i↵ � i↵+1 = +(i� � i�+1)

When all the index equations use positive sign, we have the following

matrix equation:

2

6664

1 �2 1 0 0 . . . 0

0 0 1 �2 1 . . . 0

. . . . . . . . . . . . . . . . . . . . .

1 0 0 0 0 1 �2

3

7775

2

666666666664

i1

i2

i3
...

i2k�2

i2k�1

i2k

3

777777777775

=

2

6664

0

0
...

0

3

7775

Now, we have a k ⇥ 2k matrix of coe�cients:

2

6664

1 �2 1 0 0 . . . 0

0 0 1 �2 1 . . . 0

. . . . . . . . . . . . . . . . . . . . .

1 0 0 0 0 1 �2

3

7775

By reducing the matrix, the rank is k, then the nullity is 2k � k = k.

Then equation (12) can be expressed as:

1

n
ETr[X2k] =

1

n

nX

i1,...,i2k=1

E[Xi1,i2Xi2,i3...Xi2k,i1]

=
1

n

nX

i1,...,i2k=1

X

⇡2P2(2k)

Y

{↵,�}2⇡

E[Xi↵,i↵+1Xi� ,i�+1]

=
1

n
· 1

nk
·O(nk)

= O

✓
1

n

◆
(16)
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As n ! 1, the result does not contribute to the leading term.

I.2: : Some equations use positive sign and others use negative sign, i.e

i↵ � i↵+1 = +(i�+1 � i�), i↵ � i↵+1 = �(i�+1 � i�)

Assume the number of negative index equations is j, which means j of k

index equations have the form i↵ � i↵+1 = +(i�+1 � i�) where i↵+1 = i�. The

coe�cients of indices with this form can be written as a (k� j)⇥ 2k matrix:

2

6664

1 �2 1 0 0 . . . 0

0 0 1 �2 1 . . . 0

. . . . . . . . . . . . . . . . . . . . .

1 0 0 0 0 1 �2

3

7775

By reducing this matrix, the dimension of null space of this matrix is

k � j. Then, adding on j free parameters which are canceled by satisfying

i↵+1 = i�, the nullity equals to k.

Therefore, we have

1

n
ETr[X2k] = O

✓
1

n

◆
(17)

which does not contribute to the leading term, either.

I.3: All the signs are negative i.e. i↵ � i↵+1 = �(i� � i�+1)

The number of pairs (↵, �) is k, therefore there are k equations of indices.

Since i↵+1 = i�, then i↵ = i�+1. There are k free parameters because of

i↵+1 = i�. All the i left are all equal to each other, which can be seen as

one signle free parameter. Therefore, the total number of free parameters is

k + 1, that is the nullity is k + 1.

Then, equation (12) can be re-written as:

1

n
ETr[X2k] =

1

n

nX

i1,...,i2k=1

E[Xi1,i2Xi2,i3...Xi2k,i1]

=
1

n

nX

i1,...,i2k=1

X

⇡2P2(2k)

Y

{↵,�}2⇡

E[Xi↵,i↵+1Xi� ,i�+1]

=
1

n
· 1

nk
·O(nk+1)

= O(1) (18)
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Case II: Part of the {↵, �} in ⇡ satisfy i↵+1 = i�

Under this case, we will discuss three same subcases in Case I.

II.1: : All the signs are positive i.e. i↵ � i↵+1 = +(i� � i�+1)

Since there is no negative case, no index can be canceled from the equa-

tion. Therefore, a k ⇥ 2k coe�cient matrix can be derived. After reducing

the coe�cients’ matrix, the rank is still k. We will have

1

n
ETr[X2k] = O

✓
1

n

◆
(19)

which does not contribute to the leading term of the convergence.

II.2: : Some equations use positive sign and others use negative sign, i.e

i↵ � i↵+1 = +(i� � i�+1), i↵ � i↵+1 = �(i� � i� + 1)

Assume there are j pairs of {↵, �} in ⇡ satisfy i↵+1 = i�. Three are three

possibilities:

• All of these j pairs satisfy i↵ � i↵+1 = �(i� � i� + 1)

• Some of these j pairs satisfy i↵ � i↵+1 = �(i� � i� + 1)

• None of these j pairs satisfy i↵ � i↵+1 = �(i� � i� + 1)

Under the first possibility, j pairs of terms can be regarded as j free param-

eters and be canceled out from the equations. The left indices’ coe�cients

construct a (k� j)⇥2k matrix which has (k� j+1) dimention of null space.

Thus, there are k+1 free parameters.

Then, we have

1

n
ETr[X2k] = O(1) (20)

Under the left two possibilities, there are less than j free parameters which

can be canceled out from the equations, so the nullity of the matrices is less

than k+1. In other words, we will get

1

n
ETr[X2k] = O

✓
1

n

◆
(21)

which does not contribute to the leading term under these two possibilities.

II.3: All the signs are negative i.e. i↵ � i↵+1 = �(i� � i�+1)
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Two situations will happen under this case. The first one is although there

exist negative equation, there is no cancellation of the indices. This situation

is the same as II.1(All the signs are positive i.e. i↵ � i↵+1 = +(i� � i�+1)).

Therefore, we have 1
nETr[X

2k] = O
�
1
n

�
.

The second one is that there exists cancellation of the indices. The indices

which are canceled can be regarded as free parameters. There is no pattern

of coe�cients’ matrix, so we check the signs of the indices.

Di↵erent from II.2, the signs of the same indices in di↵erent equations

are not the same. Besides the cancellation caused by the negative situa-

tion, no more terms will be canceled. Therefore the rank of the matrix will

larger than 2k � k � 1 = k � 1, which means there are less than k + 1 free

parameters, so the result of 1
nETr[X

2k] cannot contribute to the leading term.

Case III: All (↵, �) in ⇡ satisfy i↵+1 6= i�.

III.1: : All the signs are positive i.e. i↵ � i↵+1 = +(i� � i�+1)

III.2: : Some equations use positive sign and others use negative sign, i.e

i↵ � i↵+1 = +(i�+1 � i�), i↵ � i↵+1 = �(i�+1 � i�)

Under both of the III.1 and III.2, the signs before same two indices are

not always di↵erent. It means that the rank will be bigger than k� 1, hence,

the nullity is less than 2k � k = k and we cannot get equation (19).

III.3: All the signs are negative i.e. i↵ � i↵+1 = �(i� � i�+1)

After moving all the index in the equations to the left hand sides, the

signs before same two indices are di↵erent, or we can say each i↵ � i↵+1 and

i�+1 � i� equals to each other. It means one row of the k ⇥ 2k coe�cients’

matrix will have all 0, then the rank of the matrix is k�1. Thus, the number

of the free parameters is k+1.Then, we have

1

n
ETr[X2k] = O(1) (22)

According to the cases discussed above, we sum equation (16), (17), (18),

(19), (20), (21), (22) under each case together. Then,
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lim
n!1

1

n
ETr[X2k] = lim

n!1

1

n

nX

i1,...,i2k=1

E[Xi1,i2Xi2,i3...Xi2k,i1]

= lim
n!1

1

n

nX

i1,...,i2k=1

X

⇡2P2(2k)

Y

(↵,�)2⇡

E[Xi↵,i↵+1Xi� ,i�+1]

= lim
n!1

1

n
· 1

nk
· (2k � 1)!!(nk+1 +O(nk)

= (2k � 1)!! · lim
n!1

(1 +O(
1

n
))

= (2k � 1)!!

The reason why the answer to this equation is (2k� 1)!! is due to Defini-

tion 3 – the number of all pairings of {1, 2, . . . , 2k} integers, i.e., #P2(2k) =

(2k � 1)!!.

We can see that equation (18), (20), (22) under the negative cases have

O(nk+1), which finally canceled out with the 1
nk+1 , contributing to the leading

term of the results.
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