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Abstract

We study the optimal shapes flatworms take when they are placed in a caustic

solution by introducing an energy model that takes a variational approach to optimal

shapes. The context is the e↵ect a caustic solution has on the worm exterior. Through

variational calculus, we derive Euler-Lagrange equations and then a descent flow PDE

for sending an initial worm shape to its minimum energy state. Numerically, we handle

this PDE using finite di↵erence methods and front tracking. Using simulations in

di↵erent settings, we present further study of solutions under various conditions. The

results using such a geometric and variational approach show promise in describing

succinctly the ways that flatworms respond to caustic solutions in their environment.

1 Introduction

Invertebrate animals such as flatworms or roundworms have been commonly used in bio-
medical or related research since the 1800s. Ethical issues in animal testing have led sci-
entists to choose invertebrate animals as alternatives to vertebrates in various experiments,
such as with drug testing [11]. Invertebrate animals are important models not only be-
cause they can be good replacement for vertebrates for some experiments, but also because
they possess numerous intriguing properties, such as great flexibility in changing their body
shapes. For instance, a worm placed in a caustic solution sometimes exhibits abnormal
movements and shapes in minimizing the amount of solution it touches. Previously, move-
ment pattern analysis, using shape mode analysis, has been done among some physicists
and biologists [10]. However, we are interested in writing mathematical models which can
explain flatworms’ movement and shape changes in response to caustic solutions, and specif-
ically their responses to minimize the amount of the solution they touch.
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We allow the worm to vary its shape about a central axis, but require it to preserve
its enclosed volume. This translates geometrically to a minimization of the surface area
of the worm with a fixed volume constraint. Since there are a variety of worms that are
flat, we restrict ourselves to the simplified case of worms in two dimensions, and study
minimization of perimeter with a fixed area constraint.We will develop a mathematical
model for the worm and write down equations for the perimeter and area. Then, taking an
energy-based approach, we will introduce an energy whose minimizers are our worm shapes
of interest. This energy will make use of Lagrange multipliers to enforce the fixed area
constraint. Variational calculus can be used to describe the minimizers of the energy and a
flow-based gradient descent approach can be applied to generate a system of time dependent
PDE’s whose steady state solutions are the minimizers of interest. Numerically, we can solve
these PDE’s to approximate and construct the desired worm shapes, comparing them to
theoretical results. for example, involving the isoperimetric inequality, when available, and
study the dynamics involved [1].

2 Model

We model the worm body with two quantities: a curve, representing its central axis, and a
radius, representing its width. Let � : [a, b] ! R2 parametrically define the curve we call
the central axis of the worm. Tangent and normal vectors of this curve can be defined by
⌧ : [a, b] ! R2 and n : [a, b] ! R2, respectively, where

⌧(s) = �0(s)/|�0(s)|
n(s) = (⌧(s))?,

for s 2 [a, b], and [v1, v2]? = [v2,�v1]. We note here two useful identities: (n(s))? = �⌧(s)
and ⌧(s) · n(s) = 0, or �0(s) · n(s) = 0.

Now given r : [a, b] ! [0,1), we define the body of the worm by

B = {�(s) +Rn(s)|s 2 [a, b], R 2 [r(s),�r(s)]}.

We call r(s) the radius of the worm about its central axis. Note, in this setting, the worm
boundary consists of the curves �(s) + Rn(s), for s 2 {a, b}, R 2 [�r(s), r(s)], at its ends,
and �(s) ± r(s)n(s), for s 2 [a, b], along its sides. Since a general worm shape can be
approximated by one satisfying the boundary conditions r(a) = r(b) = 0, we henceforth
restrict our attention to this case.

Geometric quantities of interest to us include curvature of the central axis, length of the
worm sides, and area of worm body. The curvature of the central axis plays a key role in
the viability of our defined worm body. On the other hand, the length of worm sides, and
its variations, are central to our application of minimizing the worm’s contact with caustic
material in the surrounding solution. Finally, the area of the worm body can be used to
enforce the physical condition of a worm having fixed enclosed area while it deforms.
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The standard definition of the curvature vector is the change of the tangent in the unit
tangent direction: ⌧ 0(s)/�0(s). This vector is normal to the curve, and its magnitude can
be defined as the magnitude of the curvature. For the sign of the curvature, in the case
where � is a closed curve, the curvature is often defined as: curvature in the inward normal
direction equals the curvature vector. We follow this to defined our signed curvature even
for general �0(s):

H(s) = � ⌧ 0(s)

|�0(s)| · n(s) = � 1

|�0(s)|(�
00(s) · n(s)),

where the second equality uses �0(s) · n(s) = 0. We note here the useful identity,

n0(s)

|�0(s)| =
(⌧?(s))0

|�0(s)| =
(⌧ 0(s))?

|�0(s)| = (�H(s)n(s))? = H(s)⌧(s).

Now, if we study the change of coordinates from a point (x, y) in our worm body to
(s, R) coordinates, defined by [x, y]T = �(s) +Rn(s), we get the Jacobian matrix,

@(x, y)

@(s, R)
= [�0(s) +Rn0(s), n(s)]T = [(1 +RH(s))|�0(s)|⌧(s), n(s)]T .

Then
����det

✓
@(x, y)

@(s, R)

◆���� = |(1 +RH(s))|�0(s)| det[⌧(s), n(s)]| = |1 +RH(s)||�0(s)|, (1)

since [⌧(s), n(s)] has orthonormal columns and so is has absolute value of determinant 1. For
a well-behaved change of coordinates, this quantity should be nonzero, which notably implies
1+RH(s) > 0, for all s 2 [a, b], R 2 [�r(s), r(s)]. This in turn translates to the requirement
|r(s)H(s)| < 1. We thus require and only study worms that satisfy |r(s)H(s)| < 1, for all
s 2 [a, b], meaning 1±r(s)H(s) < 1. Worm bodies that violate this condition impinge upon
themselves for a nonphysical representation. This, by the way, is similar to the situation in
geometrical optics concerning a wavefront forming swallowtails as it passes through itself.

The perimeter of the worm sides is the sum of the lengths of the curves representing
each side, �(s)± r(s)n(s). These lengths are given by the expression

Z
b

a

|(� ± rn)0(s)| ds.

Note, since

(� ± rn)0(s) = �0(s)± (r0(s)n(s) + r(s)n0(s))

= |�0(s)|⌧(s)± (r0(s)n(s) + r(s)H(s)|�0(s)|⌧(s))
= (1± r(s)H(s))|�0(s)|⌧(s) + r0(s)n(s),

then
|(� ± rn)0(s)| =

p
(1± r(s)H(s))2|�0(s)|2 + (r0(s))2.
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We can thus write the perimeter as

P (�, r) =
X

±

Z
b

a

p
(1± r(s)H(s))2|�0(s)|2 + (r0(s))2 ds,

where
P

± sums together the contributions of the summand for each of the signs in ±.
Let C : R2 ! (0,1) denote the amount of caustic material in the solution. Then we

also create a weighted perimeter that measures the amount of caustic material touching the
worm sides:

WP (�, r) =
X

±
WP±

=
X

±

Z
b

a

C(� ± rn)|(� ± rn)0(s)| ds

=
X

±

Z
b

a

C(� ± rn)
p

(1± r(s)H(s))2|�0(s)|2 + (r0(s))2 ds.

Note, in this simplified setting, we are not treating the surrounding solution as an incom-
pressible fluid, but more as a background state.

The area enclosed by the worm body B is defined by

A(�, r) =

Z Z

B

1 dxdy.

We expand this formula by changing coordinates: [x, y] = �(s) + Rn(s). Using (1), we get
the expression

A(�, r) =

Z
b

a

Z
r(s)

�r(s)

(1 +RH(s))|�0(s)| dRds

=

Z
b

a

2r(s)|�0(s)| ds.

Our goal is to find worm bodies and motions that seek to minimize the amount of caustic
material the worm sides touch, while fixing the area of the worm body. We set this up in an
energy incorporating our weighted perimeter and enclosed area, with a Lagrange multiplier
for the area constraint:

E(�, r,�) = WP (�, r) + �(A(�, r)� A0), (2)

where � is a Lagrange multiplier, and A0 is the desired enclosed area for the worm. We can
then study the minimum of this energy, or variations of it that consider, for example, fixed
�, or a fixed r, or without area constraints, or satisfying various boundary conditions.

Note, in subsequent secitons, we will frequently suppress the dependence of � and r on
s, for simplicity of exposition.
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3 Method

We plan to apply variational calculus on (2), and its variations, to calculate Euler-Lagrange
equations and determine a descent flow for constructing minimizers. We first review vari-
ational calculus from the point of view of calculus of several variables, then go through
a simple example from curve shortening, then apply variational calculus to our energy of
interest, and finally present a descent flow for minimizing the energy.

3.1 Directional Derivatives

For a function of several variables, f(x), the directional derivative of f at x in the direction
of vector v is defined as rf(x) · v. An alternate definition of this directional derivative is

d

d✏

����
✏=0

f(x+ ✏v),

which essentially looks at the change of f when traveling with velocity v through x. Addi-
tionally, though a critical point of f can be defined as locations satisfying rf(x) = 0, we
can define it alternatively as locations x where the directional derivatives in all directions v
are zero:

d

d✏

����
✏=0

f(x+ ✏v) = 0,

for all v. This alternate definition allows the concept of critical points to be extended from
functions of several variables to the infinite dimensional case involving functionals such as
our energy of interest.

3.2 Curve Shortening

For the case of functionals, we continue using our calculus terminology of critical points and
directions. Consider the well-known example of curve shortening, where the functional to
be minimized is the length of a smooth curve �:

L(�) =

Z
b

a

|�0| ds.

Following the directional derivative definition, critical points � satisfy

d

d✏
L(� + ✏�̃) = 0

for all directions �̃ such that �+ ✏�̃ are also the kind of curves we are interested in. In fact,
it su�ces to consider only normal directions, so we have �̃ = �̃

n

n for a < s < b. Now,

d

d✏
L(� + ✏�̃) =

Z
b

a

�0

|�0| · �̃
0 ds

= �
Z

b

a

✓
�0

|�0|

◆0

· �̃ ds+


�0

|�0| · �̃
�
b

a

,
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using integration by parts in the last inequality. For the boundary terms, we consider the
case 

�0

|�0| · �̃
�
b

a

= 0,

which occurs, for example, when we restrict our attention to curves whose endpoints are
fixed, so �(s) = (� + ✏�̃)(s) at s = {a, b}, and �̃(s) = 0 at s = {a, b}. Then the directional
derivative satisfies

d

d✏
L(� + ✏�̃) = �

Z
b

a

✓
�0

|�0|

◆0

· �̃ ds = �
Z

b

a

✓
�0

|�0|

◆0

· n
�
�̃
n

ds =

Z
b

a

H|�0|�̃
n

ds. (3)

Then critical points satisfy

�
Z

b

a

H|�0|�̃
n

ds = 0,

and, since this is for all �̃
n

, this translates to H|�0| = 0, or, more geometrically, H = 0.
This is known as the Euler-Lagrange equation for the functional.

From (3), we can also choose a normal component �̃
n

n that decreases the length:

d

d✏
L(� + ✏�̃

n

n) < 0, (4)

when � is not a critical point. A simple choice is �̃
n

= �H|�0|, since then

d

d✏
L(� + ✏�̃

n

n) = �
Z

b

a

H2|�0|2 ds < 0,

when � is not a critical point; however, a more geometric choice that satisfies (4), and one
that is independent of the parametrization of �, includes an additional 1/|�0|: �̃

n

= �H. We
can use this direction for a flow-based method minimizing the functional. Let � = �(s, t)
now additionally depend on time, with given �(s, t = 0), the initial curve. Then we consider
flow in our chosen direction:

�
t

= �Hn,

which is known as curvature flow, and which will decrease the energy until it reaches a
critical point, at which point �

t

= 0 and it stops.
We end by summarizing the curve shortening process, so we can follow similar steps for

our energy of interest:

1. Take the directional derivative of the energy and simplify it, using, for example, inte-
gration by parts, into the form Z

b

a

G · �̃ ds,

where �̃ = �̃
n

n.

2. Set it equal to zero and simplify for the Euler-Lagrange equation: G · n = 0;
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3. Choose a descent flow on the energy of the form

�
t

= �G · n
|�

s

| n.

3.3 Euler-Lagrange Equations

We handle the directional derivative of our energy of interest in parts:

d

d✏

����
✏=0

E(� + ✏�̃, R + ✏R̃) =
d

d✏

����
✏=0

WP (� + ✏�̃, R + ✏R̃) + �
d

d✏

����
✏=0

A(� + ✏�̃, R + ✏R̃)

=
X

±

d

d✏

����
✏=0

WP±(� + ✏�̃, R) + �
d

d✏

����
✏=0

A(� + ✏�̃, R) +

X

±

d

d✏

����
✏=0

WP±(�, R + ✏R̃) + �
d

d✏

����
✏=0

A(�, R + ✏R̃).

For simplicity, we assume � has fixed endpoints and �0 satisfies free boundary conditions,
in other words, �00(a) = �00(b) = 0. With these boundary conditions, we will simplify each
term of the directional derivative separately, to get an expression of the form

X

±

Z
b

a

G
WP±,�

· �̃ ds+ �

Z
b

a

G
A,�

r̃ ds+
X

±

Z
b

a

G
WP±,r

· �̃ ds+ �

Z
b

a

G
A,r

r̃ ds.

We present the terms in increasing order of complexity, with G
A,r

first, then G
A,�

, then
G

WP±,R,±, and finally G
WP±,�,±. Additionally, since the computation of the last term is

quite involved, we defer its details to the appendix.
We handle G

A,r

first, as it is the simplest. The directional derivative in this case is

d

d✏

����
✏=0

A(�, R + ✏R̃) = 2

Z
b

a

r̃|�0| ds = 2

Z
b

a

|�0|r̃ ds,

which implies G
A,r

= 2|�0|.
Next in complexity is G

A,�

. The directional derivative in this case is

d

d✏

����
✏=0

A(� + ✏�̃, R) = 2

Z
b

a

r
�0

|�0| · �̃
0 ds

= �2

Z
b

a

(r⌧)0 · �̃ ds+ 2 [r⌧ · �̃]b
a

,

however, note that r(a) = r(b) = 0. This then implies

G
A,�

= �2(r⌧)0.
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Next in complexity is G
WP±,r

. To reduce the length of the formulas, we we introduce
the notation C± = C(� ± rn) and D± =

p
(1± rH)2|�0|2 + (r0)2. Then the directional

derivative in this case is

d
d✏

���
✏=0

Z
b

a

C(� ± (r + ✏r̃)n)
p

(1± (r + ✏r̃)H)2|�0|2 + (r0 + ✏r̃0)2 ds

= ±
Z

b

a

⇣
rC± · n+ C±

D±
(1± rH)|�0|2H

⌘
r̃ ds+

Z
b

a

C±
D±

r0r̃0 ds

= ±
Z

b

a

⇣
rC± · n+ C±

D±
(1± rH)|�0|2H

⌘
r̃ ds�

Z
b

a

⇣
C±
D±

r0
⌘0
r̃ ds+

h
C±
D±

r0r̃
i
b

a

,

however, note r̃(a) = r̃(b) = 0 so that r + ✏r̃ satisfies zero boundary conditions at the
endpoints. This then implies

G
WP±,r

= ±
✓
rC± · n+

C±

D±
(1± rH)|�0|2H

◆
�
✓
C±

D±
r0
◆0

.

Finally, we present the results in the case G
WP±,�

, with details in the appendix. The
result of the directional derivative is

d
d✏

���
✏=0

Z
b

a

C(� + ✏�̃ ± rn)
p

(1± rH(� + ✏�̃))2|�0 + ✏�̃|2 + (r0)2 ds

= ⌥
Z

b

a

⇣
C±
D±

(1± rH)rn
⌘00

· �̃ ds⌥
Z

b

a


C±
D±

(1± rH)r

✓
(�00 · ⌧)n

|�0| � 2H|�0|⌧
◆�0

· �̃ ds

�
Z

b

a

⇣
C±
D±

(1± rH)2�0
⌘0

· �̃ ds+

Z
b

a

D±rC± · �̃ ±
Z

b

a

✓
D±

r(rC±)
?

|�0|

◆0

· �̃

±
Z

b

a

✓
D±

rrC± · n
|�0| ⌧

◆0

· �̃ ds±
h
C±
D±

r0(n · �̃)
i
b

a

+
h
C±
D±

�0 · �̃
i
b

a

which, under our boundary conditions on the curve, implies

G
WP±,�

= ⌥
✓
C±

D±
(1± rH)rn

◆00

⌥

C±

D±
(1± rH)r

✓
(�00 · ⌧)n

|�0| � 2H|�0|⌧
◆�0

�
✓
C±

D±
(1± rH)2�0

◆0

+D±rC± ±
✓
D±

r(rC±)
?

|�0|

◆0

±
✓
D±

rrC± · n
|�0| ⌧

◆0

.

We note that the expressions presented in this case are only partially simplified, for length,
and there may be further simplifications that shed more light on the geometric significance
of some of the terms.

Altogether, the results for these terms combine to give the Euler-Lagrange equations:
X

±
(G

WP±,�

· n) + �(G
A,�

· n) = 0

X

±
(G

WP±,r

· n) + �(G
A,r

· n) = 0.
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3.4 Descent Flow

We can then write out the descent flow for our energy, letting � = �(s, t) depend on time
and switching to partial derivative notation:

�
t

= �
P

±

✓
G

WP±,�

|�
s

| · n
◆
� �

✓
G

A,�

|�
s

| · n
◆

r
t

= �
P

±

✓
G

WP±,r

|�
s

| · n
◆
� �

✓
G

A,r

|�
s

| · n
◆
,

(5)

where each term simplifies as follows:

�G
WP±,�

|�
s

| · n = ± 1
|�

s

|
⇣
C±
D±

(1± rH)r
⌘

ss

± 1
|�

s

|

✓
C±
D±

(1± rH)r�ss · ⌧|�
s

|

◆

s

�C±
D±

(1± rH)H|�
s

|� (1⌥ rH)D±
rC± · n

|�
s

| ⌥ 1
|�

s

|

✓
rD±

rC±
|�

s

|

◆

s

· ⌧

�G
A,�

|�
s

| · n = �rH

�G
WP±,r

|�
s

| = 1
|�

s

|
⇣
C±
D±

r
s

⌘

s

⌥
✓
rC± · n

|�
s

| + C±
D±

(1± rH)|�
s

|H
◆

�G
A,r

|�
s

| = �2.

We provide details of the first identity in the appendix and again note that the expressions
presented in this case are only partially simplified, for length.

Also, from these terms, we can form the descent flow for several other subcases [6]. We
explicitly write out and analyze two of them here: the case where � is given and fixed and
with no area constraint,

r
t

= �
X

±

✓
G

WP±,r

|�
s

| · n
◆
, (6)

and the case where r is given and fixed and with no area constraint,

�
t

= �
X

±

✓
G

WP±,�

|�
s

| · n
◆
� �

✓
G

A,�

|�
s

| · n
◆
. (7)

Studying the parabolicity of (6), we note the largest derivative term in r on the right
hand side is r

ss

. We compute the coe�cient of r
ss

to be

1

|�
s

|
X

±

✓
C±

D±
� C±

D3
±
(r

s

)2
◆

=
X

±

C±

D3
±
(1 + rH)2|�

s

| > 0.

In fact, it is bounded below by a constant that is greater than zero. Thus, the PDE is
parabolic.
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Studying the parabolicity of (7), we note the largest derivative term in � on the right
hand side is �

ssss

. We compute the coe�cient matrix of �
ssss

to be

1

|�
s

|
X

±

✓
�C±

D±

r2

|�
s

| +
C±

D3
±
(1± rH)2r2|�

s

|
◆
(n⌦ n) = �

X

±

C±

D3
±

(rr
s

)2

|�
s

|2 (n⌦ n),

where n⌦ n refers to the tensor product between the vectors n and itself. This matrix has
two eigenvalues, 0 and

�
X

±

C±

D3
±

(rr
s

)2

|�
s

|2  0.

Thus, the PDE is degenerate parabolic when r, r
s

6= 0, but does degenerate further when
r = 0 or r

s

= 0.

3.5 Lagrange Multiplier

For the enclosed area constraint, we also use a flow-based approach on �, so � = �(t). Then,
after requiring the initial worm body to have the desired enclosed area, we use � to preserve
this area during the flow: @A/@t = 0. Taking a time derivative of the area gives:

@A

@t
= 2

Z
b

a

|�
s

|r
t

ds� 2

Z
b

a

✓
r
�
s

|�
s

|

◆

s

· �
t

ds

= �2

Z
b

a

 
X

±
G

WP±,r

+ �G
A,r

!
ds� 2

Z
b

a

 
X

±
G

WP±,�

+ �G
A,�

!
rH ds.

Setting this equal to zero and solving for � gives

� =

P
±
R

b

a

G
WP±,r

ds+
P

±
R

b

a

G
WP±,�

rH ds
R

b

a

G
A,r

ds+
R
b

a

G
A,�

rH ds
. (8)

4 Numerical Approximations

We handle the system of PDE’s (5) in a finite di↵erence framework, with the method of
lines and finite di↵erence approximation formulas for parabolic PDE’s. We first detail the
basic procedure on the well-known heat equation and biharmonic equation, then apply it
to our system of PDE’s [2, 5].

4.1 Heat and Biharmonic Equations

Consider, the heat equation with K > 0, for parabolicity, given by

u
t

(x, t) = Ku
xx

(x, t),

10



for x 2 [a, b], t > 0, with boundary conditions, such as Dirichlet or von Neumann, given at
x = a, b, and given initial condition, u(x, t = 0). Laying down a uniforms grid, with equally
spaced nodes at x

i

, i = 0, . . . , N , let u
i

(t) denote our approximation of u(x
i

, t). Then we
can apply a second order central di↵erencing approximation to u

xx

(x
i

, t):

u
xx

(x
i

, t) ⇡ u
i+1(t)� 2u

i

(t) + u
i�1(t)

h2
,

where h denotes the stepsize of the grid. This equation should, of course, be modified near
the boundaries of the interval [a, b] to incorporate the given boundary conditions, since
u
i+1(t) and u

i�1(t) may refer to locations lying outside [a, b]. Thus, the heat equation at
(x

i

, t) is approximated by the equation

(u
i

)
t

(t) = K
u
i+1(t)� 2u

i

(t) + u
i�1(t)

h2
,

which, since there are no more derivatives in x, is a system of ODE’s.
Now, we select an appropriate ODE solver, such as Euler’s method. For this method,

we lay down a grid in time with nodes at t
k

, k = 0, . . . ,M , and let u(k)
i

denote our approxi-
mation of u

i

(t
k

), which, in turn, approximates u(x
i

, t
k

). Then applying a first order forward
di↵erencing approximation to (u

i

)
t

(t
k

):

(u
i

)
t

(t
k

) ⇡ u(k+1) � u(k)

�t
k

,

where �t
k

= t(k + 1)� t(k), our system of ODE’s becomes

u
(k+1)
i

� u
(k)
i

�t
k

= K
u
(k)
i+1 � 2u(k)

i

+ u
(k)
i�1

h2
.

This is usually written as

u
(k+1)
i

= u
(k)
i

+K�t
k

 
u
(k)
i+1 � 2u(k)

i

+ u
(k)
i�1

h2

!
, (9)

which allows us to advance a time step.
Convergence of the approximations generated from (9) to the true solution depends

on consistency and stability. A full analysis of stability, using von Neumann analysis,
reveals a restriction on the size of the stepsize in time, known as the CFL condition: the
largest possible stepsize giving stability is �t

k

= h2/(2K). With this choice of stepsize, the
approximations generated from (9) are second order accurate in space.

Similarly, the biharmonic equation, this time with K < 0, for parabolicity, is

u
t

(x, t) = Ku
xxxx

(x, t),

11



for x 2 [a, b], t > 0, and it can be discretized, using Euler’s method in time and second order
central di↵erencing of u

xxxx

in space, as

u
(k+1)
i

= u
(k)
i

+K�t
k

 
u
(k)
i+2 � 4u(k)

i+1 + 4u(k)
i

� 4u(k)
i�1 + u

(k)
i�2

h4

!
,

where there are suitable boundary conditions at a, b. A stability analysis in this case shows
that the largest time step for stability is �t

k

= h4/(�8K).

4.2 Numerical Descent Flow

For our descent flow (5), we lay down a uniform grid over [a, b], with equally spaced nodes
s
i

. Writing

(�
i

)
t

= �
P

±

✓
G

WP±,�

|�
s

| · n
◆
+ �

✓
G

A,�

|�
s

| · n
◆�

i

(r
i

)
t

= �
P

±

✓
G

WP±,r

|�
s

| · n
◆
� �

✓
G

A,r

|�
s

| · n
◆�

i

,

we can approximate the right hand sides by first expanding so that they are written in
terms of �, r, �

s

, r
s

, �
s

, r
ss

, �
ss

, r
sss

, �
sss

, �
ssss

, then using central di↵erencing approximations
on these derivatives:

(u
s

)
i

⇡ u
i+1 � u

i�1

2h

(u
ss

)
i

⇡ u
i+1 � 2u

i

+ u
i�1

h2

(u
sss

)
i

⇡ u
i+2 � 2u

i+1 + 2u
i�1 � u

i�2

2h3

(u
ssss

)
i

⇡ u
i+2 � 4u

i+1 + 4u
i

� 4u
i�1 + u

i�2

h4
,

with u = r or u = �
j

, for j = 1, 2, giving a systems of ODE’s. This procedure, in the
context of curves such as our �, is known as front tracking, since discrete points are placed
on the curve, or front, and then followed, or tracked, in time [6, 8, 9]. Finally, with Euler’s
method discretizing in time, we can write our approximation scheme as

�
(k+1)
i

= �
(k)
i

��t
k

P
±

✓
G

WP±,�

|�
s

| · n
◆
+ �

✓
G

A,�

|�
s

| · n
◆�(k)

i

r
(k+1)
i

= r
(k)
i

��t
k

P
±

✓
G

WP±,r

|�
s

| · n
◆
� �

✓
G

A,r

|�
s

| · n
◆�(k)

i

.

(10)

At each time step k, �(k) can be solved through numerical quadrature on (8). In our case,
we use the midpoint rule, since it is an open Newton-Cotes formula and hence avoids end-
points, where there are more restrictions for finite di↵erence approximations. Furthermore,

12



the CFL condition should be approximately determined by the coe�cient of the highest
order terms r

ss

and �
ssss

. From our previous analysis in section 3.4, for � fixed and no area
constraint, we try �t

k

= h2/(2M (k)
r

), or slightly smaller, where central di↵erencing is used
to approximate

M (k)
r

= max
i

"
X

±

C±

D3
±
(1± rH)2|�

s

|
#(k)

i

,

and, for r fixed and no area constraint, we try �t
k

= h4/(8M (k)
�

), or slightly smaller, where
central di↵erencing is used to approximate

M (k)
�

= max
i

"
X

±

C±

D3
±

(rr
s

)2

|�
s

|2

#(k)

i

.

For our general case of (5), we try the combination

�t
k

= h4/(8M (k)
�

+ 2h2M (k)
r

), (11)

or slightly smaller. Stability in these cases, with these choices of time stepsize, is verified
numerically.

We summarize the final algorithm as follows:

1. Lay down a uniform grid in [a, b] with stepsize h;

2. Set k = 0 and start with an initial worm shape given discretely as �(0)
i

, r
(0)
i

;

3. Solve for �(k) using midpoint rule on (8);

4. Form �t
k

according to (11);

5. Generate �
(k+1)
i

and r
(k+1)
i

according to (10), thus advancing a time step;

6. Set k = k + 1 and return to step 3.

5 Results

We run numerical simulations of our algorithm to view and check optimal worm shapes and
dynamics.

We begin with a verification of results. When C ⌘ 1, the homogeneous case, the
weighted perimeter is simply the perimeter. In this case, the optimal worm shape is known,
as a consequence of isoperimetric inequality, to have a straight line for central axis and
worm sides that are arcs of circles. We take as initial worm shape

�(s, 0) =


s,
1

2
sin(⇡s)

�
T

r(s, 0) =
1

10
sin(⇡s)

✓
9

10
+

1

10
cos(10⇡s)

◆
,
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for s 2 [0, 1], which has enclosed area calculated approximately as A0 = 0.151436966015541
using central di↵erencing and the midpoint rule. For the worm side on top, the exact solution
should be an arc from the circle of radius ⇢ = 1.167845974989029, an approximation we
obtain from the secant method solving

✓
A0

2
� ⇢2 arcsin

1

2⇢

◆2

� 1

4

✓
⇢2 � 1

4

◆
= 0,

and centered approximately at (0.5,�1.055397660267482). We plot the final and converged
worm shape, computed by our algorithm using N = 80 subdivisions in our grid and 200, 000
time steps, along with this circle in figure 1. Note the top side of the worm lies virtually
on top of the circle. Furthermore, we compute 1.570847661858110 · 10�5 as the maximum
distance the points of the top side of the worm lie away from the circle. With N = 40,
this maximum distance is 4.028649836265163 · 10�4, which shows our results improve with
smaller stepsizes h, hinting at convergence as h goes to zero.

-0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: This figure shows optimal worm shape in a homogeneous solution. Overlayed is
a circle whose arc gives the exact solution, from isoperimetric inequality, for the top side of
the worm.

We then show the details of the dynamics and optimal worm shape for a more compli-
cated example, when

C(x, y) =
3

5
+

2

5
sin(2⇡x) sin(2⇡y).
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In figure 2, we show the initial worm shape, given by

�(s, 0) = [s, s2]T

r(s, 0) =
1

10
sin(⇡s)

✓
9

10
+

1

10
cos(10⇡s)

◆
,

for s 2 [0, 1], followed by our computed worm shapes, for N = 100, at di↵erent times. Note,
the worm quickly loses the initial waviness in its sides by the next plotted time step. The
plots also show it deforming so its sides are away from yellow background areas that denote
larger C, and into purple areas that denote smaller C, at subsequent time steps. In figure
3, the energy plot shows decrease and convergence of the energy, while the area plot shows
the area being approximately preserved during the flow, with relative error around 0.1%.

We then show two more results of optimal worm shape, for N = 100, under the same C
but di↵erent worm end locations and di↵erent enclosed area. We chose a thin worm, in one
case, with small enclosed area, using initial worm shape

�(s, 0) =


2

5
sin(⇡s),

7

10
cos(⇡s)

�
T

r(s, 0) =
1

40
sin(⇡s),

for s 2 [0, 1], with final converged worm shape shown in figure 4. We then chose a long
worm in the other case, with endpoints further away, using initial worm shape

�(s, 0) = [�1 + 2s, 0]T

r(s, 0) =
3

40
sin(⇡s),

for s 2 [0, 1], with final converged worm shape shown in figure 4. Note, the worm sides settle
closer to purple regions and away from yellow regions. In both cases, the energy decreased
up until convergence, with the area approximately preserved.

We finally show two results from subcases, the first where � is given and fixed, and
the second where r is given and fixed and, additionally, without area constraint. Figure 5
shows the resulting optimal worm shapes in these cases for the same C and N = 100. Note,
other subcases that remove the area constraint frequently exhibit the optimal worm to be
infinitesimally thin.

We note that our approach can encounter di�culties in various examples. First of all,
we, for simplicity, do not reparametrize during the flow, so it is possible, with complex flows,
that the parametrization will break down, with very large or very small |�

s

| values. This is
a well-known issue in front tracking. We do note that parametrizations will not degenerate
too quickly since we are only dealing with normal velocities.

Also, sometimes our condition of |rH| < 1 can be violated during the descent flow.
This means the worm is trying to have its sides pass through themselves in an e↵ort

to reduce the e↵ect of caustics on its skin. This nonphysical situation usually reveals itself
with CFL restrictions of �t

k

going to zero in our algorithm [5].
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Figure 2: In this figure, we show initial worm shape in the top left, then subsequent worm
shapes computed by our algorithm at time steps 1, 000, 5, 000, 10, 000, 15, 000, and finally,
the converged worm shape at time step 50, 000 in the bottom right. The background colors
pertain to the amount of caustic material in the solution, with high amounts in yellow and
low amounts in purple.
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Figure 3: The figure on the left shows the values of the energy plotted against time, for a
total of 50, 000 time steps. The figure on the right shows the enclosed area of the worm
during these times.

Figure 4: This figure shows two optimal worm shapes, with di↵erent endpoints and enclosed
areas, computed by our algorithm.
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Figure 5: Left figure shows the case when � is fixed, and right figure shows the case when
r is fixed

Finally, we do not technically have a constraint on r > 0, even though the worm shape
often does not make physical sense otherwise. We have encountered some examples where
r does become zero and negative during the flow of the worm shape, thus invalidating the
results of our algorithm.

6 Conclusion

In this work, we study the optimal shapes of flatworms when they are exposed to caustic
solutions. We hypothesize that a flatworm attempts to minimize its surface area in order to
avoid touching a caustic solution but at the same time naturally conserves its body volume.
Since our investigation is confined to two dimensions, this conservation means that body
area should be fixed. Thus we model the worm to vary its shape about the central axis of its
body with the area constraint. We take energy methods from variational calculus and derive
Euler-Lagrange Equations, and then we write descent-flow for our energy. With the area
constraint, we find Lagrange Multipliers and then use a finite di↵erence scheme for space
and time. We implement our methods using Matlab to run simulations in order to check
our results. The resulting solutions to the PDEs derived show in succinct form the ways
flatworms respond in changing their shape in a caustic environment and how their dynamics
correspond to the isoperimetric inequality. For future work, we can consider implementing
more conditions, such as varying the type of caustic material to which the worm is exposed.
Furthermore we expect to write a more general model in three dimensions that is applicable
for di↵erent types of worms such as roundworms.
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8 Appendix A: Directional derivative

G
WP±,�,±

d
d✏

���
✏=0

Z
b

a

C(� + ✏�̃ ± rn)
p

(1± rH(� + ✏�̃))2|�0 + ✏�̃|2 + (r0)2 ds

= ±
R

b

a

C±
D±

((1± rH)rH̃|�0|2 + (1± rH)2�0 · �̃0)ds+
R

b

a

D±(rC± · �̃)ds
±
R

b

a

D±r
rC±
|�0| · �̃0?ds⌥

R
b

a

D±r
rCpm

|�0|3 · �0?�0 · �̃0ds

= ⌥
Z

b

a

⇣
C±
D±

(1± rH)rn
⌘00

· �̃ ds⌥
Z

b

a


C±
D±

(1± rH)r

✓
(�00 · ⌧)n

|�0| � 2H|�0|⌧
◆�0

· �̃ ds

�
Z

b

a

⇣
C±
D±

(1± rH)2�0
⌘0

· �̃ ds+

Z
b

a

D±rC± · �̃ ±
Z

b

a

✓
D±

r(rC±)
?

|�0|

◆0

· �̃

±
Z

b

a

✓
D±

rrC± · n
|�0| ⌧

◆0

· �̃ ds±
h
C±
D±

r0(n · �̃)
i
b

a

+
h
C±
D±

�0 · �̃
i
b

a

where H̃ is given by

H̃ = � �̃00 · n
|�0|2 +

�00? · �̃0

|�0|3 + 3
�00 · n
|�0|4 �0 · �̃0 = � �̃00 · n

|�0|2 +
�00? · �̃0

|�0|3 + 3
�00 · n
|�0|3 ⌧ · �̃0

Following are some useful properties used above:

n0 = ⌧?0 = ⌧ 0? = |�0|(�Hn)? = H�0

9 Appendix B: Descent flow

We write descent flow as following:
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