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Abstract

A linear program (or a linear programming problem, or an LP) is an op-
timization problem that involves minimizing or maximizing a linear function
subject to linear constraints. Linear programming plays a fundamental role not
only in optimization, but also in economics, strategic planning, analysis of al-
gorithms, combinatorial problems, cryptography, and data compression. When
linear programs are formulated in so-called standard form the set of variables
satisfying the linear constraints (the feasible set) is a convex polytope. If this
polytope is bounded and non-empty, then a solution of the linear program must
lie at a vertex. The simplex method for linear programming moves from one
vertex to another until an optimal vertex is found. Almost all practical linear
programs are degenerate, i.e., there are vertices that lie at the intersection of
a set of linearly dependent constraints. The conventional simplex method can
cycle at a degenerate vertex, which means that the iterations can be repeated
infinitely without changing the variables. In the first part of this thesis, we
discuss the e↵ects of degeneracy and investigate several non-simplex methods
that avoid cycling by solving a linear least-squares subproblem at each itera-
tion. In the second part, we propose a new active-set method based on adding
a penalty term to the linear objective function. Numerical results indicate that
the proposed method is computationally e�cient.
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4 Anti-Cycling Methods for Linear Programming

1. Introduction

In this paper we consider methods for the solution of the linear programming (LP)
problem in standard form, i.e.,

(LP)
minimize

x

cTx

subject to Ax = b x � 0,

where A is a constant m⇥ n matrix, and b and c are constant vectors with m and
n components, respectively. The set of variables satisfying the linear constraints of
(LP) (the feasible set) is a convex polytope. If this polytope is bounded and non-
empty, then a solution of the linear program (LP) must lie at a vertex of the feasible
set. A vertex is characterized by a non-negative basic solution of the equations
Ax = b that is calculated by solving an m⇥m system of equations BxB = b, where
the columns of B are a subset of the columns of A. The set of indices of the columns
of A used to define B is known as a basis. The variables associated with the columns
of B are known as the basic variables. The variables with indices that are not in
the basis are known as the nonbasic variables.

The simplex method was the first method to be proposed for solving a linear
program (see, e.g., [5]). The simplex method moves repeatedly from one vertex to
an adjacent vertex until an optimal vertex is found. Each change of vertex involves
moving a variable from the nonbasic set to the basic set and vice-versa. Each itera-
tion involves solving two systems of linear equations of order m. Almost all practical
linear programs are degenerate, i.e., there are vertices that lie at the intersection of
a set of linearly dependent constraints. Unfortunately, the conventional simplex
method can cycle at a degenerate vertex, which means that the iterations can be
repeated infinitely without changing the variables. A crucial decision associated
with the simplex method is the choice of which variable should enter the basis at
each iteration. This choice is determined by so-called pivot rules. A good choice
of pivot can prevent cycling on degenerate problems and enhance the speed of the
method. The “Dantzig rule” [5] is the earliest and simplest pivot rule and chooses
the variable with the most negative reduced cost to enter the basis. Unfortunately,
the simplex method implemented with the Dantzig rule can cycle. Bland’s pivot
rule [3] defines a choice of entering and leaving variable that precludes the possibil-
ity of cycling. However, an implementation of the simplex method with Bland’s rule
usually requires substantially more iterations to solve an LP than an implementa-
tion based on the Dantzig rule. One variation of Dantzig rule is the steepest-edge
algorithm [7,16]. It chooses an entering index with the largest rate of change in the
objective. The steepest-edge simplex method can be e�cient in terms of reducing
the number of simplex iterations, but can also cause the simplex method to cycle.

In the 71 years since the simplex method was first proposed, two other types
of method for solving a linear program have been proposed. The first of these is
the interior-point method. Interest in these methods was initiated by Karmarkar’s
announcement [17] in 1984 of a polynomial-time linear programming method that
was 50 times faster than the simplex method. Amid the subsequent flurry of interest
in Karmarkar’s method, it was shown in 1985 [11] that there is a formal equivalence
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between Karmarkar’s method and the classical logarithmic barrier method applied
to linear programming. This resulted in many long-discarded barrier methods being
proposed as polynomial-time algorithms for linear programming. One of the main
features of an interior method is that every iterate lies in the strict interior of the
feasible set, which implies that there is no basis defined. In the past thirty years,
many e�cient implementations of the interior-point method and its variants have
been developed [18, 20–22]. Extensive numerical results indicate that robust and
e�cient implementations of the interior-point method can solve many large-scale
LP problems. As all the iterates lie inside the feasible set, it is not possible for an
interior-point method to cycle.

This paper will focus on the second alternative to the simplex method, which
is an active-set method that does not necessarily move from vertex to vertex. This
method is similar to the simplex method in the sense that it uses a basis with
independent columns. However, unlike the simplex method, the basis matrix does
not have to be square.

Instead of solving (LP) directly by using an active-set method, we consider
methods based on solving a non-negative least-squares subproblem of the form

(NNLS)
minimize

x

kABx� bk2

subject to x � 0,

where k ·k denotes the two-norm of a vector, and AB denotes a working basis matrix.

2. Notation, Definitions and Theorems

2.1. Notation

Unless explicitly indicated otherwise, k·k denotes the vector two-norm or its induced
matrix norm. Given vectors a and b with the same dimension, min(a, b) is a vector
with components min(a

i

, bI). The vectors e and e
j

denote, respectively, the column
vector of ones and the jth column of the identity matrix I. The dimensions of e,
e
i

and I are defined by the context. Given vectors x and y, the column vector
consisting of the components of x augmented by the components of y is denoted by
(x, y).

2.2. Definitions

Definition 2.1. The primal and dual linear programs associated with problem (LP)
are

(P) minimize
x2Rn

cTx subject to Ax = b, x � 0,

and

(D) maximize
y2Rm

bTy subject to ATy  c,

where (D) is the dual of problem (P).
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Definition 2.2. (Feasible direction) Let ȳ be a feasible point for the linear in-
equality constraints ATy  c. A dual feasible direction at ȳ is a vector p satisfying

p 6= 0 and AT(ȳ + ↵p)  c for some ↵ > 0.

2.3. Theorems and Lemmas

Theorem 2.1. (Farkas’ Lemma) Let A 2 Rm⇥n and b 2 Rm. Then exactly one
of the following two systems is feasible:

1. {x : Ax = b, x � 0},

2. {y : AT y  0, bT y > 0}.

Theorem 2.2. (Dual active-set optimality conditions for an LP)
A point x⇤ is a solution of (LP) if and only if Ax⇤ = b, ABx⇤B = b with x⇤B � 0, and
there exists a y⇤ such that ATy⇤  c, where AB is the active-constraint matrix at y⇤.

3. Primal-Dual Non-Negative Least Squares

In this section we present a modification of the method of Barnes et al. [1] to
solve the linear program (LP). The primal-dual non-negative least-squares method
(PDNNLS) is based on solving the dual problem (D) instead of the primal problem
(P). A strict feasible ascent direction for the dual is found by using the residual
vector from the solution of a non-negative least squares sub-problem (NNLS). A
suitable step along this direction will increase the objective function of (D) at each
iteration.

The main algorithm PDNNLS is described in section 3.1.2 and its corresponding
formulation of phase 1 problem is described in Section 3.1.3. In Section 3.2 we
present methods for solving (NNLS) subproblem that can be used in PDNNLS.

3.1. Solving the Linear Program

3.1.1. Finding a feasible ascent direction

Theorem 3.1. Let x⇤ be the solution of the problem

(NNLS) minimize
x2Rt

1

2

kABx� bk2 subject to x � 0,

where AB is the submatrix corresponding to B, and |B| = t. Let �y = b�ABx⇤. If
�y 6= 0 then �y is a feasible ascent direction for (D), i.e. bT�y > 0.

Proof. The Lagrangian of (NNLS) with y as the multiplier is given by

L(x, y) = 1

2

(ABx� b)T(ABx� b)� yTx.
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The Kuhn-Tucker optimality conditions imply that

AT

B(ABx
⇤ � b) = y, (3.1a)

x⇤ � 0, (3.1b)

y � 0, (3.1c)

yTx⇤ = 0. (3.1d)

The optimality conditions for (NNLS) are then given by: (i) the feasibility conditions
(3.1b); (ii) the nonnegativity conditions (3.1c) for the multipliers associated with the
bounds x � 0; (iii) the stationarity conditions (3.1a); and (iv) the complementarity
conditions.(3.1d). Then the following holds,

AT

B(ABx
⇤ � b) � 0, (3.2a)

x⇤TAT

B(ABx
⇤ � b) = 0. (3.2b)

From the definition of �y, condition (3.2a) can be rewritten as AT

B�y  0. The
condition (3.2b) then gives

bT�y = bT�y + x⇤TAT

B(ABx
⇤ � b)

= �bT (ABx
⇤ � b) + x⇤TAT

B(ABx
⇤ � b)

= (ABx
⇤ � b)T(ABx

⇤ � b)

= kABx
⇤ � bk2 > 0.
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3.1.2. The PDNNLS algorithm

The motivation for the algorithm PDNNLS is to solve problem (NNLS) at each
iteration and use �y = b� ABx⇤ as an ascent direction for the dual problem. The
algorithm is described below.

Algorithm 1 Primal-Dual Non-Negative Least Squares (PDNNLS).

1: input A, b, c, and a dual feasible point y;
2: while not convergent do
3: Let B be the active set for AT y  c, so that AT

By = cB;
4: Solve (NNLS) for x⇤;
5: if ABx⇤ = b then
6: stop; [(x⇤, y⇤) is optimal]
7: else
8: �y  b�ABx⇤;
9: end if

10: if AT

N�y  0 then
11: stop; [The dual is unbounded below]
12: else
13: ↵ min

i:i2N ,a

T
i �y>0

ci�a

T
i y

a

T
i �y

;

14: end if
15: y  y + ↵�y;
16: end while
17: return x, y;

3.1.3. Finding a feasible point

If c � 0, then y
0

= 0 is feasible for the constraints ATy  c and y
0

can be used
to initialize Algorithm PDNNLS. Otherwise, an initial dual feasible point can be
computed by solving the phase 1 linear program:

minimize
y2Rm

,✓2R
✓

subject to ATy + ✓e  c, ✓  0.

An initial feasible point for this LP is given by (y
0

, ✓
0

), where y
0

= 0 and ✓
0

= min
i

c
i

.
Consider the quantities Ā 2 R(m+1)⇥(n+1), b̄ 2 Rm+1, c̄ 2 Rn+1 and initial dual
feasible point ȳ

0

such that

Ā =

✓

A 0
eT 1

◆

, b̄ =

0

B

B

B

@

0
...
0
1

1

C

C

C

A

, c̄ =

✓

c
0

◆

, ȳ
0

=

✓

y
0

✓
0

◆

.

Use Ā, b̄, c̄, and ȳ
0

as input for (PDNNLS). If the associated dual (D) is feasible,
then the phase 1 problem will have an optimal solution with zero objective value
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and final iterate ȳ = (y
1

, 0). If the optimal phase 1 objective is nonzero the dual is
infeasible and the primal (P) is unbounded. If phase 1 terminates with a feasible
y
1

, the original coe�cient matrix A, cost vector c, and the bound constraint vector
b can be used as input for a second phase to solve using (PDNNLS).

3.2. Solving the NNLS Sub-problem

Over the years, various methods have been developed for solving NNLS. Generally,
approaches can be divided into three broad categories. The first includes iterative
methods such as gradient projection methods and barrier methods. The second cat-
egory includes methods based on transforming NNLS into a least-distance problem
that is solved as a linear inequality constrained least-squares problem. The third
category includes other active-set methods that do not transform NNLS into an
equivalent least-distance problem.

In this section we focus on active-set methods. Specifically, we present the
classical Lawson and Hanson algorithm and its improved version known as the fast
non-negative least squares method (FNNLS).

3.2.1. Optimality conditions for NNLS

The classical NNLS algorithm was proposed by Lawson and Hanson [19] in 1974 for
solving the following problem

minimize
x2Rn

kAx� bk subject to Dx � f,

where A 2 Rm⇥n and b 2 Rm. This problem is equivalent to NNLS if D = I and
f = 0. Consider the problem

minimize
x2Rn

kAx� bk subject to x � 0.

which is equivalent to the problem

(NNLS) minimize
x2Rn

1

2

kAx� bk2 subject to x � 0.

Proposition 3.1. (Kuhn-Tucker Conditions) A vector x 2 Rn is an optimal
solution for problem (NNLS) if and only if there exists a y 2 Rn satisfying

AT(Ax� b) = y, (3.3a)

x � 0, (3.3b)

y � 0, (3.3c)

xTy = 0. (3.3d)

Proof. The Lagrangian for (NNLS) is

L(x, y) = (Ax� b)T(Ax� b)� yTx.
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Stationary of the Lagrangian with respect to x implies that

AT(Ax� b)� y = 0. (3.4)

The optimality conditions for (NNLS) are then given by: (i) the feasibility conditions
(3.3b); (ii) the nonnegativity conditions (3.3c) for the multipliers associated with the
bounds x � 0; (iii) the stationarity conditions (3.3a); and (iv) the complementarity
conditions.(3.3d).

3.2.2. The Lawson and Hanson method

The NNLS algorithm is described below. The inputs include a matrix A 2 Rm⇥n

and a vector b 2 Rm. The dual vector y is calculated and the corresponding working
set B and non-working set N are defined and modified each iteration. The working
set is changed as follows: in the main loop, the algorithm calculates the dual vector
y, selects the most negative index of the dual vector and adds it to B. In the inner
loop, the algorithm tries to satisfy the primal feasibility condition (3.3b) by finding
an vector z such that its subvector zB corresponding to B solves the least-square
problem while its subvector zN corresponding to N will always be held at value zero.
Inside the primal feasibility loop, xN will always be zeros while xB will be free to
take values other than zero. If there is any variable x

i

< 0, i 2 B, the algorithm
will either take a step to change it to a positive value, or set the variable to 0 and
move it to N .

Algorithm 2 Non-Negative Least Squares.

B  ;; N  {1, . . . , n}; x 0; [Fix all variables on their bounds]
y  AT(Ax� b);
while N 6= ; and 9i : y

i

< 0 do
l argmin

i2N
; y

i

;

B  B [ l, N  N \ l;
zN  0 and find zB by solving minimize

z2Rt
kABz � bk;

while 9i 2 B : z
i

< 0 do
k  argmin

i2B,zi0

x
i

/(x
i

� z
i

);

↵ x
k

/(x
k

� z
k

); [Compute the maximum feasible step]
x x+ ↵(z � x);
E  {i : x

i

= 0};
B  B \ E ; N  N [ E ;
zN  0 and find zB by solving minimize

z2Rt
kABz � bk;

end while
x z;
y  AT(Ax� b);

end while
return x, y;
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Proposition 3.2. On termination of Algorithm 2, the solution x and the dual vec-
tor y satisfy

x
i

> 0, y
i

= 0, i 2 B,
x
i

= 0, y
i

� 0, i 2 N .

Proof. The resulting solution vector x after the primal feasibility loop will satisfy
xN = 0 and xB > 0, where xB is the solution of

minimize
x2Rt

kABx� bk.

The vector xB can be written as xB = A†
Bb, where A†

B is the Moore-Penrose pseu-
doinverse of AB. (If AB has full column rank then A†

B = (AT

BAB)�1AT

Bb). Then

Ax� b = ABxB +ANxN � b = ABA
†
Bb� b = �(I �ABA

†
B)b,

and the subvector of y corresponding to B is

yB = AT

B(Ax� b) = �AT

B(I �ABA
†
B)b = 0,

because the vector (I �ABA
†
B)b lies in the null space of AT

B . The termination of the
main loop implies that yN � 0, which implies that y � 0.

The NNLS algorithm requires a finite number of iterations to obtain a solu-
tion. For the finiteness of NNLS algorithm, we refer readers to [19] for more detail.

However, the significant cost of computing the pseudoinverse A†
B in Steps 6 and 13

implies that the method is slow in practice.



12 Anti-Cycling Methods for Linear Programming

3.2.3. Fast NNLS algorithm

Many improved algorithms have been suggested since 1974. Fast NNLS (FNNLS) [4]
is an optimized version of the Lawson and Hanson’s algorithm which implemented
in the Matlab routine lsqnonneg. It uses precomputed cross-product matrices in
the normal equation formulation and used them repeatedly.

Algorithm 3 Fast non-negative least squares.

Choose x; Compute N = {i : x
i

= 0} and B = {i : x
i

> 0};
repeat

repeat
zB = argmin

z

kABz � bk; zN = 0;
if min

j2B z
j

< 0 then
k  argmin

i2B,zi<0

x
i

/(x
i

� z
i

);

↵ x
k

/(x
k

� z
k

); [Compute the maximum feasible step]
N  N [ {k}, B  B \ {k}; [fix x

k

on its bound]
x x+ ↵(z � x);

else
x = z;

end if
until x = z
y  AT(Ax� b);
y
min

 min
i2N

y
i

; l argmin
i2N

y
i

;

if y
min

< 0 then
B  B [ {l}; N  N \ {l}; [free x

l

from its bound]
end if

until y
min

� 0
return x, y;

4. Mixed Constraints

The idea of solving linear programming by solving a least-squares subproblem for
the dual feasibility can be extended to problems with a mixture of equality and
inequality constraints. Consider the following problem

minimize
x2Rn

cTx

subject to aT
i

x = b
i

, for i 2 E , aT
i

x � b
i

, for i 2 I,
(4.1)

where E , I are partitions of M = {1, . . . ,m} with E\I = ;. The quantity E denotes
the index set of the equality constraints, and it is assumed that |E| = m

1

. Similarly,
I denotes the index set of the inequality constraints, with |I| = m

2

. Also, let B
denote the indices of a basis. Let A be an m⇥ n matrix with i-th row vector given
by aT

i

. Let AE and AI denote the matrices consisting of rows of A with indices in E
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and I, respectively. Therefore, (4.1) is equivalent to

(P
MC

)
minimize

x2Rn
cTx

subject to AEx = bE, AIx � bI .

4.1. Solving the Mixed-Constraint LP

4.1.1. Optimality conditions

Proposition 4.1. A vector x 2 Rn is an optimal solution for problem (P
MC

) if and
only if there exists a y 2 Rm such that

AEx = bE, (4.2a)

AIx � bI , (4.2b)

ATy = c, (4.2c)

yI � 0, (4.2d)

yTI (AIx� bI) = 0, (4.2e)

where yE, and yI are the vectors of components of the Lagrangian multiplier y as-
sociated with E and I, respectively.

The Lagrangian is given by

L(x, y) = cTx� yTE (AEx� bE)� yTI (AIx� bI)

= xT(c�AT

Ey �AT

I yI) + bTEyE + bTI yI

= bTEyE + bTI yI + xT(c�ATy)

= bTy � xT(ATy � c),

which implies that the dual problem is

(D
MC

)
maximize

y2Rm
bT y

subject to ATy = c, yI � 0.

From the formulation of (D
MC

), the following proposition holds.

Proposition 4.2. Let B denote a working basis. If y
i

� 0 for i 2 I \B, and y
i

= 0
for i 2 N , then y solves problem (D

MC

).

Proof. The complementary slackness conditions (4.2e) are satisfied when aT
i

x�b
i

=
0, for i 2 I \B. The non-negativity of the multipliers associated with the inequality
constraints (4.2d) requires y

i

� 0 for i 2 I \B. For i 2M\B it holds that aT
i

x 6= b
i

and y
i

must be zero to satisfy the complementarity conditions.

By Proposition 4.2, the mixed constraint problem (4.1) is equivalent to solving
the bound constrained linear least-squares subproblem

(BLS)
minimize

y2Rt
kAT

B y � ck2

subject to y
i

� 0, i 2 I \ B.
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If the subvector y⇤B is the optimal solution of problem (BLS) and y⇤N = 0, then y⇤ is
the optimal solution of problem (D

MC

). Otherwise, we find a feasible descent direc-
tion for the primal problem (P

MC

) and update the current iterate. An appropriate
method for solving problem (BLS) is described in Section 4.2.

4.1.2. Finding a descent direction

The method for solving a problem with mixed constraints uses two di↵erent types
of descent direction. Each of these directions is the residual vector at the solutions
of a linear least-squares problem.

A Type-1 descent direction is computed by solving the unconstrained least-
squares problem

minimize
y2Rt

kAT

By � ck2.

If y⇤ is the optimal solution of this problem, then �x = AT

By
⇤ � c is a feasible

descent direction for the primal. For a proof, we refer the reader to [10]. The search
direction may be regarded as a gradient descent direction in range(AB).

A Type-2 descent direction is found by solving the bound-constrained problem
(BLS). To establish that the optimal residual of this problem is a feasible descent
direction, we first state the optimality conditions of (BLS).

Proposition 4.3. A vector y 2 Rt is an optimal solution for problem (BLS) if and
only if there exists a vector � 2 Rn satisfying the following conditions.

y
i

� 0, i 2 I \ B, (4.3a)

AB(A
T

By � c) = �, (4.3b)

� � 0, (4.3c)

�Ty = 0. (4.3d)

The motivation for finding the feasible descent direction is similar to the idea
described in Section 3.1. We use the residual vectors as the search direction. The
following proposition proves that such direction is a feasible descent direction for
the (P

MC

).

Proposition 4.4. Assume that y⇤ solves (BLS) and let r = AT

By
⇤ � c. If r = 0,

then x solves the mixed-constraint linear program (4.1). Otherwise, r is a feasible
descent direction for (P

MC

).

Proof. Assume that r = 0. Let p be a feasible direction, i.e., p satisfies aT
i

p � 0 for
i 2 I \ B and aT

i

p = 0 for i 2 E . Then

cTp = (AT

By
⇤)Tp = y⇤T(AT

Bp) =
X

i2I\B
y⇤
i

(aT
i

p) +
X

i2E
y⇤
i

(aT
i

p) =
X

i2I\B
y⇤
i

(aT
i

p) � 0.

It follows that every feasible direction is a direction of increase for the objective,
which implies that x solves (4.1).
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If r 6= 0, it follows directly from Proposition 4.3 that

ABr = AB(A
T

By
⇤ � c) = � � 0.

Also, since c = AT

By
⇤ � r, and conditions (4.3b) and (4.3d) hold, we have

cTr = (AT

B y⇤ � r)T r = y⇤TABr � krk2 = y⇤T�� krk2 = �krk2 < 0.

This proves the claim.

4.1.3. The algorithm

Algorithm 4 below gives the steps of the algorithm for solving an LP with mixed
constraints. In the main loop, a Type-1 direction is used until the stationarity
conditions are satisfied, at which point the inner loop is entered. A Type-2 descent
direction is found in the inner loop. Then the algorithm tests if the problem is
unbounded above by checking if the search direction �y satisfies AT

N�y � 0. The
step size ↵ is then found by calculating the largest step along �y that maintains
the dual feasibility.

The use of a mixture of Type-1 and Type-2 directions significantly reduces the
number of times that it is necessary to solve problem (BLS). A similar scheme can
be applied to problem PDNNLS to improve the e�ciency.

Algorithm 4 Mixed Constraints.
Input A, b, c, a feasible point x, and I
while not converged do

Let B be the active set such that ABx = bB;
Solve minimize

y2Rt
kAT

By � ck2 for y;

if AT

By = c then
if y

i

� 0, i 2 I \ B then
Stop; [optimal solution]

end if
Compute y, the solution of

minimize
y2Rt

kAT

By � ck2 subject to y
i

� 0, i 2 I \ B;

end if
�x AT

By � c;
if AN�x � 0 then

stop; [unbounded above]
else

↵ min
i:i2N ,a

T
i �x<0

bi�a

T
i x

a

T
i �x

;

end if
x x+ ↵�x;

end while
return x, y;
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4.1.4. Finding a feasible point

If necessary, a phase 1 linear program must be solved for an initial feasible point.
Consider choosing B such that |B|  n and E ✓ B. One choice of such B is to let
B = E . Let bB, bN be subvectors of b associated with B and N . The initial x

0

is
calculated by solving ABx0 = bB. If ANx0 � bN , then there is no need to solve a
Phase 1 problem, i.e., x

0

is feasible. Otherwise, we define the auxiliary variable ✓
0

as
✓
0

= �min
i2N

(aT
i

x
0

� b
i

).

The phase 1 problem for mixed constraints is

minimize
x2Rn

,✓2R
✓ subject to AEx = bE, AIx+ ✓e � bI , ✓ � 0.

Define Ā 2 R(m+1)⇥(n+1), b̄ 2 Rm+1, c̄ 2 Rn+1 and initial feasible point x̄
0

such that

A=̄

✓

A eN
0 1

◆

, b̄ =

✓

b
0

◆

, c̄ =

0

B

@

0
...
1

1

C

A

, x̄
0

=

✓

x
0

✓
0

◆

,

where eN 2 Rm with [eN ]i = 1 if i 2 N and 0 otherwise.
If the optimal solution (x⇤, ✓⇤) satisfies ✓⇤ = 0, then x⇤ is a feasible point for

(P
MC

). Then we use x⇤ as the initial feasible point for the phase 1 problem.

4.2. Solving Bounded Least Square Problems

In this section, we describes two methods for solving the (BLS). The method in
Section 4.2.1 uses the singular value decomposition, and transforms the (BLS) to a
least distance problem (LDP). It also takes the advantages of the classical (NNLS).
In section 4.2.2, we present a modified method of (NNLS) based on Dax’s paper [6].

4.2.1. Solving BLS using the singular-value decomposition

Let D be a t⇥ t diagonal matrix with D
ii

= 1 if i 2 I \ B and D
ii

= 0, otherwise.
Therefore, (BLS) is equivalent to

minimize
y2Rt

kAT

By � ck2 subject to Dy � 0.

One way to solve (BLS) is to solve the least-distance problem (LDP) in the following
form in instead,

(LDP) minimize
z2Rt

kzk subject to Ez � f.
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Proposition 4.5. Solving (BLS) is equivalent to solving (LDP).

Proof. Given AB is a matrix of dimension t⇥ n, the singular value decomposition
gives

AT

B = bU⌃V T =
�

U
1

U
2

�

✓

⌃
0

◆

V T ,

where U and V are orthogonal with dimension n⇥n and t⇥ t respectively. Besides,
U
1

is of dimension n⇥ t, U
2

is of dimension n⇥ (n� t), and ⌃ is a diagonal matrix
of dimension t⇥ t. The objective function of (BLS) can be written as

kAT

By � ck2 = kU ⌃̂V T y � ck2

= k⌃̂V T y � UT ck2

= k
✓

⌃V T y
0

◆

�
✓

UT

1

c
UT

2

c

◆

k2

= k⌃V T y � UT

1

ck2 + kUT

2

ck2

= kzk2 + kUT

2

ck2,

where z = ⌃V T y�UT

1

c. By change of variables, y = V ⌃�1(z+UT

1

c), the constraint
of (BLS) becomes

DV ⌃�1z � �DV ⌃�1UT

1

c.

If the constant second term kUT

2

ck2 is omitted, then (LDP) and (BLS) are equivalent
for E = DV ⌃�1 and f = �DV ⌃�1UT

1

c.

The classical NNLS algorithm can be used to compute the solution for (LDP).
Instead of computing z directly, we can compute a t vector bu solves the problem

minimize
u2Rt

�

�

�

✓

ET

fT

◆

u� e
t+1

�

�

�

2 subject to u � 0,

where e
t+1

is a t+ 1 vector with everywhere zeros except its (t+ 1) entry. Further,

if r =

✓

ET

fT

◆

bu� e
t+1

, then the following proposition holds.

Proposition 4.6. If z
i

= r
i

/r
t+1

, i = 1, 2, . . . , t, then z solves (LDP).

Proof. The gradient of the objective function 1

2

k
✓

ET

fT

◆

u� e
t+1

k2 at bu is

g =
�

E f
�

n

✓

ET

fT

◆

bu� e
t+1

o

=
�

E f
�

r.

From the KKT condition for the NNLS problem, the complementary slackness con-
dition (3.3d) requires gT bu = 0. Then

krk2 = rT r = rT
n

✓

ET

fT

◆

bu� e
t+1

o

= gT bu� r
t+1

= �r
t+1

> 0.
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As z
i

= �r
i

/r
t+1

, for i = 1, 2, . . . , t, we have

r = �r
t+1

✓

z
�1

◆

.

The dual feasibility condition (3.3c) requires g � 0,

g =
�

E f
�

r = �
�

E f
�

✓

z
�1

◆

r
t+1

= (Ez � f)(�r
t+1

) � 0.

The strict inequality �r
t+1

> 0 implies that Ez � f , which establishes the feasibility
of constraints.

It remains to show that z is the minimizer. The KKT conditions for (LDP)
require that z must be a nonnegative linear combination of rows of E.

z = � 1

r
n+1

0

B

@

r
1

...
r
n

1

C

A

= � 1

r
n+1

ET

bu =
1

krk2E
T

bu,

where bu � 0 from the primal feasibility condition of the non-negative least squares
problem (3.3b). Therefore, z is the solution of Problem (LDP).

By change of variable, i.e., y = V ⌃�1(z + UT

1

c), (LDP) can be solved as well.
The BLS algorithm using NNLS is described below.

Algorithm 5 Bounded Least Square-NNLS.
Input AB, c;
Calculate the economy-size singular value decomposition of AT

B

AT

B = U
1

⌃V T ;

E  DV ⌃�1; f  �DV ⌃�1UT

1

c;
Use NNLS to compute bu, the solution of

minimize
u2Rt

�

�

�

�

✓

ET

fT

◆

u� e
t+1

�

�

�

�

2

subject to u � 0;

r  
✓

ET

fT

◆

bu� e
t+1

;

if r = 0 then
stop; [Ez � f is not compatible]

else
z
i

 �r
i

/r
t+1

, i = 1, . . . , t;
end if
y  V ⌃�1(z + UT

1

c);
return y;
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This algorithm performs well for low dimensional problems. However, since com-
puting the singular value decomposition involves approximately m2n+ n3 floating-
point operations for a matrix of dimension m⇥ n, it is not e�cient to compute the
singular-value decomposition from AT

B directly. Instead, we use the economy-size
QR factorization in the outer loop if n� t and compute the singular value decom-
position of the square upper-triangular matrix R. This gives the decomposition

R = Ū⌃V T ,

which implies that AT

B can be written as

AT

B = Q
1

R = Q
1

Ū⌃V T = U
1

⌃V T , with U
1

= Q
1

Ū .

The singular-value decomposition of R requires 2t3 floating-point operations.

4.2.2. Dax’s method for BLS

Without loss of generality, consider solving the (BLS) in the following form

(BLS)
minimize

x2Rn
kAx� bk2

subject to x
i

� 0, i 2 I,

where A 2 Rm⇥n and I ⇢ {1, 2, . . . , n}. To solve the mixed constraints problems
using the following algorithm, simply substitute A, x, and b with AT

B , y and c
respectively.

From Proposition 4.3 and using an appropriate substitution, the following result
holds.

Proposition 4.7. If x is a feasible point for (BLS) and the following equations are
satisfied

y
i

= 0, if i 2 E ,
y
i

= 0, if i 2 I \ B, x
i

> 0,

y
i

> 0, if i 2 I \ B, x
i

= 0,

then x is the optimal solution for (BLS).

Dax’s method is given in Algorithm 6 below. The method performs well when
there is no degeneracy. However, if a problem is degenerate, a large number of
iterations may be required to solve the bounded least squares problem.
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Algorithm 6 Bounded least squares.

function Bounded Least Squares(A, b, I, x
0

)
Define a feasible point x as

x
i

=

(

0, [x
0

]
i

< 0, i 2 I;
[x

0

]
i

, otherwise;

while not convergent do
N  {i : x

i

= 0, i 2 I}; B  {1, . . . , n} \ N ;
r  Ax� b;
�xN  0 and find �xB by solving minimize

x2Rt
kABx� rk;

if kA�x� rk � krk then
y  ATr; [Calculate the gradient]

y⇤
i

=

(

0, i 2 N , y
i

> 0;

y
i

, otherwise;
if y⇤ = 0 then

stop; [x is the optimal solution]
else

j  argmax
i/2N

|y⇤
i

|; �x = � yj

kajk2 ej ;

end if
end if
Find the largest step ↵ 2 (0, 1] such that x+ ↵�x � 0;
x x+ ↵�x;

end while
return x, y;

end function

The algorithm described above starts with a feasible point satisfying x
i

� 0, for
i 2 I, and calculates the search direction by solving an unconstrained linear least-
squares problem. If the search direction is a descent direction, then it is used to
perform the line search. Otherwise, a dual vector y⇤ is calculated and the optimality
conditions of Proposition 4.7 are checked. An auxiliary dual vector y is used to
calculate y⇤. If the current point is not optimal, the index of the largest dual
violation is selected use to compute a new primal search direction. The step length
↵ satisfies ↵ 2 (0, 1], which implies that the new iterate always satisfies the primal
feasibility condition, i.e., x+ ↵�x � 0.

5. A Primal-Dual Active Set Method for Regularized LP

The method considered in this section is based on applying a quadratic regularization
term to the linear program (LP) and solving the resulting regularized problem using
a primal-dual quadratic programming (QP) method. (For more details on solving
convex quadratic programming problems, see [8].) The regularized linear program
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(RLP) is given by

minimize
x2Rn

, y2Rm
cTx+ 1

2

µyTy

subject to Ax+ µy = b, x � 0,
(5.1)

where µ (0 < µ < 1) is a fixed regularization parameter, and A, b and c are the
quantities associated with the linear program (LP). A solution of the regularized
linear program (5.1) is an approximate solution of (LP).

5.1. Formulation of the Primal and Dual Problems

For given constant vectors q and r, consider the pair of convex quadratic programs

(PLP
q,r

)
minimize

x,y

1

2

µyTy + cTx+ rTx

subject to Ax+ µy = b, x � �q,

and

(DLP
q,r

)
maximize

x,y,z

�1

2

µyTy + bTy � qTz

subject to ATy + z = c, z � �r.

(The significance of the shifted constraints x � �q and z � �r is discussed below.)
The following result gives joint optimality conditions for the triple (x, y, z) such
that (x, y) is optimal for (PLP

q,r

), and (x, y, z) is optimal for (DLP
q,r

). If q and r
are zero, then (PLP

0,0

) and (DLP
0,0

) are the primal and dual problems associated
with (5.1). For arbitrary q and r, (PLP

q,r

) and (DLP
q,r

) are essentially the dual of
each other, the di↵erence is only an additive constant in the value of the objective
function.

5.2. Optimality Conditions and the KKT Equations

Proposition 5.1. Let q 2 Rn and r 2 Rm denote given constant vectors. If (x, y,
z) is a given triple in Rn ⇥Rm ⇥Rn, then (x, y) is optimal for (PLP

q,r

) and (x, y,
z) is optimal for (DLP

q,r

) if and only if

Ax+ µy � b = 0, (5.2a)

c�ATy � z = 0, (5.2b)

x+ q � 0, (5.2c)

z + r � 0, (5.2d)

(x+ q)T(z + r) = 0. (5.2e)

In addition, it holds that optval(PLP
q,r

)�optval(DLP
q,r

) = �qTr. Finally, (5.2) has
a solution if and only if the primal and dual feasible sets

�

(x, y, z) : ATy + z = c, z � �r
 

and
�

x : Ax+ µy = b, x � �q
 

are both nonempty.
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Proof. Without loss of generality, let ey denote the Lagrange multipliers for the
constraints Ax+ µy � b = 0. Let z + r be the multipliers for the bounds x+ q � 0.
With these definitions, a Lagrangian function L(x, y, ey, z) associated with (PLP

q,r

)
is given by

L(x, y, ey, z) = (c+ r)Tx+ 1

2

µyTy � eyT(Ax+ µy � b)� (z + r)T(x+ q),

with z+ r � 0. Stationarity of the Lagrangian with respect to x and y implies that

c+ r �AT

ey � z � r = c�AT

ey � z = 0, (5.3a)

µy � µey = 0. (5.3b)

The optimality conditions for (PLP
q,r

) are then given by: (i) the feasibility condi-
tions (5.2a) and (5.2c); (ii) the nonnegativity conditions (5.2d) for the multipliers
associated with the bounds x + q � 0; (iii) the stationarity conditions (5.3); and
(iv) the complementarity conditions (5.2e). The vector y appears only in the term
µy of (5.2a) and (5.3b). In addition, (5.3b) implies that µy = µey, in which case we
may choose y = ey. This common value of y and ey must satisfy (5.3a), which is then
equivalent to (5.2b). The optimality conditions (5.2) for (PLP

q,r

) follow directly.
With the substitution ey = y, the expression for the primal Lagrangian may be

rearranged so that

L(x, y, z) = �1

2

µyTy + bTy � qTz + (c�ATy � z)Tx� qTr. (5.4)

Substituting y = ey in (5.3), the dual objective is given by (5.4) as �1

2

µyTy + bTy �
qTz�qTr, and the dual constraints are c�ATy�z = 0 and z+r � 0. It follows that
(DLP

q,r

) is equivalent to the dual of (PLP
q,r

), the only di↵erence is the constant
term �qTr in the objective, which is a consequence of the shift z + r in the dual
variables. Consequently, strong duality implies optval(PLP

q,r

) � optval(DLP
q,r

) =
�qTr. In addition, the variables x, y and z satisfying (5.2) are feasible for (PLP

q,r

)
and (DLP

q,r

) with the di↵erence in the objective function value being �qTr. It
follows that (x, y, z) is optimal for (DLP

q,r

) as well as (PLP
q,r

). Finally, feasibility
of both (PLP

q,r

) and (DLP
q,r

) is both necessary and su�cient for the existence of
optimal solutions.

If I denotes the index set I = {1, 2, . . . , n}, let B and N denote a partition
of I. The basic and non-basic variables are defined as the subvectors xB and xN ,
where xB and xN denote the components of x associated with B and N respectively.
A set B is associated with a unique solution (x, y, z) that satisfies the equations

c�ATy � z = 0, xN + qN = 0, (5.5)

Ax+ µy � b = 0, zB + rB = 0. (5.6)

If AB and AN denote the matrices of columns of A associated with B and N respec-
tively, then the equations above can be written as

cB �AT

By � zB = 0, xN + qN = 0,

cN �AT

Ny � zN = 0, zB + rB = 0,

ABxB +ANxN + µy � b = 0.
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These equations may be written in terms of the linear system

✓

0 AT

B

AB �µI

◆✓

xB

�y

◆

=

✓

�cB � rB
ANqN + b

◆

(5.8)

by substituting xN = �qN from the equation xN + qN = 0. Once y is known, zN can
be calculated as zN = cN �AT

Ny.
It follows that if the system (5.8) has a unique solution, then the systems (5.5)

and (5.6) have a unique solution (x, y, z), and the matrix

KB =

✓

0 AT

B

AB �µI

◆

is nonsingular. As in Gill and Wong [13], any set B such that KB is nonsingular is
known as a second-order consistent basis. The next result shows that a second-order
consistent basis may be found by identifying an index set of independent columns
of A.

Proposition 5.2. If AB has linearly independent columns then the matrix

KB =

✓

0 AT

B

AB �µI

◆

is nonsingular.

Proof. Suppose that AB 2 Rn⇥r. Consider the matrix decomposition

✓

0 AT

B

AB �µI

◆

=

✓

I
r

� 1

µ

AT

B

0 I
m

◆✓

1

µ

AT

BAB 0

0 �µI
m

◆✓

I
r

0
� 1

µ

AB I
m

◆

.

The full-rank assumption on AB implies that AT

BAB is an r⇥ r symmetric positive-
definite matrix. Let AT

BAB = LLT be its corresponding Cholesky decomposition.
Then KB can be written as

KB =

✓

I
r

� 1

µ

AT

B

0 I
m

◆✓

L 0
0 I

m

◆✓

1

µ

I
r

0

0 �µI
m

◆✓

LT 0
0 I

m

◆✓

I
m

0
� 1

µ

AB I
r

◆

.

The product of the eigenvalues ofKB is the product of the eigenvalues of the diagonal
entries of each of the five matrices above, which are all nonzero. It follows that KB

is nonsingular.

The proposed primal-dual method generates a sequence (x
k

, y
k

, z
k

) that satisfies
the identities (5.5) and (5.6) at every iteration. In order to satisfy the optimality
conditions of Proposition 5.1 the search direction (�x, �y, �z) must always satisfy

AT�y ��z = 0, �xN = 0, (5.9)

A�x+ µ�y = 0, �zB = 0. (5.10)
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The iterates are designed to converge to optimal points that also satisfy the require-
ments xB + qB � 0 and zN + rN � 0. This provides the motivation for an algorithm
that changes the basis by removing and adding column vectors while maintaining
the conditions mentioned above. Consider a new partition B [ N [ {l} = {1, 2,
. . . , n}, where the index l has been removed from either the previous B or N . The
conditions (5.9) and (5.10) can be written in matrix form as

0

@

0 0 aT
l

0 0 AT

B

a
l

AB �µI

1

A

0

@

�x
l

�xB

��y

1

A =

0

@

1
0
0

1

A�z
l

, and �zN = �AT

N�y.

In the following discussion we use K
l

to denote the matrix

K
l

=

0

@

0 0 aT
l

0 0 AT

B

a
l

AB �µI

1

A .

Proposition 5.3. If �z
l

> 0 and K
l

is nonsingular, then the following holds.

1. If the index l is such that z
l

+r
l

< 0, then (�x,�y) is a strict descent direction
for (PLP

q,r

);

2. If the index l is such that x
l

+q
l

< 0, then (�y,�z) is a strict ascent direction
for (DLP

q,r

).

Proof. Without loss of generality, assume that �z
l

= 1. The equations for �x
l

,
�xB and �y are then

0

@

0 0 aT
l

0 0 AT

B

a
l

AB �µI

1

A

0

@

�x
l

�xB

��y

1

A =

0

@

1
0
0

1

A . (5.11)

As K
l

is nonsingular by assumption, AB must have full column rank and the matrix
AT

BAB is nonsingular. This implies that the solution of (5.11) may be computed as

�x
l

=
µ

aT
l

Pa
l

,

�xB = � µ

aT
l

Pa
l

(AT

BAB)
�1AT

Bal,

�y = � 1

aT
l

Pa
l

Pa
l

,

�zN =
1

aT
l

Pa
l

AT

NPa
l

,

where P is the orthogonal projection P = I �AB(AT

BAB)�1AT

B .
The objective function of primal problem is the quadratic function

fP (bp) =
1

2

µyTy + cTx+ rTx = bgT bp+ 1

2

bpT bHbp
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with bp =

✓

�x
�y

◆

, bH =

✓

0 0
0 µI

◆

and bg =

✓

c+ r
0

◆

. The gradient of fP at bp is

rfP = bg + bHbp =

✓

c+ r
µy

◆

.

Then the directional derivative at bp is

(rfP )
T

bp = (c+ r)T�x+ µyT�y

=
µ

aT
l

Pa
l

(c
l

+ r
l

)� µ

aT
l

Pa
l

(cB + rB)
T (AT

BAB)
�1AT

Bal �
µ

aT
l

Pa
l

yTPa
l

=
µ

aT
l

Pa
l

((c
l

+ r
l

)� yTAB(A
T

BAB)
�1AT

Bal � yT (I �AB(A
T

BAB)
�1AT

B)al)

=
µ

aT
l

Pa
l

((c
l

+ r
l

)� yTa
l

)

=
µ

aT
l

Pa
l

((c
l

+ r
l

)� (c
l

� z
l

)) =
µ

aT
l

Pa
l

(z
l

+ r
l

).

The assumption that z
l

+ r
l

< 0 implies that the directional derivative is negative
and bp is a descent direction for the primal problem, as required.

Similarly, let ep =

✓

�z
�y

◆

, eH =

✓

0 0
0 µI

◆

, eg =

✓

q
�b

◆

. The dual objective is then

fD(ep) = �1

2

µyTy + bTy � qTz = �egT ep� 1

2

epT eHep,

which has the gradient

rfD = �(eg + eHep) =

✓

�q
�µy + b

◆

.

The directional derivative at ep is

(rfD)
T

ep =
�

�qT �(µy � b)T
�

✓

�z
�y

◆

= � 1

aT
l

Pa
l

qTNA
T

NPa
l

� q
l

�z
l

� (�µyT + bT )
1

aT
l

Pa
l

Pa
l

= � 1

aT
l

Pa
l

qTNA
T

NPa
l

� q
l

�z
l

� (Ax)T
1

aT
l

Pa
l

Pa
l

= � 1

aT
l

Pa
l

(qTNA
T

NPa
l

+ xTATPa
l

)� q
l

�z
l

= � 1

aT
l

Pa
l

(qTNA
T

NPa
l

+ xTBA
T

BPa
l

+ xTNA
T

NPa
l

+ x
l

aT
l

Pa
l

)� q
l

= � 1

aT
l

Pa
l

((qN + xN)
TAT

NPa
l

+ xTBA
T

BPa
l

+ x
l

aT
l

Pa
l

)� q
l

= �(x
l

+ q
l

) > 0.
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The last equality follows from the condition qN + xN = 0 of (5.5), and the identity
AT

BP = 0, which holds because P is the projection onto null(AT ).

It is important to maintain the nonsingularity of K
l

by enforcing the linear
independence of the columns of AB. Therefore, if l is to be added to B, it may be
necessary to remove some indices from B before appending a

l

to ensure that a
l

is
not in range(AB).

The primal-dual search direction (�xB,�y) defined by the equations

✓

0 AT

B

AB �µI

◆✓

�xB

��y

◆

= �
✓

0
a
l

◆

(5.12)

will always satisfy (5.9) and (5.10) if �zB = 0 and �x
l

= 1.

Proposition 5.4. If AB has linearly independent columns then the search direction
(�y, �z) computed from (5.12) is nonzero if and only if a

l

is linearly independent
of the columns of AB.

Proof. Given the full rank assumption of AB, the matrix KB is nonsingular from
Proposition 5.2. The solution

�

�xTB ��yT
�

is unique, and can be calculated as

�xB = �(AT

BAB)
�1AT

Bal,

�y = � 1

µ
(I �AB(A

T

BAB)
�1AT

B)al.

Suppose that a
l

is linearly dependent on the columns of AB, i.e., a
l

2 range(AB).
As (I�AB(AT

BAB)�1AT

B) projects al onto the orthogonal complement of range(AB),
it follows that

�y = 0, and �zN = �AT

N�y = 0.

Conversely, if a
l

is linearly independent of the columns of AB, then �y 6= 0 and
�z 6= 0.

Proposition 5.5. If a
l

is linearly independent of the columns of AB, and �x
l

> 0
then the following holds.

1. If z
l

+ r
l

< 0, then (�x, �y) is a strict descent direction for (PLP
q,r

).

2. If x
l

+ q
l

< 0, then (�y, �z) is a strict ascent direction for (DLP
q,r

).

Proof. Without loss of generality, assume �x
l

= 1. The proof follows directly from
Proposition 5.3 by replacing the constant factor µ/aT

l

Pa
l

by one.
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5.3. The Primal Active-Set Method

The primal active-set method starts and ends with a primal feasible point (x, y, z)
that satisfies

c�AT y � z = 0, xN + qN = 0, xB + qB � 0, (5.13a)

Ax+ µy � b = 0, zB + rB = 0, (5.13b)

where B is constructed such that AB has linearly independent columns. Over the
course of an iteration, an index l of a dual infeasible constraint z

l

+r
l

< 0 is identified
and removed from N . This infeasibility is driven to zero, at which point the index
l is added to B.

An iteration begins with a so-called base sub-iteration in which a step is taken
along a search direction computed from the linear system (5.12). It follows from
Proposition 5.5 that the search direction is always a strict descent direction for
(PLP

q,r

). The base sub-iteration continues with the calculation of a step length ↵
that is the smaller of ↵⇤ and ↵

max

, where ↵⇤ is the step that moves z
l

+ r
l

to zero
and ↵

max

is the largest step that maintains the feasibility of the primal constraints
x � �q. If ↵ = ↵⇤ the index l is added to B and the iteration is complete. Otherwise,
↵ = ↵

max

and the index of a blocking constraint x
k

� �q
k

is moved from B to N .
In this case, a sequence of one or more intermediate sub-iterations is calculated. An
intermediate sub-iteration involves taking a step along a search direction computed
from the linear system (5.11) involving K

l

. Proposition 5.3 shows that the computed
search direction is always a strict descent direction for (PLP

q,r

). As in the base sub-
iteration, the step length ↵ is the smaller of ↵⇤ and ↵

max

, where ↵⇤ is the step that
moves z

l

+ r
l

to zero and ↵
max

is the largest step that maintains primal feasibility.
If ↵ = ↵

max

, then the index of a blocking constraint is moved from B to N and the
intermediate sub-iterations are repeated until ↵ = ↵⇤, at which point z

l

+ r
l

= 0
and the index l is added to B.

Proposition 5.6. On completion of the base sub-iteration, a
l

is linearly indepen-
dent of the columns of AB.

Proof. There are two cases to consider.
Case 1: Suppose that l is chosen such that a

l

and columns of AB are linearly
independent. If ↵ = ↵⇤, then z

l

+ r
l

will move to zero. In this case, no index is
removed from B in the base sub-iteration and AB does not change. If ↵ = ↵

max

, the
vector a

l

will continue to be independent of the columns of the new AB after the
index of the blocking constraint is removed.

Case 2: Suppose l is chosen such that a
l

and columns of AB are linearly depen-
dent. From Proposition 5.4,this must imply that �z

l

= 0, in which case ↵⇤ =1. If
the primal problem is bounded below, then ↵

max

will be taken as the step. By the
linear dependence assumption and that index k 2 B is chosen such that �x

k

< 0,
we have

a
l

=
X

i2B
�x

i

a
i

=
X

i2B\{k}

�x
i

a
i

+�x
k

a
k

.
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After removing the index k from B, the column a
l

cannot be written as a linear
combination of columns of the new AB, which implies that they must be linearly
independent.

Proposition 5.7. The matrix K
l

will remain nonsingular during a sequence of in-
termediate sub-iterations.

Proof. Follows from Proposition 5.2 and Proposition 5.6.

It is important to note that if ↵ = ↵
max

in the base sub-iteration, then at least
one intermediate sub-iteration is needed because the dual infeasibility could not be
eliminated by taking the longer step ↵ = ↵⇤. It is also possible for ↵ to be zero
in a base or intermediate sub-iteration. However, once a zero step is taken, an
index will be deleted from B, and the execution of an intermediate sub-iteration
must follow. The intermediate sub-iterations continue until a nonzero step is taken
and z

l

+ r
l

becomes non-negative. The degenerate case is considered in Section 5.5
below, where it is shown that in the worst case, if all the indices are deleted from
B by the intermediate sub-iterations, then the search direction must be nonzero by
Proposition 5.10 and ↵ > 0 will drive z

l

+ r
l

to zero.
The primal active-set method is described in Algorithm 7.
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Algorithm 7 A Primal Active-Set Method for Linear Programming.
while 9 l : z

l

+ r
l

< 0 do
N  N \ {l};
primal base(B, N , l, x, y, z); [returns B, N , x, y, z]
while z

l

+ r
l

< 0 do
primal intermediate(B, N , l, x, y, z); [returns B, N , x, y, z]

end while
B  B [ {l};

end while

function primal base(B, N , l, x, y, z)

�x
l

 1; Solve

✓

0 AT

B

AB �µI

◆✓

�xB

��y

◆

= �
✓

0
a
l

◆

;

�zN  �AT

N�y;
�z

l

 �aT
l

�y; [�z
l

� 0]
↵⇤  �(zl + r

l

)/�z
l

; [↵⇤  +1 if �z
l

= 0]
↵
max

 min
i:�xi<0

(x
i

+ q
i

)/(��x
i

); k  argmin
i:�xi<0

(x
i

+ q
i

)/(��x
i

);

↵ min
�

↵⇤,↵max

�

;
if ↵ = +1 then

stop; [(DLP
q,r

) is infeasible]
end if
x
l

 x
l

+ ↵�x
l

; xB  xB + ↵�xB;
y  y + ↵�y; z

l

 z
l

+ ↵�z
l

; zN  zN + ↵�zN ;
if z

l

+ r
l

< 0 then
B  B \ {k}; N  N [ {k};

end if
return B, N , x, y, z;

end function

function primal intermediate(B, N , l, x, y, z)

�z
l

 1; Solve

0

@

0 0 aT
l

0 0 AT

B

a
l

AB �µI

1

A

0

@

�x
l

�xB

��y

1

A =

0

@

1
0
0

1

A; [�x
l

� 0]

�zN  �AT

N�y;
↵⇤  �(zl + r

l

);
↵
max

 min
i:�xi<0

(x
i

+ q
i

)/(��x
i

); k  argmin
i:�xi<0

(x
i

+ q
i

)/(��x
i

);

↵ min
�

↵⇤,↵max

�

;
x
l

 x
l

+ ↵�x
l

; xB  xB + ↵�xB;
y  y + ↵�y; z

l

 z
l

+ ↵�z
l

; zN  zN + ↵�zN ;
if z

l

+ r
l

< 0 then
B  B \ {k}; N  N [ {k};

end if
return B, N , x, y, z;

end function
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5.4. The Dual Active-Set Method

The dual active-set method starts and ends with a dual feasible point (x, y, z) that
satisfies the equations

c�ATy � z = 0, xN + qN = 0, (5.14a)

Ax+ µy � b = 0, zB + rB = 0, zN + rN � 0, (5.14b)

where B is constructed so that AB has linearly independent columns. At each
iteration, an index l of a primal-infeasible constraint x

l

+ q
l

< 0 is identified and
removed from B. This infeasibility is driven to zero over the course of an iteration,
at which point the index l is added to N .

An iteration begins with a so-called base sub-iteration in which a step is taken
along a direction computed from the linear system (5.11). It follows from Propo-
sition 5.3 that the search direction is always a strict ascent direction for (DLP

q,r

).
The base sub-iteration continues with the calculation of a step length ↵ that is the
smaller of ↵⇤ and ↵

max

, where ↵⇤ is the step that moves x
l

+ q
l

to zero, and ↵
max

is the largest step that maintains the feasibility of the dual constraints z � �r.
If ↵ = ↵⇤ the index l is added to B and the iteration is complete. Otherwise,
↵ = ↵

max

, and the index of a blocking constraint z
k

� �r
k

is moved from N to B.
In this case a sequence of one or more intermediate sub-iterations is calculated. An
intermediate sub-iteration involves taking a step along the primal-dual search direc-
tion (�xB,�y) satisfying the equations (5.12). This direction satisfies the equations
(5.11) with �x

l

= 1 and �z
l

= 0. It follows from Proposition 5.5 that the search
direction is a strict ascent direction for (DLP

q,r

). As in the base sub-iteration, the
step ↵ is the smaller of ↵⇤ and ↵

max

, where ↵⇤ is the step that moves z
l

+ r
l

to zero,
and ↵

max

is the largest step that maintains dual feasibility. If ↵ = ↵
max

the index
of a blocking constraint is moved from N to B and the intermediate sub-iterations
are repeated until ↵ = ↵⇤, in which case x

l

+ q
l

= 0 and the index l is added to N .
If B is empty at the beginning of the dual algorithm, then only the base sub-

iteration is needed to drive x
l

+q
l

to zero. Otherwise, if B is nonempty and ↵ = ↵
max

in the base sub-iteration then at least one intermediate sub-iteration is needed.

Proposition 5.8. The matrix AB always has linearly independent columns at the
end of the dual algorithm.

Proof. If a
l

and the columns of AB are linearly dependent at the beginning of an
intermediate sub-iteration, then Proposition 5.4 gives �z = 0. In this case, the set
{i : �z

i

< 0} is empty and ↵ must take the value ↵⇤, then the updated primal
violation x

l

+ q
l

is zero. At this point no more indices will be added to B, the index
l is added to N , and the full-rank matrix is not changed.

The dual active-set method is given in Algorithm 8.
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Algorithm 8 A dual active-set method for linear programming.
while 9 l : x

l

+ q
l

< 0 do
B  B \ {l};
dual base(B, N , l, x, y, z); [Base sub-iteration]
while x

l

+ q
l

< 0 do
dual intermediate(B, N , l, x, y, z); [Intermediate sub-iteration]

end while
N  N [ {l};

end while

function dual base(B, N , l, x, y, z)

�z
l

 1; Solve

0

@

0 0 aT
l

0 0 AT

B

a
l

AB �µI

1

A

0

@

�x
l

�xB

��y

1

A =

0

@

1
0
0

1

A; [�x
l

� 0]

�zN  �AT

N�y;
↵⇤  �(xl + q

l

)/�x
l

; [↵⇤  +1 if �x
l

= 0]
↵
max

 min
i:�zi<0

(z
i

+ r
i

)/(��z
i

); k  argmin
i:�zi<0

(z
i

+ r
i

)/(��z
i

);

↵ min
�

↵⇤,↵max

�

;
if ↵ = +1 then

stop; [(PLP
q,r

) is infeasible]
end if
x
l

 x
l

+ ↵�x
l

; xB  xB + ↵�xB;
y  y + ↵�y; z

l

 z
l

+ ↵�z
l

; zN  zN + ↵�zN ;
if x

l

+ q
l

< 0 then
B  B [ {k}; N  N \ {k};

end if
return B, N , x, y, z;

end function

function dual intermediate(B, N , l, x, y, z)

�x
l

 1; Solve

✓

0 AT

B

AB �µI

◆✓

�xB

��y

◆

= �
✓

0
a
l

◆

;

�z
l

 �aT
l

�y; [�z
l

� 0]
�zN  �AT

N�y;
↵⇤  �(xl + q

l

);
↵
max

 min
i:�zi<0

(z
i

+ r
i

)/(��z
i

); k  argmin
i:�zi<0

(z
i

+ r
i

)/(��z
i

);

↵ min
�

↵⇤,↵max

�

;
x
l

 x
l

+ ↵�x
l

; xB  xB + ↵�xB;
y  y + ↵�y; z

l

 z
l

+ ↵�z
l

; zN  zN + ↵�zN ;
if x

l

+ q
l

< 0 then
B  B [ {k}; N  N \ {k};

end if
return B, N , x, y, z;

end function
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5.5. Degeneracy

An iteration is said to be degenerate if a zero step is defined in each of the base
and intermediate sub-iterations. Specifically, the primal problem is nondegenerate
if a nonzero step is taken at every base sub-iteration. The nonsingularity of the
regularized term µI will guarantee that the primal problem is nondegenerate.

We require that the constrained gradient AB to be linearly independent from
beginning, and our method for adding and deleting constraints from working set for
subsequent working set will still maintain the property of linearly independence.

Proposition 5.9. If �z
l

> 0, K
l

nonsingular and µ 6= 0, then the primal step is
nondegenerate.

Proof. The proof follows from the fact that �x
l

= µ/aT
l

Pa
l

> 0, where P =
(I �AB(AT

BAB)�1AT

B).

Proposition 5.10. The primal-dual active-set method does not cycle.

Proof. Suppose that at the end of the intermediate sub-iterations, every variable
in B is deleted. The equation becomes

✓

0 aT
l

a
l

�µI

◆✓

�x
l

��y

◆

=

✓

1
0

◆

. (5.15)

�

�x
l

��y
�

T

has the unique solution

✓

�x
l

��y

◆

=
1

ka
l

k2

✓

µ
a
l

◆

as µ > 0, a
l

> 0.

5.6. Combining Primal and Dual Active-set Methods

The primal active-set method proposed in Section 5.3 may be used to solve (PLP
q,r

)
for a given initial basis B satisfying the conditions (5.13). An appropriate initial
point may be found by solving a conventional phase-1 linear program. Alternatively,
the dual active-set method of Section 5.4 may be used in conjunction with an ap-
propriate phase 1 procedure to solve the quadratic program (PLP

q,r

) for a given
initial basis B satisfying the conditions (5.14). An alternative to the conventional
phase-1/phase-2 approach is to create a pair of coupled quadratic programs from
the original by simultaneously shifting the bound constraints. The idea is to solve a
shifted dual problem to define an initial feasible point for the primal, or vice-versa.
This strategy provides an alternative to the conventional phase-1/phase-2 approach
that utilizes the phase-1 objective function while finding a feasible point.

An algorithm that combines the primal and dual active-set methods is given in
Algorithm 9. The algorithm begins with a second-order consistent basis satisfying
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(5.5) and (5.6). If the initial point is both primal and dual feasible then the triple (x,
y, z) is an optimal solution and the algorithm is terminated. If x is primal feasible,
then the primal active-set method PRIMAL LP of Algorithm 7 is used to find an
optimal solution. If z is dual feasible, then the dual active-set method DUAL LP of
Algorithm 8 is used to find an optimal solution. If the initial point is neither primal
nor dual feasible, then one of the shifts q or r can be defined to make the initial
point either primal or dual feasible.

5.6.1. Shifting the primal problem

Assume that the given initial point is neither primal nor dual feasible. If we choose
to shift the primal problem, the shifts are defined as follows.

1. Define the shifts r and q such that r = 0 and qN = 0, qB = max{�xB, 0}.

2. Compute the solution of (PLP
q,r

).

3. Compute a point (x(1), y(1), z(1)) satisfying (5.5) and (5.6).

4. Starting at the point (x(1), y(1), z(1)), solve (DLP
0,0

).

After applying the shifts in Step 1, the point x satisfies x + q � 0, i.e., x is an
initial primal-feasible point for (PLP

q,r

). The optimal solution of the primal problem
(PLP

q,r

) solved in Step 2 satisfies

c�ATy(1) � z(1) = 0, x(1)N + qN = 0, x(1)B + qB � 0,

Ax(1) + µy(1) � b = 0, z(1)B = 0, z(1)N � 0.

Without the shift, this solution may violate (5.5) and (5.6), in which case x(1) must
be recomputed in Step 3 by solving the linear least-squares problem

minimize
x2Rt

kABx� b+ µy(1)k.

The point (x(1), y(1), z(1)) found in Step 3 will be dual feasible for the original
problem and Step 4 will compute the required optimal solution.

5.6.2. Shifting the dual problem

Again, assume that the given initial point is neither primal nor dual feasible. If we
choose to shift the dual problem, the shifts are defined as follows:

1. Define the shifts q and r such that q = 0, rB = 0 and rN = max{�zN , 0}.

2. Compute a solution of (DLP
q,r

).

3. Compute a point (x(1), y(1), z(1)) satisfying (5.5) and (5.6).

4. Starting at the point (x(1), y(1), z(1)), solve (PLP
0,0

).
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After applying the shifting procedure of Step 1, the point z satisfies z + r � 0, i.e.,
z is an initial dual feasible point for (DLP

q,r

). The optimal solution of (DLP
q,r

)
satisfies

c�ATy(1) � z(1) = 0, x(1)N = 0, x(1)B � 0,

Ax(1) + µy(1) � b = 0, z(1)B + rB = 0, z(1)N + rN � 0.

Without the shift, this solution may violate (5.5) and (5.6), in which case y(1) and
z(1) must be recomputed in Step 3 using

y(1) =
1

µ
(b�ABx

(1)

B ) and z(1)N = cN �AT

Ny
(1).

The point (x(1), y(1), z(1)) computed in Step 3 will be primal feasible, and Step 4
will compute an optimal solution for the original problem.
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Algorithm 9 Primal-Dual Active Set Method for Regularized LP
input: A, b, c, µ, choice;
Find a second-order consistent basis B;

Solve

✓

0 AT

B

AB �µI

◆✓

xB

�y

◆

=

✓

�cB
b

◆

;

q = 0; r = 0; [Initialize the shifts]
xN = 0; zB = 0; zN = cN �AT

Ny;
if x � 0 and z � 0 then

stop; [(x, y, z) is optimal]
else if x � 0 then [Primal feasible]

primal lp(B, N , x, y, z, A, b, c, q, r, µ);
else if z � 0 then [Dual feasible]

dual lp(B, N , x, y, z, A, b, c, q, r, µ);
else [Neither primal nor dual feasible]

if choice = primal first then
qN = 0; qB = max{�xB, 0}; [Redefine the shift q]
[B, N ]=primal lp(B, N , A, b, c, q, r, µ);

Solve

✓

0 AT

B

AB �µI

◆✓

xB

�y

◆

=

✓

�cB
b

◆

;

xN = 0; zB = 0; zN = cN �AT

Ny; q = 0;
dual lp(B, N , x, y, z, A, b, c, q, r, µ);

else if choice = dual first then
rB = 0; rN = max{�zN , 0}; [Redefine the shift r]
[B, N ]=dual lp(B, N , A, b, c, q, r, µ);

Solve

✓

0 AT

B

AB �µI

◆✓

xB

�y

◆

=

✓

�cB
b

◆

;

xN = 0; zB = 0; zN = cN �AT

Ny; r = 0;
primal lp(B, N , x, y, z, A, b, c, q, r, µ);

end if
end if
return x, y, z, B, N ;

6. Matrix Factorizations and Updating

When solving the linear least-squares problem min
x2Rm kAx� bk it is crucial that

a factorization of the matrix A is used instead of directly computing the inverse of
ATA for the normal equations. Consider an m⇥ n matrix A with m > n. The QR
factorization of A is given by

QTA =

✓

R
0

◆

, (6.1)

where Q is an orthogonal matrix of dimension m⇥m, and R is an upper-triangular
matrix of dimension n⇥ n.

It is also necessary to update this factorization when columns or the rows of A
are added, deleted, or both.
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6.1. Using the QR Decomposition for Solving Least-Squares Problems

6.1.1. Calculating a null-space descent direction

In addition to using QR decomposition to calculate a least-squares solution, it can
also be used to calculate the matrix Z such that AT

BZ = 0.

Lemma 6.1. Consider the QR factorization (6.1) of AB, with Q =
�

Q
1

Q
2

�

,
where Q

1

=
�

q
1

q
2

· · · q
n

�

, Q
2

=
�

q
n+1

· · · q
m

�

, and the q
i

, i = 1, 2, . . . , m
are independent orthonormal column vectors. The matrix Z = Q

2

satisfies AT

BZ = 0.

Proof. Substituting the QR factors of AB in ABZ and using the identitiesQT

1

Q
2

= 0
and QT

2

Q
2

= I
m�n

gives

AT

BZ =
�

RT 0
�

✓

QT

1

QT

2

◆

Q
2

=
�

RT 0
�

✓

QT

1

Q
2

QT

2

Q
2

◆

=
�

RT 0
�

✓

0
I
m�n

◆

= 0.

6.1.2. Calculating the projection matrix

Let AB be a matrix of sizem⇥n withm � n. Let b be a vector of sizem. Assume AB

has linearly independent columns. The least-squares solution to the unconstrained
optimization problem

minimize
x2Rn

kABx� bk2 (6.2)

is
x = (AT

BAB)
�1AT

Bb, (6.3)

where A+

B = (AT

BAB)�1AT

B is the Moore-Penrose pseudoinverse of AB.
We now consider how to use the QR decomposition to calculate the pseudoinverse

and projection matrix in the full-rank case. The full-size QR factorization is

AB = Q

✓

R
0

◆

=
�

Q
1

Q
2

�

✓

R
0

◆

.

Let Q
1

R = AB be the corresponding “economy-size” QR factorization, where R is
a n⇥ n upper-triangular matrix and Q

1

is the m⇥ n submatrix of the orthonormal
matrix Q. Note that QT

1

Q
1

= I
k

but Q
1

QT

1

6= I
n

. Furthermore, by the full-rank
assumption of AB, R must be invertible, and its diagonal entries are all nonzero.
Then (6.3) can be solved as

x = (AT

BAB)
�1AT

Bb = (RTQT

1

Q
1

R)�1RTQT

1

b

RTRx = RTQT

1

b

Rx = QT

1

b.

This implies that forward substitution can be used to compute x. The cost of cal-
culating QT

1

b is O(mn), and one iteration of backward substitution requires O(m2).
Then, if Q and R are already known, the complexity of solving (6.2) is O(m2).



6. Matrix Factorizations and Updating 37

Now consider the calculation of the orthogonal projection matrix onto range(AB),

P = AB(A
T

BAB)
�1AT

B = Q
1

R(RTR)�1RTQT

1

= Q
1

RR�1R�TRTQT

1

= Q
1

I
n

QT

1

= Q
1

QT

1

.

Similarly, the orthogonal projection onto null(AT

B) can be calculated as

M = I
n

�Q
1

QT

1

, (6.4)

or
M = Z(ZTZ)�1ZT , (6.5)

where the columns of Z form a basis for null(AT

B). By using the result from (6.1)

Z(ZTZ)�1ZT = Q
2

(QT

2

Q
2

)�1QT

2

= Q
2

I
m�n

QT

2

= Q
2

QT

2

.

When m� n it is more e�cient to store only Q
1

and calculate the steepest-descent
direction in the null space, i.e., p = �Z(ZTZ)�1ZT c using (6.4),

p = (Q
1

QT

1

� I)c.

The cost of calculating the steepest-descent direction in null(AT

B) is approximately
2mn+m flops.

6.1.3. Solving the KKT equations

By using the results above, the solution of the linear system (5.11) can be written
as

�x
l

= �µ,

�xB = ��R�1QT

1

a
l

,

��y = �(a
l

+AB�xB) = �(a
l

�Q
1

QT

1

a
l

),

where
� = aT

l

Ma
l

= aT
l

(I
n

�Q
1

QT

1

)a
l

.

The cost of computing (5.11) by given QR decomposition is O(m2).

6.2. Updating the QR Factorization

It is critical to consider the modification as recomputing the QR factorization is too
expensive as it requires approximately mn2 floating-point operations.

Three kinds of modification of the matrix A
k

are considered:

1. a rank-one change of A
k

;

2. the deletion and addition of a column of A
k

; and
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3. the deletion and addition of a row of A
k

.

First, consider two basic transformations that are essential tools for matrix updating—
Givens rotations and Householder transformations.

Lemma 6.2. (Givens Rotation) Given x =

✓

x
1

x
2

◆

, with at least one of the quan-

tities x
1

and x
2

nonzero, then there exists an orthogonal matrix

G =

✓

c s
�s c

◆

with c2 + s2 = 1 such that

Gx =

✓

(x2
1

+ x2
2

)1/2

0

◆

.

Proof. The result follows directly with c and s defined as

c =
x
1

(x2
1

+ x
2

)1/2
and s =

x
2

(x2
1

+ x
2

)1/2
. (6.6)

To exploit the symmetric structure, we instead define the symmetric Givens
matrix

G =

✓

c s
s �c

◆

with the same c and s as in (6.6).

Lemma 6.3. (Householder transformation) Given a non-zero vector v 2 Rm,
there exists an orthogonal matrix Q such that

Qv = ��kvk e
1

with e
1

= (1, 0, . . . , 0)T and � = sign(v
1

).

Proof. Define

Q = I
m

� 2
uuT

uTu
, with u = v + �||v||e

1

.

6.3. Modification after a Rank-one Change

Given the QR decomposition of the matrix A
k

2 Rm⇥n

A
k

= Q
k

✓

R
k

0

◆

,
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we want to compute the QR decomposition after the rank-one change

A
k+1

= A
k

+ uvT = Q
k+1

✓

R
k+1

0

◆

.

First, compute w = QT

k

u 2 Rm and define a sequence of Givens rotations G
k,k+1

,
k = 1, 2, . . . , m� 1 such that

GT

1,2

· · ·GT

m�1,m

w = ±kwke
1

.

These transformation will produce an upper-Hessenberg matrix when apply to R-
factor

H = GT

1,2

· · ·GT

m�1,m

✓

R
k

0

◆

.

For A
k+1

, we have

A
k+1

= A
k

+ uvT = Q
k

{
✓

R
k

0

◆

+ wvT},

QT

k

A
k+1

=

✓

R
k

0

◆

+ wvT,

GT

1,2

· · ·GT

m�1,m

QT

k

A
k+1

= H ± kwke
1

vT.

Adding e
1

vT to an upper-Hessenberg matrix is still an upper-Hessenberg matrix
because only the first row of H is modified. Let eH = H ± kwke

1

vT and define a
sequence of Givens rotations eG

k,k+1

, k = 1, 2, . . . , n that ”zero out” the (k, k+1)-th

entry of eH, i.e.,

eGT

n,n+1

· · · eGT

1,2

eH =

✓

R
k+1

0

◆

.

Finally, the orthogonal matrix Q
k+1

can be found by

Q
k+1

= Q
k

G
m�1,m

· · ·G
1,2

eG
1,2

· · · eG
n,n+1

.

The matrices Q
k+1

and R
k+1

are the desired updated QR factors. A total of m2

flops are required to compute w, and 4n2 flops are required to calculate H and
R

k+1

. Finding Q
k+1

requires 4(m2+mn) flops. In total, 5m2+4mn+4n2 flops are
required for one rank-one update. However, as recalculating the QR decomposition
for a general m⇥n matrix requires O(mn2) flops, when m� n it may be beneficial
to compute the factorization from scratch rather than perform a matrix update.

6.4. Adjoining and Deleting a Column

6.4.1. Adjoining a column

Given the QR decomposition of A
k

2 Rm⇥n

A
k

= Q
k

✓

R
k

0

◆

,
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we require the QR decomposition after appending one column vector a
k+1

, i.e.,

A
k+1

=
�

A
k

a
k+1

�

First, let b
k+1

= QT

k

a
k+1

. Premultiply A
k+1

by Q
k

and partition the matrix

QT

k

A
k+1

=

✓

R
k

0
b
k+1

◆

=

✓

R
k

s
k

0 v

◆

with b
k+1

=

✓

s
k

v

◆

, (6.7)

where s
k

is a vector of dimension n and v is a vector of dimension m� n. Using a
Householder transformation of the form (6.3) we define

u = v + �||v||e
1

, (6.8)

bH = I
m�k

� 2
uuT

uTu
, (6.9)

with e
1

the (m� n)-vector e
1

= (1, 0, . . . , 0)T . Let

H =

✓

I
m

0

0 bH

◆

.

As H is symmetric, the equation (6.7) can be premultiplied by HT to give

HTQT

k

A
k+1

=

✓

I
m

0

0 bH

◆✓

R
k

s
k

0 v

◆

=

0

@

R
k

s
k

0 ��||v||e
1

0 0

1

A ,

QT

k+1

A
k+1

=

✓

R
k+1

0

◆

,

with � = sign(v
1

), and Q
k+1

= Q
k

H.

6.4.2. Removing a column

Given the QR decomposition of A
k

2 Rm⇥n

A
k

= Q
k

✓

R
k

0

◆

,

we require the QR factorization when the j-th column is removed from A
k

, where
1  j  n. An explicit method proposed by Golub and Saunders [14] defines

A
k+1

=
�

a
1

· · · a
j�1

a
j+1

· · · a
n

�

,

where a
i

is the i-th column of A
k

. Premultiplying by QT

k

gives

QT

k

A
k+1

=
�

r
1

· · · r
j�1

r
j+1

· · · r
n

�

,

with r
i

is the i-th column vector of R
k

. We then define a sequence of Givens
transformations G

i,i+1

, i = j, . . . , n� 1, where G
i,i+1

zeros out the i-th element of
the (i+ 1)-th row. The orthogonal matrix Q

k+1

is found by

Q
k+1

= Q
k

GT

j,j+1

· · ·GT

n�1,n

.
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The matrix R
k+1

is found by explicitly calculating the last (n � j + 1)-th columns
as

QT

k+1

A
k+1

=

✓

R
k+1

0

◆

,

where the first (j � 1) columns of R
k+1

are the same as those of R
k

.

6.5. Adjoining and Deleting a Row

6.5.1. Adjoining a row

Given a QR decomposition of A
k

2 Rm⇥n

A
k

= Q
k

✓

R
k

0

◆

,

we require the QR decomposition after adjoining the row vector a
k+1

2 Rn, i.e.,

A
k+1

=

✓

A
k

aT
k+1

◆

= Q
k+1

✓

R
k+1

0

◆

.

First, we apply an orthogonal matrix diag(Q
k

, 1),

✓

Q
k

0
0 1

◆✓

A
k

aT
k+1

◆

=

0

@

R
k

0
aT
k+1

1

A = ⇧
n+1,m+1

0

@

R
k

aT
k+1

0

1

A ,

where ⇧
n+1,m+1

is a permutation matrix that interchanges rows n+ 1 and m+ 1.
Then use a sequence of Givens rotations G

i,n+1

, i = 1, . . . , n where G
i,n+1

eliminates the i-th element of the (n+ 1)-th row,

G
n,n+1

G
n�1,n+1

· · ·G
1,n+1

⇧
n+1,m+1

✓

R
k

aT
k+1

◆

=

✓

R
k+1

0

◆

,

and the updated Q
k+1

becomes

Q
k+1

=

✓

Q
k

0
0 1

◆

⇧
n+1,m+1

GT

1,n+1

· · ·GT

n,n+1

.

The updating procedure is stable and requires approximately 2n2 operations with
standard Givens rotations.

6.5.2. Deleting a row

Given a QR decomposition of the matrix A
k

2 Rm⇥n

A
k

=

✓

aT
1

A
k+1

◆

= Q
k

✓

R
k

0

◆

,
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without loss of generality, we want to compute the QR decomposition of A
k+1

, i.e.,
the submatrix of A

k+1

without the first row,

A
k+1

= Q
k+1

✓

R
k+1

0

◆

.

Note that the removal of k-th row can be done by the same procedure except that
we premultiply a permutation matrix ⇧

1,k

to A
k

and Q
k

in order to interchange
row 1 and row k. The algorithm given below is then applied to ⇧

1,k

A
k

and ⇧
1,k

Q
k

instead.
First find the QR decomposition of

�

e
1

A
k

�

,

QT

k

�

e
1

A
k

�

=

✓

q
1

R
k

0

◆

.

where q
1

is the first row of Q
k

.
Then define a sequence of Givens transformation G

i,i+1

, i = 1, . . . , m� 1 such
that

GT

1,2

· · ·GT

m�1,m

q
1

= ↵e
1

, k↵k = 1.

Then we have

GT

1,2

· · ·GT

m�1,m

✓

q
1

R
k

0

◆

=

0

@

↵ vT

0 R
k+1

0 0

1

A .

In addition, we compute Q
k+1

as below,

Q
k

G
m�1,m

· · ·G
1,2

=

✓

↵ 0
0 Q

k+1

◆

.

Hence, we have

A
k

=

✓

aT
1

A
k+1

◆

= Q
k

✓

R
k

0

◆

= Q
k

G
m�1,m

· · · , G
1,2

GT

1,2

· · ·GT

m�1,m

✓

R
k

0

◆

=

✓

↵ 0
0 Q

k+1

◆

0

@

vT

R
k+1

0

1

A .

This algorithm for removing a row can be regarded as a special case of updating
after a rank-one change with u = �e

1

and v = a
1

.

6.6. Other Factorization Methods

6.6.1. The symmetric indefinite factorization

When a matrix K 2 Rn⇥n is symmetric positive definite, the Cholesky factorization
K = LLT can be used to solve the linear system Kx = f . The Cholesky algorithm
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is e�cient because it requires no pivoting. It only involves about 1

6

n3 floating-point
operations. However, if K is indefinite, the Cholesky factors do not exist because the
matrix has negative eigenvalues. Instead, we consider an alternative factorization

⇧K⇧T = LDLT ,

where ⇧ is a permutation matrix and D is a block-diagonal matrix with either 1⇥1
or 2⇥ 2 diagonal blocks.

The calculation of the symmetric indefinite factorization requires approximately
1

6

n3 floating-point operations, which is comparable to the cost of the Cholesky fac-
torization.

Given the symmetric indefinite factorization of K, the solution of the linear
equations Kx = f can be calculated by solving the sequence of triangular and
block-diagonal systems

Lw = ⇧f, (6.10a)

Dy = w, (6.10b)

LT z = y, (6.10c)

x = ⇧T z. (6.10d)

(6.10a) and (6.10c) can be solved by forward and backward substitution respectively,
and the solution of (6.10b) can be found by explicitly calculating the inverse of each
diagonal block.

7. Numerical Examples

In this section, we present some numerical experiments for simple Matlab imple-
mentation applied to two types of problems.

The first set of examples are randomly generated assignment problems that are
highly degenerate. The second set of examples are problems that have been known
to cycle when solved by the conventional simplex method.

In both parts, we focus on comparing the methods PDNNLS and PDLP described
in Sections 3 and 5. All the problems are formulated in standard form. For each
problem, we record the row number m, column number n of the coe�cient matrix
A, and the optimal objective. For PDNNLS, we set q and r in (5.1) to be zero,
and use µ = 10�8. We test both the “primal-first” and “dual-first” options of
PDLP and record the corresponding primal and iteration numbers as well as the
total running time. If the problem is primal feasible at the beginning, we record
only the iteration numbers and running time for the primal method and leave dual
entries blank. An analogous annotation is used when the initial point is dual active.
For testing problems using PDLP, we use the phase-1/phase-2 scheme starting with
the initial dual point y

0

= 0. We use the Matlab routine lsqnonneg to solve the
non-negative linear least squares problem. We record the iteration numbers for the
main algorithm of PDNNLS, the number of times a NNLS subproblem is solved,
the number of subiterations in the NNLS algorithm, and the corresponding running
time. All running times are given in units of a second. Tolerance levels are set to
be ✏

tol

= 10�6 and ✏
fea

= 10�6 in both implementations.



44 Anti-Cycling Methods for Linear Programming

7.1. Highly Degenerate Problems

7.1.1. Test problems

Below we give the pseudocode for the assignment problem. The pseudocode returns
the matrix A, and vectors b and c associated with a linear program in standard form

minimize
x2Rn

cTx subject to Ax = b, x � 0.

Given an integer n, the assignment algorithm returns A 2 R(2n�1)⇥n

2
, b 2 R2n�1

and c 2 Rn

2
, where A is sparse with unit entries. The matrix A has significantly

more columns than rows, which increases the chance of selecting a dependent basis
in a conventional active-set method. The problem is highly degenerate.

Algorithm 10 The assignment problem.

function assign(n)
C = rand(n);
for i = 1 to n do

b(i, 1) = 1;
b(n+ i, 1) = 1;
for j = 1 to n do

c(n(i� 1) + j, 1) = C(i, j);
A(i, n(i� 1) + j) = 1;
A(n+ i, n(j � 1) + i) = 1;

end for
end for
return A, b, c;

end function

7.1.2. Computational results

In this section we present the results of numerical experiments on the assignment
problems for n = 25, 50, 75, 100, 125, 150, 200, and 300. As the cost vector c is
non-negative, the initial point y

0

= 0 is dual feasible for PDNNLS and it is necessary
to solve only the phase 1 problem for this method. For this reason, in all the tables
for PDNNLS, only the iteration numbers and running times for the phase 1 problem
are recorded.
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Table 1: Results for PDNNLS on Assignment Problems

PHASE 1
m n Objective Itn NNLS-Itn NNLS-Sub Time

49 625 1.2766622E+00 37 622 1 0.0352
99 2500 1.6111842E+00 113 5376 268 0.3951

149 5625 1.5963300E+00 185 14461 362 1.2308
199 10000 1.7456917E+00 225 20723 610 1.9004
249 15625 1.6131899E+00 257 28257 737 2.9211
299 25000 1.5795925E+00 303 38904 909 4.4300
399 40000 1.6880131E+00 504 109440 3938 17.5161
599 90000 1.5619877E+00 693 212082 7497 45.3444

Table 2: Results for PDLP on Assignment Problems

Primal-First Dual-First
m n Objective Itn P-Itn D-Itn Time Itn P-Itn D-Itn Time

49 625 1.2766622E+00 64 46 18 0.0322 140 92 48 0.0415
99 2500 1.6111842E+00 122 22 100 0.1468 358 250 108 0.2174

149 5625 1.5963300E+00 226 62 164 0.4080 699 377 322 0.7280
199 10000 1.7456917E+00 444 133 311 1.0075 1083 641 442 1.6531
249 15625 1.6131899E+00 374 59 315 1.5745 1200 810 390 2.6100
299 25000 1.5795925E+00 846 258 588 3.3927 1714 1021 693 5.4173
399 40000 1.6880131E+00 1358 348 1010 9.5163 2725 1679 1046 17.5705
599 90000 1.5619877E+00 1934 518 1416 37.0491 3749 2047 1702 57.8660

7.2. Cycling Problems

7.2.1. Test problems

In addition to the assignment problem, we also give results for PDNNLS and PDLP

on 12 problems that are known to cycle when solved by the simplex method. For
more details about the formulation of these problems, we refer the reader to [9]
and [15].

7.2.2. Computational results

Table 3: Results for PDNNLS on Cycling Problems

PHASE 1 PHASE 2
Name m n Objective Itn NNLS-Itn NNLS-Sub Itn NNLS-Itn NNLS-Sub Time
HOFFMAN 3 11 0 2 4 1 1 1 0 0.0103
BEALE 3 7 -0.05 3 6 1 2 5 0 0.0920
Y&G-1 3 7 -0.5 4 13 2 1 3 0 0.0033
Y&G-2 3 7 -1 3 10 2 1 3 0 0.0030
KUHN 3 7 -2 5 11 0 1 4 1 0.0050
M&S-1 2 6 0 0 0 0 1 0 0 0.0016
M&S-2 4 7 -2 4 14 1 1 4 0 0.0031
SOLOW 2 6 0 3 7 1 1 0 0 0.0027
SIERKSMA 2 6 unbounded 3 6 0 1 0 0 0.0049
CHVATAL 3 7 unbounded 3 6 0 1 1 0 0.0049
N&T 3 8 unbounded 4 9 1 2 2 1 0.0038
H&M 4 6 unbounded 0 0 0 1 4 1 0.0048
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Table 4: Results for PDLP on Cycling Problems1

Primal-First Dual-First
Name m n Objective Itn P-Itn D-Itn Time Itn P-Itn D-Itn Time
HOFFMAN 3 11 0 0 0 0 0.0149 0 0 0 0.0115
BEALE 3 7 -0.05 8 8 0 0.0195 - - - -
Y&G-1 3 7 -0.5 10 10 0 0.0110 - - - -
Y&G-2 3 7 -1 8 8 0 0.0140 - - - -
KUHN 3 7 -2 6 6 0 0.0108 - - - -
M&S-1 2 6 0 6 6 0 0.0217 - - - -
M&S-2 4 7 -2 10 10 0 0.0107 - - - -
SOLOW 2 6 0 4 4 0 0.0123 - - - -
SIERKSMA 2 6 unbounded 4 4 0 0.0217 - - - -
CHVATAL 3 7 unbounded 2 2 0 0.0179 - - - -
N&T 3 8 unbounded 0 0 0 0.0493 - - - -
H&M 4 6 unbounded - - - - 2 0 2 0.0291

8. Summary and Conclusion

In this work, we have investigated two non-simplex methods for solving linear pro-
grams, one for constraints in standard form, and one for a mixture of general equal-
ity and inequality constraints. Both of these methods involve solving a linear least
squares subproblem and terminate in finitely many iterations. We also propose
a new active-set method based on adding a penalty term to the linear objective
function.

The numerical results given in Section 7 indicate that the proposed method is
computationally e�cient. It is shown that both PDLP and PDNNLS perform well on
highly degenerate problems. However, PDLP is more e�cient than PDNNLS in terms
of the number of iterations needed to solve the linear least-squares problem, and it
also requires less time as the size of the problem increases. In addition, the results
presented in Table 2 indicate that the “primal-first” option of PDLP is more e�cient
than the “dual-first” option in terms of both iteration numbers and running times.
In general, the relative e�ciency of the “primal-first” and “dual-first” options will
depend on the linear program being solved. For degenerate problems, both methods
converge in finitely many iterations.

Acknowledgements

I would like to thank Professor Philip Gill for taking the time to advise me on this
one-year-long project. I am deeply grateful for his patience and encouragement. I
believe the experience and knowledge that he has given me will last a lifetime.

I would also like to thank Professor Anders Forsgren for the source code of the
assignment problem, which helped me a lot in generating the numerical results.

1
Some entries are intentionally left blank because the initial points calculated for the initial basis

are either primal feasible or dual feasible. If the points are primal feasible at the beginning, only

entries for “primal-first” are recorded, and vice versa.



REFERENCES 47

References

[1] Earl Barnes, Victoria Chen, Balaji Gopalakrishnan, and Ellis L. Johnson. A
least-squares primal-dual algorithm for solving linear programming problems.
Operations Research Letters, 30(5):289–294, 2002. 6

[2] Ake Björck. Numerical Methods for Least Squares Problems. Society for Indus-
trial and Applied Mathematics, 1996.

[3] Robert G. Bland. New finite pivoting rules for the simplex method. Mathemat-
ics of Operations Research, 2(2):103–107, 1977. 4

[4] Rasmus Bro and Sijmen De Jong. A fast non-negativity-constrained least
squares algorithm. Journal of Chemometrics, 11(5):393–401, 1997. 12

[5] George B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 2016. 4

[6] Achiya Dax. Linear programming via least squares. Linear Algebra and its
Applications, 111:313–324, 1988. 16

[7] John J. Forrest and Donald Goldfarb. Steepest-edge simplex algorithms for
linear programming. Mathematical Programming, 57(1-3):341–374, 1992. 4

[8] Anders Forsgren, Philip E. Gill, and Elizabeth Wong. Primal and dual active-
set methods for convex quadratic programming. Mathematical Programming,
159(1-2):469–508, 2016. 20

[9] Saul I. Gass and Sasirekha Vinjamuri. Cycling in linear programming problems.
Computers & Operations Research, 31(2):303–311, 2004. 45

[10] Philip E. Gill and Walter Murray. A numerically stable form of the simplex
algorithm. Linear Algebra and Its Applications, 7(2):99–138, 1973. 14

[11] Philip E. Gill, Walter Murray, Michael A. Saunders, John A. Tomlin, and Mar-
garet H. Wright. On projected Newton barrier methods for linear programming
and an equivalence to Karmarkar’s projective method. Mathematical Program-
ming, 36(2):183–209, 1986. 4

[12] Philip E. Gill, Michael A. Saunders, and Joseph R. Shinnerl. On the stability
of Cholesky factorization for symmetric quasidefinite systems. SIAM Journal
on Matrix Analysis and Applications, 17(1):35–46, 1996.

[13] Philip E. Gill and Elizabeth Wong. Methods for convex and general quadratic
programming. Mathematical Programming Computation, 7(1):71–112, 2015. 23

[14] Gene H. Golub and Michael A. Saunders. Linear least squares and quadratic
programming. Technical report, Department of Computer Science, Stanford
University, CA, 1969. 40



48 REFERENCES

[15] Julian A. J. Hall and Ken I. M. McKinnon. The simplest examples where the
simplex method cycles and conditions where expand fails to prevent cycling.
Mathematical Programming, 100(1):133–150, 2004. 45

[16] Paula M. J. Harris. Pivot selection methods of the Devex LP code. Mathemat-
ical Programming, 5(1):1–28, 1973. 4

[17] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the Sixteenth Annual ACM symposium on the Theory
of computing, pages 302–311. ACM, 1984. 4

[18] Masakazu Kojima, Nimrod Megiddo, and Shinji Mizuno. A primal-dual
infeasible-interior-point algorithm for linear programming. Mathematical Pro-
gramming, 61(1-3):263–280, 1993. 5

[19] Charles Lawson and Richard Hanson. Solving Least Squares Problems. Society
for Industrial and Applied Mathematics, 1995. 9, 11

[20] Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Computational experi-
ence with a primal-dual interior point method for linear programming. Linear
Algebra and Its Applications, 152:191–222, 1991. 5

[21] Kevin A. McShane, Clyde L. Monma, and David Shanno. An implementation
of a primal-dual interior point method for linear programming. ORSA Journal
on Computing, 1(2):70–83, 1989. 5

[22] Shinji Mizuno, Michael J. Todd, and Yinyu Ye. On adaptive-step primal-dual
interior-point algorithms for linear programming. Mathematics of Operations
Research, 18(4):964–981, 1993. 5

[23] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.
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