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Abstract

For certain latent variable models, such as single topic models and Gaussian
mixture models, their low-order moments yield symmetric tensor structures. Thus,
parameter estimation of these models can be converted to symmetric tensor de-
composition. In this paper, we analyze the application of two symmetric tensor
decomposition methods to parameter estimation of certain latent variable models.
Our discussion consists of three main parts. We identify the symmetric tensor struc-
tures of the second and third moments of certain latent variable models, examine
the method of orthogonalization proposed by Anandkumar et al. and implemented
through the tensor power method, and illustrate the method of generating poly-
nomials proposed by Nie and related to the apolarity lemma. We conclude with
numerical experiments of the two methods.

1 Introduction

For parameter estimation of statistical models, the method of moments is usually less
computationally expensive than the maximum likelihood, especially in the case of high-
dimensional data, such as the latent variable models. However, the data in the latent
variable models cannot be directly observed, so the e�ciency of the method of moments
is not guaranteed. Nevertheless, in certain types of latent variable models, such as the
exchangeable single topic model and the spherical Gaussian mixtures, their low-order
moments yield symmetric tensor structures, which allow for a symmetric tensor decom-
position approach to estimate the parameters of the models.

Symmetric tensor decomposition can be regarded as a generalization of the singular
value decomposition of symmetric matrices, and the tensor power method, analogous to
the power method of symmetric matrix decomposition can be useful. The tensor power
method, intended for decomposing a symmetric tensor by finding its eigenvectors, was
first proposed by Lathauwer et al. [12] and further analyzed by Kolfidis and Regalia [18],
but the problem is that the convergence of this method is not guaranteed. However, in
this paper, we demonstrate that the convergence of this method on the orthogonally-
decomposable (odeco) symmetric tensors. A variant of this method, called the shifted
tensor power method, proposed by Kolda and Mayo [16], is also guaranteed to converge,
but without the orthogonality condition, the obtained eigenvectors are not useful for
symmetric tensor decomposition. We apply the tensor power method to the parameter
estimation of latent variable models in this paper.
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Another method is the method of generating polynomials proposed by Nie [5]. The
linear relations of recursive patterns of symmetric tensors induces the concept of gen-
erating polynomial, which is a representation of the linear relation. Nie proposed that
obtaining the symmetric tensor decomposition of the symmetric tensor depends on a set
of generating polynomials represented by a generating matrix. This method is motivated
by the apolarity lemma proposed by Iarrobino and Kanev [9]. We apply the method
of generating polynomials to the parameter estimation of latent variable models in this
paper.

In Section 2, we introduce some preliminary knowledge for this paper. In Section 3, we
identify the symmetric tensor structures of low-order moments of certain latent variable
models. In Section 4, we examine the method of orthogonalization and its application
to parameter estimation of latent variable models. In Section 5, we analyze the method
of generating polynomials and its application to parameter estimation of latent variable
models. In Section 6, we present the results of some numerical experiments.

2 Preliminaries

In this section, we introduce some preliminary knowledge for this paper.

2.1 Latent Variable Models

In this subsection, we illustrate what a latent variable model is.

Definition 1. A latent variable model is a statistical model that contains both observ-
able variables and latent variables, which cannot be observed but can be inferred from
observable variables, and explains the observable variables based on the latent variables.

Example 1. One simple example of latent variable model is the congeneric test model,
where the observed variable is usually a psychological test score. This model can be
represented by a simple linear regression

Y

i

= �

i

⇠ + ✏

i

,

where Y
i

is the observable variable, ⇠ is a latent variable, �
i

is the measure of association
between the observable and the latent variables, and ✏

i

is assumed to be normal: ✏

i

⇠
N(0, �2

i

). Hence, the conditional distribution of Y
i

given ⇠ is normal with mean �

i

⇠ and
variance �2

i

. Since ⇠ cannot be observed, its prior distribution is often set to be standard
normal.

In this paper, we consider the exchangeable single topic model, the spherical Gaussian
mixture model, the latent Dirichlet allocation (LDA) model, the independent component
analysis (ICA) model, and the multi-view model. In general, the parameters to estimate
in these models are the weights of some components and the expected values condi-
tional on the components. In the past, the popular parameter estimation method is the
Expectation-Maximization (EM) algorithm, but the convergence rate is low and the local
optima is not satisfactory. With the identification of the low-order cross moment of these
models as symmetric tensors, we can use symmetric tensor decomposition methods to
estimate the parameters. Thus, we need the concept of tensors.
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2.2 Tensors

In this subsection, we examine the concept and properties of tensors. The concept of
tensor arises from a high-dimensional generalization of matrix as a linear map. Let us
first look at the formal definition of tensor, borrowed from Nie [1].

Definition 2. ([1]) Let V1, · · · , Vm

be some vector spaces. For a tuple (v1, · · · , vm) 2
V1 ⇥ · · ·⇥ V

m

, their tensor product v1 ⌦ · · ·⌦ v

m

is defined as the multilinear functional
acted on the Cartesian product of the dual spaces of V1, · · · , Vm

, V ⇤
1 ⇥ · · ·⇥V

⇤
m

, such that

v1 ⌦ · · ·⌦ v

m

(v⇤1, · · · , v⇤m) = v

⇤
1(v1) · · · v⇤m(vm),

8 (v⇤1, · · · , v⇤m) 2 V

⇤
1 ⇥ · · ·⇥V

⇤
m

. v1⌦ · · ·⌦ v

m

is also called a rank-1 tensor. V1⌦ · · ·⌦V

m

,
the span of all such rank-1 tensors, is called the tensor product of V1, · · · , Vm

and is also
called a tensor product space.

For a general tensor T 2 V1⌦· · ·⌦V

m

, it can been decomposed as a linear combination
of the rank-1 tensors, that is

T =
rX

i=1

�

i

v

(i)
1 ⌦ · · ·⌦ v

(i)
m

.

For a tensor T =
P

r

k=1 v
(k)
1 ⌦ · · ·⌦ v

(k)
m

and a basis{e(j)1 , · · · , e(j)
nj } of the vector space V

j

,

since v

(k)
j

is a linear combination of e(j)1 , · · · , e(j)
nj ,

T =
n1X

i1=1

· · ·
nmX

im=1

T

i1···ime
(1)
i1

⌦ · · ·⌦ e

(m)
im

.

Hence, T is determined and represented by the high-dimensional array

(T
i1···im)

n1,···nm
i1,··· ,im=1,

which is also called a hypermatrix. Sometimes a tensor is defined as a high-dimensional
array.

In this paper, we use the concept of symmetric tensors, so we demonstrate the defi-
nition of symmetric tensors.

Definition 3. ([1]) Let T =
P

r

i=1 v
(i)
1 ⌦ · · ·⌦ v

(i)
m

be a tensor in the tensor product space
V ⌦ · · ·⌦ V = V

⌦m and (v
⇡(1), · · · , v⇡(m)) be a permutation of (v1, · · · , vm). We say that

T is a symmetric tensor if for every permutation (v
⇡(1), · · · , v⇡(m)) of (v1, · · · , vm),

rX

i=1

v

(i)
⇡(1) ⌦ · · ·⌦ v

(i)
⇡(m) =

rX

i=1

v

(i)
1 ⌦ · · ·⌦ v

(i)
m

= T.

Observe that v ⌦ · · · ⌦ v = v

⌦m is a symmetric tensor, and the symmetrization of a
rank-1 tensor v1 ⌦ · · ·⌦ v

m

is

sym(v1 ⌦ · · ·⌦ v

m

) =
X

⇡:⇡ is a permutation of (1,··· ,m)

v

(i)
⇡(1) ⌦ · · ·⌦ v

(i)
⇡(m).
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Next, we introduce the tensor-vector product and matrix-tensor product. For a tensor
T 2 Rn1⌦· · ·⌦Rnm , and u

s+1 2 Rns+1
, · · · , u

m

2 Rnm , we define the tensor-vector product
as

T ⇥ (u
s+1, · · · , um

) = (
ns+1X

is+1=1

· · ·
nmX

im=1

T

i1···im [us+1]is+1 · · · [um

]
im)

n1,··· ,ns
i1,··· ,is=1, s 2 [m].

Note that the tensor-vector product results in a tensor of order s for s 2 [m], and if s = 0,
then the product is a scalar

n1X

i1=1

· · ·
nmX

im=1

T

i1···im [u1]i1 · · · [um

]
im

If T is an m-th order tensor in Rn⌦ · · ·⌦Rn and u 2 Rn, we denote T⇥(u, · · · , u) as Tus,
where there are length of the tuple (u, · · · , u) is s. If we expand the m-th order tensor T

of dimension (n1, · · · , nm

) linearly, i.e., write T =
P

r

i=1 v
(i)
1 ⌦ · · · ⌦ v

(i)
j

⌦ · · · ⌦ v

(i)
m

, and
have a matrix X

j

2 Rpj⇥nj , we define the matrix-tensor product

X

j

⇥ T =
rX

i=1

v

(i)
1 ⌦ · · ·⌦ (X

j

v

(i)
j

)⌦ · · ·⌦ v

(i)
m

.

If we have matrices X1 2 Rp1⇥n1
, · · · , X

m

2 Rpm⇥nm , then we define the multilinear
matrix multiplication

(X1, · · · , Xm

)⇥ T =
rX

i=1

(X1v
(i)
1 )⌦ · · ·⌦ (X

m

v

(i)
m

).

Then, we explain what the rank of a tensor and symmetric rank of a symmetric tensor
are. Since Rn1 ⌦ · · · ⌦ Rnm ⇠= Rn1⇥···⇥nm , we can see a tensor which is the sum of some
rank-1 tensors

P
r

i=1 v
(i)
1 ⌦ · · ·⌦ v

(i)
m

= T in the tensor product space Rn1 ⌦ · · ·⌦ Rnm as

a tensor which is the sum of Segre products of some vectors
P

r

i=1 v
(i)
1 ⌦ · · ·⌦ v

(i)
m

= T in

the space Rn1⇥···⇥nm , where v

(i)
j

2 Rnj and j 2 [m].

Definition 4. ([1]) For a tensor T 2 Rn1⇥···⇥nm , its rank is defined as the smallest integer
r such that T is the sum of r rank-1 tensors, i.e.,

rank(T ) = min
r

{T =
rX

i=1

v

(i)
1 ⌦ · · ·⌦ v

(i)
m

}.

T =
P

r

i=1 v
(i)
1 ⌦ · · ·⌦ v

(i)
m

is known as a CP rank decomposition.

Similarly, we can define the symmetric rank of a symmetric tensor. Let Sm(Rn) be a
subspace of Rn ⌦ · · · ⌦ Rn such that it is the space of all m-th order symmetric tensors
of dimension n.

Definition 5. ([1]) For a symmetric tensor T 2 S

3(Rn), its symmetric rank is defined as
the smallest number r such that it is a linear combination of r symmetric rank-1 tensors,
i.e.,

srank(T ) = min
r

{T =
rX

i=1

�

i

v

⌦m

i

}.

T =
P

r

i=1 �i

v

⌦m

i

is known as a symmetric decomposition.
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Observe that for a symmetric tensor T , rank(T )  srank(T ).

Example 2. ([1]) Consider the tensor T 2 S

3(R3) determined by the high-dimensional
array (i1 + i2 + i3)1i1,i2,i33 which takes the representation

2

4
3 4 5 4 5 6 5 6 7
4 5 6 5 6 7 6 7 8
5 6 7 6 7 8 7 8 9

3

5
.

One can verify that rank(T ) = 3, and the CP rank decomposition is given by

T =

2

4
1
1
1

3

5⌦

2

4
1
1
1

3

5⌦

2

4
1
2
3

3

5+

2

4
1
1
1

3

5⌦

2

4
1
2
3

3

5⌦

2

4
1
1
1

3

5+

2

4
1
1
1

3

5⌦

2

4
1
1
1

3

5⌦

2

4
1
2
3

3

5
.

Also, srank(T ) = 3, and the symmetric decomposition is given by

T =
1

2

2

4
2
3
4

3

5
⌦3

+
1

2

2

4
0
1
2

3

5
⌦3

�

2

4
1
2
3

3

5
⌦3

.

For this tensor T , the rank and the symmetric rank are equal.

3 Latent Variable Models

In this section, we examine the symmetric tensor structure of the second-order and third-
order cross moments of certain types of latent variable models, observed by Anandkumar
et al. [2]. Specifically, the structure of the cross moments yield a symmetric tensor
decomposition, in which every rank-one tensor is written in terms of the model parame-
ters. In some models, since the cross moments do not yield a symmetric tensor structure
directly, the moments are required to be modified to obtain the desired structure.

3.1 Exchangeable Single Topic Model

In this subsection, we introduce the exchangeable single topic model, a special case of the
topic model. A topic model is a type of statistical model for identifying the topics, seen
as latent variables, that occur in a collection of documents. The simplest topic model,
the exchangeable single topic model assumes the words in the documents, seen as random
variables x1, · · · , xl

, to be exchangeable, that is,

f

x1···xl
(x1, · · · , xl

) = f

x⇡(1)···x⇡(l)

�
x

⇡(1), · · · , x⇡(l)

�

where x
⇡(1), · · · , x⇡(l) is a permutation of the observed variables. According to De Finetti’s

theorem [23], in the single topic model, the random variables (words) x1, · · · , xl

are
conditionally independent and identically distributed given a latent variable (topic) h,
and the conditional distribution is invariant among all the nodes.

The formation of the single topic model is as follows. First, a topic h is drawn from
the discrete distribution w : =(w1, · · · , wr

), so P (h = j) = w

j

. Then, given h = j, l
words are drawn independently from the discrete distribution that is determined by the
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probability vector µ
j

where j 2 [r]. The l words, represented by x1, · · · , xl

2 Rn, are from
the word pool consisting of n words, each of which is represented by an integer i 2 [n].
Hence, x1, · · · , xl

satisfies that x

t

= e

i

when the t-th word is i, where e1, · · · , en is the
canonical basis for Rn.

According to the generative process, the single topic model has two properties. First,
the (i1, · · · .il)-th entry of the tensor of moment E[x1 ⌦ · · · ⌦ x

l

] is simply the joint
probability P (x1 = e

i1 , · · · , xl

= e

il
) = P (1st word = i1, · · · , l � th word = i

l

). Second,
the conditional expectation E[x

t

|h = j] is simply topic j’s probability vector µ
j

. Since the
random variables are conditionally independent given the latent variable, the conditional
moment E[x1 ⌦ x2|h = j] = µ

j

⌦ µ

j

. Thus, the following theorem follows.

Theorem 1. ([20]) If
M : = E [x1 ⌦ x2] ,

T : = E [x1 ⌦ x2 ⌦ x3] ,

then

M =
rX

i=1

w

i

µ

⌦2
i

T =
rX

i=1

w

i

µ

⌦3
i

Proof. Note that x

t

= e

p

if and only if the t-th word in the document is p, and the
p-th coordinate of the probability vector µ

j

is the probability that the t-th word in the
document is p given topic h = j. Since x

t

=
P

n

p=1[xt

]
p

e

p

,

E[x1 ⌦ x2] = E[
nX

p=1

nX

q=1

[x1]p[x2]qep ⌦ e

q

]

=
nX

p=1

nX

q=1

E[[x1]p[x2]q]]ep ⌦ e

q

.

Note that, due to the conditional i.i.d property of x
t

,

E[[x1]p[x2]q]] =
rX

i=1

P (h = i)E[[x1]p[x2]q]|h = i]

=
rX

i=1

w

i

E[[x1]p]|h = i]E[[x2]q|h = i]

=
rX

i=1

w

i

[
nX

t=1

[µ
i

]
t

e

t

]
p

[
nX

t=1

[µ
i

]
t

e

t

]
q

=
rX

i=1

w

i

[µ
i

]
p

[µ
i

]
q

Hence, it follows that

E[x1 ⌦ x2] =
nX

p=1

nX

q=1

rX

i=1

w

i

[µ
i

]
p

[µ
i

]
q

e

p

⌦ e

q

=
rX

i=1

w

i

µ

⌦2
i
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Similarly, for the three-word case,

E[x1 ⌦ x2 ⌦ x3] =
nX

p=1

nX

q=1

nX

s=1

rX

i=1

w

i

[µ
i

]
p

[µ
i

]
q

[µ
i

]
s

e

p

⌦ e

q

⌦ e

s

=
rX

i=1

w

i

µ

⌦3
i

3.2 Nonsymmetric Moments

In this subsection, we introduce the models in which the moments do not have a symmetric
tensor structure. In order to obtain the symmetric tensor structure, various manipulations
need to be applied to the cross moments.

3.2.1 Spherical Gaussian Mixtures

In this subsection, spherical Gaussian mixtures is presented. Here, the probability given
in a mixture of k Gaussians is

P (x) =
rX

i=1

w

i

N(x|µ
i

,⌃
i

),

where
P

r

i=1 wi

= 1 and the covariance matrix is spherical, that is ⌃
i

= �

2
i

I. Similarly,
w

i

’s determines the distribution of the latent variable h. In spherical Gaussian mixtures,
an observation is written as

x : = µ

h

+ z,

where z is conditionally independent given h and z|h ⇠ N(0, �
i

2
I). Unlike the single topic

model, in which the draws of the random variables are under the same condition h, the
Gaussian mixture model present random variable draws related to di↵erent conditions h.

In this model, the second-order and third-order moments do not directly yield a
symmetric tensor form, so some modifications are needed. Define the modfied expectation

V to be E
h
x

�
v

> (x� E[x])
�2i

, where v is a normalized eigenvector corresponding to the

smallest eigenvalue �̄

2 of the covariance matrix, which is the weighted average variance.
This modified expectation V and the weighted average variance �̄

2 are used to modify
the moments, as shown in the following theorem.

Theorem 2. ([3]) Suppose n � r. The smallest eigenvalue of the coviriance matrix
E[x⌦2] � E[x] ⌦ E[x] is the weighted average variance �

2 =
P

r

i=1 wi

�

2
i

. Suppose v is a
normalized eigenvector corresponding to �

2. If

V : = E[x(v>(x� E[x]))2],

M : = E

⇥
x

⌦2
⇤
� �

2
I,

T : = E

⇥
x

⌦3
⇤
�

nX

i=1

(V ⌦ e

i

⌦ e

i

+ e

i

⌦ V ⌦ e

i

+ e

i

⌦ e

i

⌦ V ),

then

M =
rX

i=1

w

i

µ

⌦2
i

T =
rX

i=1

w

i

µ

⌦3
i

.
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Proof. Suppose µ̄ = E[x] = E[µ
h

] =
P

r

i=1 wi

µ

i

. Then the covariance matrix is

E[(x� µ̄)⌦2] = E[(µ
h

+ z � µ̄)⌦2]

=
rX

i=1

w

i

((µ
i

� µ̄)⌦2 + �

2
i

I) =
rX

i=1

w

i

(µ
i

� µ̄)⌦2 + �̄

2
I.

Since
P

r

i=1(µi

�µ̄) = 0, the (µ
i

�µ̄)’s are linearly dependent, and hence
P

r

i=1 wi

(µ
i

�µ̄)⌦2

has rank er < r. Thus, the d�er smallest eigenvalues are �̄2, and the other eigenvalues are
strictly larger. Due to the strict separation of eigenvalues, the eigenvector v corresponding
to �̄

2 satisfies v>(µ
i

� µ̄) = 0. Then

V = E[x(v>(x�E[x]))2] = E[(µ
h

+ z)(v>(µ
h

� µ̄+ z))2] = E[(µ
h

+ z)(v>z)2] = E[µ
h

�

2
h

],

since z|h ⇠ N(0, �
h

I). Moreover, since E[z ⌦ z] =
P

r

i=1 wi

�

2
i

I = �̄

2
I,

M = E

⇥
x

⌦2
⇤
� �

2
I = E[µ⌦2

h

] + E[z⌦2]� �

2 = E[µ⌦2
h

] =
rX

i=1

w

i

µ

⌦2
i

.

Furthermore, since E[µ
h

⌦ z ⌦ z] = E[E[µ
h

⌦ z ⌦ z|h]] = E[
P

n

i=1

P
n

j=1[z]i[z]jµh

⌦ e

i

⌦
e

j

|h]] = E[
P

n

i=1 �
2
h

µ

h

⌦ e

i

⌦ e

i

] =
P

n

i=1 V ⌦ e

i

⌦ e

i

, and similarly
P

n

i=1 ei ⌦ V ⌦ e

i

andP
n

i=1 ei ⌦ e

i

⌦ V can be derived,

T = E

⇥
x

⌦3
⇤
� E[µ

h

⌦ z ⌦ z]� E[z ⌦ µ

h

⌦ z]� E[z ⌦ z ⌦ µ

h

] = E[µ⌦3
h

] =
rX

i=1

w

i

µ

⌦3
i

.

3.2.2 Latent Dirichlet Allocation

In this subsection, latent Dirichlet allocation (LDA) is illustrated. LDA belongs to the
family of the mixed membership models, which is defined as follows.

Definition 6. ([2]) A latent variable model is a mixed membership model if it satisfies
the following conditions:

• Data are grouped.

• Each group is modeled with a mixture model (e.g., Gaussian mixture model).

• The mixture components are shared across groups.

• The mixture proportions vary across groups.

LDA allows di↵erent sets of observations to be explained by groups of latent variables.
In LDA, a document has a mixture of topics, with distribution of topic mixtures as
Dirichlet distribution Dir(↵) with parameter ↵ 2 Rr

++. The probability density function
of Dir(↵) is

P

↵

(h) =
�(↵0)Q
r

i=1 �(↵i

)

rY

i=1

h

↵i�1
i

where ↵0 : =
P

r

i=1 ↵i

.
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The formation of the LDA model is as follows. The topics are, as before, determined
by the probability vectors µ1, · · · , µr

. First, a topic mixture h = (h1, · · · , hr

) is drawn
from Dir(↵). Next, given h, l words x1, · · · , xl

are drawn independently from the discrete
distribution that is specified by the probability vector

P
r

i=1 hi

µ

i

. Just like the single topic
model, the l words, represented by x1, · · · , xl

, satisfies that x
t

= e

i

when the t-th word is
i.

The parameter ↵0 is an indicator of how concentrated the distribution of h is. As ↵0

goes to zero, the model becomes a single topic model, and as ↵0 goes to infinity, h has a
uniform distribution with parameter 1

r

. The first-order moment V and the parameters ↵
and ↵0 are used to symmetrize the moments, as shown in the following theorem.

Theorem 3. ([11]) If
V : = E[x1],

M : = E [x1 ⌦ x2]�
↵0

↵0 + 1
V

⌦2

T : = E [x1 ⌦ x⌦ x3]�
↵0

↵0 + 2
(E[V ⌦ x1 ⌦ x2] + E[x1 ⌦ V ⌦ x2] + E[x1 ⌦ x2 ⌦ V ])

+
2↵2

0

(↵0 + 2)(↵0 + 1)
V

⌦3
,

then

M =
rX

i=1

↵

i

(↵0 + 1)↵0
µ

⌦2
i

,

T =
rX

i=1

2↵
i

(↵0 + 2)(↵0 + 1)↵0
µ

⌦3
i

.

Proof. Note that V = E[x1] = E[E[x1|h]] = E[
P

r

i=1 hi

µ

i

] =
P

r

i=1
↵i
↵0
µ

i

. Then we have

E[x1 ⌦ x2] = E[E[x1 ⌦ x2|h]] = E[E[x1|h]⌦ E[x2|h]] = E[
rX

i�1

rX

j=1

h

i

h

j

µ

i

⌦ µ

j

]

=
rX

i=1

X

j 6=i

↵

i

↵

j

↵0(↵0 + 1)
µ

i

⌦ µ

j

+
rX

i=1

↵

i

(↵
i

+ 1)

↵0(↵0 + 1)
µ

⌦2
i

.

Then
M = E[x1 ⌦ x2]�

↵0

↵0 + 1
V

⌦2

= E[x1 ⌦ x2]�
↵0

↵0 + 1

rX

i=1

rX

j=1

↵

i

↵

j

↵0(↵0 + 1)
µ

i

⌦ µ

j

=
rX

i=1

↵

i

(↵0 + 1)↵0
µ

⌦2
i

Similarly,

E[x1⌦x2⌦x3] =
rX

i=1

X

j 6=i

X

s 6=j,i

↵

i

↵

j

↵

s

↵0(↵0 + 1)(↵0 + 2)
µ

i

⌦µ

j

⌦µ

s

+
rX

i=1

X

s 6=i

↵

i

(↵
i

+ 1)↵
s

↵0(↵0 + 1)(↵0 + 2)
µ

i

⌦µ

i

⌦µ

s

9



+
rX

i=1

X

s 6=i

↵

i

(↵
i

+ 1)↵
s

↵0(↵0 + 1)(↵0 + 2)
µ

i

⌦ µ

s

⌦ µ

i

+
rX

i=1

X

s 6=i

↵

i

(↵
i

+ 1)↵
s

↵0(↵0 + 1)(↵0 + 2)
µ

s

⌦ µ

i

⌦ µ

i

+
rX

i=1

↵

i

(↵
i

+ 1)(↵
i

+ 2)

↵0(↵0 + 1)(↵0 + 2)
µ

⌦3
i

.

Thus, after similar manipulations, we have

T = E [x1 ⌦ x⌦ x3]�
↵0

↵0 + 2
(E[V ⌦ x1 ⌦ x2] + E[x1 ⌦ V ⌦ x2] + E[x1 ⌦ x2 ⌦ V ])

+
2↵2

0

(↵0 + 2)(↵0 + 1)
V

⌦3
,

=
rX

i=1

2↵
i

(↵0 + 2)(↵0 + 1)↵0
µ

⌦3
i

.

3.2.3 Independent Component Analysis

In this subsection, independent component analysis (ICA) is demonstrated. ICA is a
computational method for separating a multivariate signal into independent subcompo-
nents with Gaussian noises [22]. In this model, the observed random vector x 2 Rn

satisfies that
x : = Ah+ z,

where h 2 Rr is a latent random vector with independent entries, A 2 Rn⇥r is the matrix
for mixing the signals, z 2 Rn is the Gaussian noise, and h and z are independent. Let µ

i

be the i-th column of A. In ICA, the modified fourth-order moment K yield a symmetric
tensor structure.

Theorem 4. ([21]) Let
K = E[x⌦4]�W,

where W 2 S

4(Rn) is such that

W

i1i2i3i4 = E[x
i1xi2 ]E[x

i3xi4 ] + E[x
i1xi3 ]E[x

i2xi4 ] + E[x
i1xi4 ]E[x

i2xi3 ],

for 1  i1, i2, i3, i4  n. Then

K =
rX

i=1



i

µ

⌦4
i

,

where 

i

= E[h4
i

]� 3.

We can obtain the second-order tensor M and the third-order tensor T by taking
M = K⇥(u, v) =

P
r

i=1 i

(µ>
i

u)(µ>
i

v)µ⌦2
i

and T = Kv =
P

r

i=1 i

(µ>
i

v)µ⌦3
i

, for u, v 2 Rn.
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3.3 Multi-View Models

In this subsection, multi-view models, sometimes also called naive Bayes models, are
brought into investigation. These models are similar to the single topic model in the sense
that they assume the conditional independence of the observed variables given a latent
variable. However, multi-view models do not require the same conditional distributions
of the variables. The latent variable h still satisfies that P (h = j) = w

j

. Unlike the
single topic model, the multi-view model specifies that the observations x1, · · · , xl

are
each determined by the conditional mean µ

t,j

= E[x
t

|h = j]. Due to this setting, the
cross moments have the following form:

E[x
s

⌦ x

t

] =
rX

i=1

w

i

µ

s,i

⌦ µ

t,i

, s, t 2 [3], s 6= t,

E[x1 ⌦ x2 ⌦ x3] =
rX

i=1

w

i

µ1,i ⌦ µ2,i ⌦ µ3,i.

Note that the cross moments do not yield a symmetric tensor form under the condition
of di↵erent conditional distributions of the observations. To symmetrize the moments,
a linear transformation that correlates x1 and x2 to x3 is required, as specified by the
following theorem.

Theorem 5. ([11]) Assume µ

v,1, · · · , µv,r

are linearly independent for each v 2 [3]. If

ex1 : = E[x3 ⌦ x2]E[x1 ⌦ x2]
�1
x1, ex2 : = E[x3 ⌦ x1]E[x2 ⌦ x1]

�1
x2,

M : = E [ ex1 ⌦ ex2] ,

T : = E [ ex1 ⌦ ex2 ⌦ x3] ,

then

M =
rX

i=1

w

i

µ

⌦2
3,i ,

T =
rX

i=1

w

i

µ

⌦3
3,i .

4 Method of Orthogonalization

In this section, we illustrate the orthogonal tensor decomposition, which is the symmetric
tensor decomposition for orthogonally-decomposable (odeco) symmetric tensors, using
the tensor power method, a higher-order generalization of the matrix power method for
finding eigenvalues and eigenvectors. We introduce this decomposition obtained by tensor
power method, relate it to parameter estimation of the latent variable models, and analyze
the ensured convergence of the tensor power method.

Since we would like to obtain the symmetric tensor decomposition for the third-order
cross moment, our discussion here is restricted to the third-order tensors. Let S3(Rn) be
the space of symmetric cubic tensors of dimension n and T 2 S

3(Rn) be a symmetric
cubic tensor. Then its orthogonal decomposition is given by

T =
rX

i=1

�

i

v

⌦3
i

, (1)

11



where �

i

� 0 and {v1, · · · , vr} are orthonormal. Note that such an orthogonal decom-
position is not guaranteed to exist for every symmetric tensor. In order to recover the
v

i

’s and the �

i

’s, we can aim at either first finding the eigenvectors and then identifying
the eigenvalues, or vice versa. The advantage of orthogonal tensors is that a unique de-
composition can be obtained given that the coe�cients �

i

> 0 8 i 2 [r]. The uniqueness
condition justifies the use of orthogonal tensor decomposition to estimate parameters of
latent variable models.

4.1 Tensor Eigenvalues and Eigenvectors

In this subsection, we generalize the concept of matrix eigenvalue / eigenvector to tensor
eigenvalue / eigenvector. Recall that for a matrix X 2 Rn⇥n, if

Mu = �u,

for some scalar � and vector u 2 Rn, then we say � is an eigenvalue of X and u is an
eigenvector of M . Next, we examine what the eigenvalue / eigenvector of a symmetric
tensor is, and relate the concepts to orthogonal tensor decomposition.

4.1.1 Identification of the Tensor Eigenvectors

Definition 7. ([4]) For T 2 S

3(Rn) and u 2 Rn, if

Tu

2 = �u,

then we say � is an Z-eigenvalue of T and u is the corresponding Z-eigenvector. For
simplicity, we just call them eigenvalue / eigenvector.

Since T has the structure pecified by (1), we define the map

f(u) = Tu

2 = (
nX

j=1

nX

k=1

T

ijl

[u]
j

[u]
k

)n
i=1 =

nX

i=1

nX

j=1

nX

k=1

T

ijl

(e>
j

u)(e>
k

u)e
i

. (2)

Note that this map is not linear. To get rid of scaling issues, we assume that the
eigenvectors of T are unit vectors. By orthogonality, v

>
i

v

j

= 0 8 i 6= j, so Tv

2
i

=P
k

j=1 �j

(v>
i

v

j

)2v
j

= �

i

v

i

. Hence, each �

i

in (1) is an eigenvalue of T and each v

i

is an
eigenvector.

As opposed to the matrix case, even if all the �

i

’s are distinct, v
i

’s are not the only
eigenvectors. For i 6= j, vi

�i
+ vj

�j
is an eigenvector, since T ( vi

�i
+ vj

�j
)2 = �

i

( 1
�i
)2v

i

+�

j

( 1
�j
)2v

j

=
vi
�i
+ vj

�j
. As a result, the notion of robust eigenvectors arises because of the need to specify

a complete set of eigenvectors. A unit vector v is said to be a robust eigenvector if 9 ✏ > 0
such that 8 ✓ 2 {u 2 Rn| ku� vk  ✏}, repeated iterations of the map

�(✓) =
T ✓

2

kT ✓2k

starting from ✓ converges to v. The following theorem indicates the uniqueness of the
orthogonal decomposition of tensors by robust eigenvectors.

12



Theorem 6. ([2]) Let T be orthogonally decomposable such that T =
P

r

i=1 �i

v

⌦3
i

. Then
the set of ✓ 2 Rn which, under repeated iterations of the map �(✓), do not converge to
some v

i

, has measure zero, and the robust eigenvectors are v

i

’s for i 2 [r].

For a matrix M , for nearly all initial points, the map �(✓) = M✓

kM✓k converges to the

eigenvector v1 corresponding to the eigenvalue �1 such that k�1k = max
i2[r] k�i

k. On the
other hand, each v

i

in the orthogonal decomposition of a tensor is a robust eigenvector.
Moreover, the tensor order is odd, so �v

i

is mapped to v

i

under �(✓) and hence the signs
of the robust eigenvectors are fixed.

4.1.2 Identification of the Tensor Eigenvalues

If, for T 2 S

3(Rn) and u 2 Rn, Tu2 = �u, then � = Tu

3, since

Tu

3 =
nX

i=1

nX

j=1

nX

k=1

T

ijk

[u]
i

[u]
j

[u]
k

=
nX

i=1

nX

j=1

nX

k=1

T

ijk

(e>
i

u)(e>
j

u)(e>
k

u).

Due to orthogonality, Tv3
i

=
P

r

j=1 �j

(v>
i

v

j

)3 = �

i

, so each �

i

in (1) is an eigenvalue
of T and each v

i

is an eigenvector, and we arrive at the same observation as from the
perspective of eigenvectors. In order to recover the �

i

’s and v

i

’s, we can solve the opti-
mization problem max

u2Rn
Tu

3
s.t. kuk  1, as expained by the following theorem, since

the following theorem indicates that for an orthogonally decomposable tensor, v
i

’s are
the only isolated maximizers of Tu3.

Theorem 7. ([2]) Let T be orthogonally decomposable such that T =
P

r

i=1 �i

v

⌦3
i

. Then
for the optimization problem

max
u2Rn

Tu

3
s.t. kuk  1,

eigenvectors of T are the constrained stationary points, and a constrained stationary point
u

⇤ is an isolated local maximizer if and only if u⇤ = v

i

for some i 2 [r].

In the matrix case, the local maximizers are the eigenvectors corresponding to the
largest eigenvalues, while in the tensor case, the robust eigenvectors are the isolated local
maximizers.

From the last two theorems, we see that the tensor T =
P

r

i=1 �i

v

⌦3
i

has a unique
orthogonal decomposition, since the orthonormal decomposition vectors are uniquely de-
termined by its robust eigenvectors v

i

, and the corresponding eigenvalues �
i

are uniquely
determined by Tv

3
i

.

4.2 Some Useful Results

In this subsection, we briefly talk about some results about odeco tensors proposed by
Robeva [15], which can be useful. Note that a tensor T can be converted to a polynomial
in the polynomial ring R[x1, · · · , xn

], i.e.,

T (x1, · · · , xn

) =
X

0i1,i2,i3n

T

i1i2i3xi1xi2xi3 .

For x 2 Cn, the eigenvector definition Tx

2 = �x is equivalent to rT (x) = 3�x, and
hence rT (x) and x are parallel. Then the variety of eigenvectors of T , denoted by ⌫

T

, is

13



the 2 ⇥ 2 minors of the matrix [rT (x)|x] 2 Rn⇥2. Since the hypersurface T (x) = 0 has
no singular points, the eigenvectors of T (x) are the stationary points of the map rT (x)
from the projective space PCn�1 that maps [x] to [rT (x)], where [x] is the projection of
x 2 Cn.

Definition 8. ([15]) The odeco variety is the Zariski closure of the set of all odeco tensors
T 2 S

3(Rn) such that T =
P

r

i=1 �i

v

⌦3
i

.

For an odeco tensor T , its polynomial form T (x) is in the r-th secant variety of
the 3rd Veronese variety �

r

(v3(Cn)). According to Robeva [16], the dimension of the
odeco variety, which is irreducible, in S

3(Cn) is
�
n+1
2

�
. Moreover, by Cartwright and

Sturmfels [19], the number of equivalence classes of a tensor T 2 S

3(Rn) with finitely
many equivalence classes of eigenpairs is 2n � 1, with multiplicity, and by Robeva [16],
that of an odeco tensor T 2 S

3(Rn) such that T =
P

r

i=1 �i

v

⌦3
i

is 2r � 1.

4.3 Application to Parameter Estimation

In this subsection, we relate parameter estimation of the latent variable model to the
orthogonal tensor decomposition introduced in the last subsection by applying the method
to the third-order cross moment T . We take the exchangeable single topic model, in which
the cross moments have the form M =

P
r

i=1 wi

µ

⌦2
i

and T =
P

r

i=1 wi

µ

⌦3
i

, with µ

i

2 Rn,
for instance. In the single topic model,the w

i

’s in M and T assumed to be same, while in
general, this may not be the case (LDA), and mild modifications are required in addition
to the process introduced in this section. Throughout this subsection, the nondegeneracy
condition, which is that the µ

i

’s are linearly independent and the w
i

’s are strictly positive,
is assumed to hold. Note that this condition implies that M is positive semidefinite and
has rank r.

We assume that the µ

i

’s are linearly independent, but they are not necessarily or-
thogonal, and hence the orthogonal decomposition cannot be applied. Thus, orthog-
onalization of the third-order tensor T using the second-order tensor M , as shown in
the following process. Let X 2 Rn⇥r be a matrix such that X

>
MX = I. Since

M ⌫ 0 ude to the non-degeneracy condition, we can perform an eigendecomposition
to X. Take X = PD

� 1
2 , where P is the matrix with the orthornormal eigenvectors

of M as columns, and D is the diagonal matrix of positive eigenvalues of M , because
X

>
MX = (D� 1

2 )>P>
PDP

>
P (D� 1

2 )> = I. Let eµ
i

=
p
w

i

X

>
µ

i

. Note that eµ
i

2 Rr.
Observe that

X

>
MX =

rX

i=1

X

>(
p
w

i

µ

i

)(
p
w

i

µ

i

)>X =
rX

i=1

eµ
i

eµ>
i

= I,

so the eµ
i

’s are orthornormal. Let e
T = (X>

, X

>
, X

>)⇥ T . Observe that

e
T =

rX

i=1

w

i

(X>
µ

i

)⌦3 =
rX

i=1

w

i

(
eµ
ip
w

i

)⌦3 =
rX

i=1

1
p
w

i

eµ⌦3
i

(3)

is orthogonally decomposable. After these steps, the third-order cross moment T is
converted to an orthogonally decomposable cubic tensor e

T . The following theorem states
that the orthogonal decomposition of e

T can be obtained using its robust eigenvectors,
and then w

i

and µ

i

can be identified.
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Theorem 8. ([2]) Suppose that the µ
i

’s are linearly independent and the w
i

> 0, and e
T =

(X>
, X

>
, X

>)⇥ T =
P

k

i=1
1p
wi
eµ⌦3
i

. Then, the robust eigenvectors of e
T are {eµ1, · · · , eµr

},
and the corresponding eigenvalues are 1p

wi
’s, Furthermore, let (X>)† denote the Moore-

Penrose inverse of X>, and (�, v) be a robust eigenvalue and eigenvector pair of e
T . Then

�(X>)†v = µ

i

for some i 2 [r].

4.4 Convergence Analysis of Tensor Power Method

In this subsection, we ensure the convergence of the tensor power method for orthogo-
nally decomposable tensors. Notice that if the orthogonally decomposable tensor e

T is
approximated by b

T , an orthogonal decomposition for b
T may not exist. For the latent

variable model, this is exactly the case, since the cross moments are empirical ones es-
timated by the method of moments. Thus, the tensor power method for obtaining the
approximate decomposition is needed. For an orthogonally decomposable cubic tensor,
as characterized in (1), the tensor power method is the repeated iteration of the map

�(✓) =
T ✓

2

kT ✓2k . (4)

The following theorem claims this map converges at a quadratic rate. The initial point
determines the convergent point, which is a robust eigenvector of T .

Lemma 1. ([2]) Let T 2 S

3(Rn) be orthogonally decomposable, that is, T =
P

r

i=1 �i

v

⌦3
i

.
Assume that the largest value of |�1v

>
1 ✓0|, · · · , |�1v

>
k

✓0| is unique for ✓0 2 Rn. Let |�1v
>
k

✓0|
be the largest value and �2v

>
k

✓0 be the second largest value. For t = 1, 2, · · · , let

✓

t

=
T ✓

2
t�1

kT ✓2
t�1k

.

Then, the repeated iteration starting from ✓0 converges to v1 at a quadratic rate. Pre-
cisely,

kv1 � ✓

t

k2  (2�2
1

rX

i=2

1

�

2
i

)|�2v
>
2 ✓0

�1v
>
1 ✓0

|2t+1

Proof. Define e
✓0 = ✓0 and e

✓

t

= T ✓

2
t�1. Let ci = v

>
i

✓0. Note that ✓
t

=
e
✓t

ke✓tk
. Also, observe

that e
✓

t

=
P

r

i=1 �
2t�1
i

c

2t
i

v

i

through iterative computation

e
✓

t

=
rX

i=1

�

i

(v>
i

✓

t�1)
2
v

i

=
rX

i=1

�

i

(v>
i

kX

j=1

�

j

(v>
j

✓

t�2)
2
v

j

)2v
i

=
kX

i=1

�

i

(�
i

(v>
i

✓

t�2)
2)2v

i

=
rX

i=1

�

i

(�
i

(v>
i

rX

j=1

�

j

(v>
j

✓

t�3)
2
v

j

)2)2v
i

=
rX

i=1

�

i

(�
i

(�
i

(v>
i

✓

t�3)
2)2)2v

i

= · · · =
rX

i=1

�

2t�1
i

c

2t

i

v

i

.

Then

1�(v>1 ✓t)
2 = 1�(v>1 e✓t)2

ke✓
t

k2
= 1� �

2t+1�2
1 c

2t+1

1P
r

i=1 �
2t+1�2
i

c

2t+1

i


P

r

i=2 �
2t+1�2
i

c

2t+1

iP
r

i=1 �
2t+1�2
i

c

2t+1

i

 �

2
1

rX

i=2

1

�

2
i

|�2c2

�1c1
|2t+1
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Since �1 > 0, v>1 ✓t > 0. Then

kv1 � ✓

t

k2 = 2(1� v

>
1 ✓t)  2(1� (v>1 ✓t)

2)  (2�2
1

kX

i=2

1

�

2
i

)|�2v
>
2 ✓0

�1v
>
1 ✓0

|2t+1

Applying the tensor power method to the deflated tensor T �
P

j

�

j

v

⌦3
j

after getting
the first few robust eigenvalue / eigenvector pairs, all robust eigenvectors can be obtained.
Note that the convergence is ensured only if the symmetric tensor is orthorgonally decom-
posable (odeco). For a general symmetric tensor, the power iteration does not converge
as shown by Lathauwer et al. [12], since the eigenvectors are no longer decomposition
vectors when the tensor is not odeco.

4.5 Algorithm for Parameter Estimation

In this subsection, we propose an algorithm for parameter estimation of the latent variable
models using the techniques and methods introduced in Section 4. Suppose that the
empirical second-order cross moment c

M and the empirical third-order cross moment
b
T are available. Also, for simplicity, assume the length of decomposition r is given.
Algorithm 1 is provided to give a the estimated parameters.

Algorithm 1

Input symmetric tensor c
M 2 Rn⇥n, symmetric tensor b

T 2 Rn⇥n⇥n, length of decomposition r

Output the estimated eigenvalue / eigenvector pair, the deflated tensor

1: Obtain the eigendecomposition for c
M , that is M = PDP

>, and let X = PD

� 1
2

2: Let e
T = (X>

, X

>
, X

>)⇥ b
T

3: for b = 1 to B do
4: draw ✓

(b)
0 uniformly at random from the unit sphere in Rn

5: for t = 1 to T do

6: Compute ✓

(b)
t

=
e
T ✓

(b)2
t�1

keT ✓

(b)2
t�1k

7: end for
8: end for
9: Let b⇤ = argmax

b2[B] {eT ✓(b)3
T

} and b
✓0 = ✓

(b⇤)
T

10: for t = 1 to T do

11: Compute b
✓

t

=
T

b
✓

2
t�1

kT b
✓

2
t�1k

12: end for
13: Let b

✓ = b
✓

T

and set b� = b
T

b
✓

3

14: Let e� = ( 1b
�

)2 and e
✓ = b

�(X>)+b✓
15: return (e�, e✓), b

T � b
�

b
✓

⌦3

5 Method of Generating Polynomials

In Section 4, we employ the technique of orthogonalization of the cross moment tensor
and orthogonal tensor decomposition. The requirement of orthogonality is intended for
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ensuring the uniqueness of the decomposition. Otherwise, the tensor to decompose will
have multiple decompositions, and the problem of choosing the right one will arise. Also,
the orthornomral robust eigenvectors obtained by the tensor power method can be used
as decomposition vectors in the orthogonal decomposition. Without this setting, we can
still find the eigenvectors of a symmetric tensor using some variant of the power method
that is guaranteed to converge, proposed by Kolda and Mayo [16], but the eigenvectors
cannot be used as the vectors in the symmetric decomposition of the tensor. Furthermore,
this setting implies that the tensor rank is smaller than n, where the tensor T 2 S

3(Rn),
and the existence of tractable decomposition methods.

However, if the requirement of orthogonality is omitted, under some condition, we
can still get the unique decomposition of the cross moment tensor, seen as a general
symmetric tensor. In this section, we explore another symmetric tensor decomposition
method, proposed by Nie [5], that uses generating polynomials, which describe the linear
relation of recursive patterns of the symmetric tensor entries. Due to the construction of
the method, we let a complex third-order tensor T be in S

3(Cn+1). For T , this method
gives the decomposition

T =
rX

i=1

u

⌦3
i

. (5)

Notice that the dimension used in this method is n + 1 instead of n. Since we want
to apply the method to cross moment tensors of latent variable models, in which the
conditional expectation vectors are rarely dependent and the cross moment tensors have
low-rank structures, it is reasonable to assume that the decomposition vectors are linearly
independent and r < n+1. Our discussion in this section is also restricted to third-order
tensors.

5.1 Uniqueness of Symmetric Tensor Decomposition

In this subsection, we introduce the uniqueness condition of the symmetric tensor de-
composition. Recent research about symmetric tensor decompositions show that the
uniqueness of the decomposition of a symmetric tensor can be satisfied under some con-
ditions. In particular, the setting of linear independence of the decomposition vectors
implies that the symmetric tensor decomposition is unique.

Before stating the result, we need the concept of generic rank of tensors.

Definition 9. ([1]) Let S3(Cn+1) be the space of symmetric cubic tensors of dimension
n+1 and S

3
r

(Cn+1) be the set of symmetric third-order tensors with dimension n+1 and
symmetric rank r. The generic rank of S3(Cn+1) is defined as the smallest r such that
the closure of S3

r

(Cn+1) is the entire symmetric tensor space S

3(Cn+1), i.e.,

S

3
r

(Cn+1) = S

3(Cn+1).

The result about uniqueness of symmetric tensor decomposition is related to this
concept.

The result is given by Chiantini, Ottaviani and Vannieuwenhoven [6]. According to
Alexander and Hirschowitz [7], for a generic third order symmetric tensor of dimension
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n+ 1 over the complex field C, the symmetric ranks is given by the formula

SR(3, n+ 1) = d 1

n+ 1

✓
n+ 3

3

◆
e, (6)

except for n = 4, and for this case, the rank should be increased by one. The uniqueness
condition is related to this formula. A generic third-order symmetric tensor of dimension
n + 1 over the complex field has a unique symmetric decomposition if the symmetric
tensor has a subgeneric rank r, i.e.,

r < d 1

n+ 1

✓
n+ 3

3

◆
e,

except for the case that n = 5 and r = 9, in which there are two symmetric decompo-
sitions. We can use this result to check if the third-order moment tensor has a unique
decomposition. Oeding, Ottaviani and Vandewalle [13] also proposed conditions that
imply the uniqueness of decomposition.

For parameter estimation of latent variable models, it is reasonable to assume that
the nondegeneracy condition, which is that the µ

i

’s are linearly independent and the w
i

’s
are strictly positive, holds. By this condition, the cross moments tensors can be written
as

T =
rX

i=1

( 3
p
w

i

µ

i

)⌦3 =
rX

i=1

u

⌦3
i

,

where the decomposition vectors u

i

are linearly independent. Note that if the u

i

’s are
linearly independent, then the tensor T has a unique symmetric tensor decomposition.

5.2 Some Useful Results

In this subsection, we introduce some useful results that are related to determining the
symmetric rank of a tensor. Let S

3(Cn+1) be the space of symmetric cubic tensors of
dimension n+1 and PS3(Cn+1) be the projective space. Note that S3(Cn+1) has dimension�
n+3
3

�
and PS3(Cn+1) has dimension

�
n+3
3

�
� 1 [8].

Definition 10. ([5]) We define the variety of symmetric tensors �

r

to be the Zariski
closure [14] of equivalent classes of symmetric tensors with decomposition

P
r

i=1 u
⌦3
i

in
PS3(Cn+1).

Note that �
r

is also defined as the r-th secant variety of the 3rd Veronese variety of
n + 1 variables, just like in the case of odeco tensors. In order to get a decomposition
as in (6), determining the length of decomposition r is important. The best case is that
r equals to the symmetric rank of the tensor, in which the decomposition is called a
symmetric rank decomposition. For a general third order symmetric tensor of dimension
n+1, its symmetric rank is given by SR(3, n+1). If r  SR(3, n+1), then the dimension
of �

r

is given by

dim(�
r

) = min{r(n+ 1)� 1,

✓
n+ 3

3

◆
� 1},

except for (n, r) = (4, 7), for which dim(�
r

) =
�
n+3
3

�
� 2 [8].
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Definition 11. ([1]) Denote the symmetric rank of a tensor T by srank(T ). For a
tensor T 2 �

r

, when srank(T ) > r, i.e., the length of decomposition is smaller than the
symmetric rank, the symmetric border rank, denoted by sbrank(T ), is always used. The
symmetric border ranks is defined as

sbrank(T ) = min
r

{T = lim
k!1

T

k

, srank(T
k

)  r} = min
r

{T 2 �

r

}.

In this case, instead of giving the exact border rank, (7) gives the upper bound of the
border rank. There is a useful result demonstrating the relations between these ranks.

Lemma 2. ([5]) For a symmetric tensor T 2 S

3(Cn+1),

rank(Cat(T ))  sbrank(T )  srank(T ), (7)

where the definition of the catalecticant matrix of T , denoted by Cat(T ), is given by
Definition 12.

This lemma is useful for choosing the length of decomposition and determining the
symmetric rank. Since rank(Cat(T )) gives a lower bound of the symmetric rank, if a
length-t decomposition is for T is available, then the range of symmetric rank of T can
be obtained, i.e, rank(Cat(T ))  srank(T )  t.

5.3 Monomial Indexing and Catalecticant Matrix

In this subsection, we introduce the concepts monomial indexing and catalecticant matrix.
For a third-order symmetric tensor T of dimension n + 1, it can be represented by an
array indexed by a tuple i = (i1, i2, i3), i.e.,

T = (T )
i:0i1,i2,i3n

.

Since the tensor is symmetric, all the entries indexed by the permutations of (i1, i2, i3)
are the same as the one indexed by (i1, i2, i3), so T is uniquely determined by its upper
triangular part (T )

i:0i1i2i3n+1.

Each entry of the upper triangular part can also be employed a monomial indexing.
Let ✓ = (✓0, · · · , ✓n) be a tuple. We can index the upper triangular entries by ✓ such that
|✓| = ✓0 + · · · ✓

n

= 3, i.e.,T
✓

= T

i

if

x

i1xi2xi3 = x

✓0
0 · · · x✓n

n

.

Here, we index T using monomials of degree 3, and each ✓

k

denotes the number of repeats
of number k in index i. For example, for a third-order symmetric tensor of dimension
5, the index (1, 1, 1) is the same as the monomial index (3, 0, 0, 0, 0), and the index
(2, 4, 5) is the same as (0, 1, 0, 1, 1). Since the monomial indexing and the indexing of
upper triangular part of a symmetric tensor T has a one-to-one correspondence, T is also
uniquely determined by T

✓:|✓|=3.

Highly related to the monomial indexing is the concept of catalecticant matrix [5]. It
is the representing matrix of a linear mapping from the space of homogeneous polynomials
of some degree k to the space of symmetric tensor with order 3� k.
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Definition 12. ([5]) The catalecticant matrix of a third order symmetric tensor T 2
S

3(Cn+1) is a matrix indexed by monomials � and ✓, defined as

Cat

3�k,k(T ) = (T
�+✓

)|�|=3�k,|✓|=k

.

Since k can be any nonnegative integers smaller than or equal to 3, there are 4 catalec-
ticant matrices for T . In practice, we usually choose k = 2, and denote the catalecticant
matrix of T as

Cat(T ) = (T
�+✓

)|�|=1,|✓|=2. (8)

Note that T can be equivalently indexed by ↵ = (↵1, · · · ,↵n

) such that |↵| = ↵1 +
· · · + ↵

n

 3,if we let x0 = 1. Note that ↵ is a monomial of degree less than or equal to
3, and (↵1, · · · ,↵n

) = (✓1, · · · , ✓n). Similarly, we have T

↵

= T

i

if

x

i1xi2xi3 = x

↵1
1 · · · x↵n

n

.

Also, the catalecticant matrix can be indexed by monomials � and ↵, i.e.,

Cat(T ) = (T
�+↵

)|�|1,|↵|2. (9)

Example 3. ([1]) Take the tensor T =
2

4
7 �3 9 �3 13 20 9 20 19
�3 13 20 13 �27 6 20 6 6
9 20 19 20 6 6 19 6 45

3

5

for example. By the definition of catalecticant matrix, Cat(T ) = (T
�+↵

)|�|1,|↵|2 =
2

4
7 �3 9 13 20 19
�3 13 20 �27 6 6
9 20 19 6 6 45

3

5
,

where the index of the three rows are (0, 0), (1, 0), (0, 1) or 1, x1, x2, and the index of the
six columns are (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2) or 1, x1, x2, x

2
1, x1x2, x

2
2.

5.4 Generating Polynomials

In this subsection, we illustrate the most important concept for this decomposition
method, generating polynomials. The concept of generating polynomials arises from
the fact that the entries of a symmetric tensor has recursive patterns, demonstrated by
linear relations and described by a set of polynomials. A powerful result obtained by
Nie [5] is that the common roots of the polynomials are the decomposition vectors, that
is, the u

i

’s in (5). With this result, we can convert the problem of symmetric tensor
decomposition to the problem of finding common zeros of a set of polynomials. Next, we
examine the constructions and properties of the generating polynomials.

5.4.1 Identification of the Generating Polynomials

There are two ways to identify the generating polynomials. The first one is closely
related to the apolarity lemma. Let a polynomial e

f 2 C[x0, · · · , xn

] be e
f(x0, · · · , xn

) =P
✓

e
f

✓

x

✓0
0 · · · x✓n

n

. A tensor T can be converted to the polynomial form, i.e,

T (x0, · · · , xn

) =
X

i:0i1,i2,i3n

T

i

x

i1xi2xi3 =
X

|✓|=3

T

✓

3!

✓0! · · · ✓n!
x

✓0
0 · · · x✓n

n

.
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Definition 13. ([5]) For e
f 2 C[x0, · · · , xn

] be e
f(x0, · · · , xn

) =
P

✓

e
f

✓

x

✓0
0 · · · x✓n

n

, it is said
to be apolar to T if

e
f � T =

X

✓

e
f

✓

@

✓0+···+✓n

@x

✓0
0 · · · @x✓n

n

T (x0, · · · , xn

) = 0

If a polynomial is apolar to T , it is said to belong to the aploar ideal of T , Ann(T ).

The following lemma is the so-called apolarity lemma.

Lemma 3. ([9]) A symmetric tensor T 2 S

3(Cn+1) can be decomposed as in (5), i.e.,

T =
rX

i=1

u

⌦3
i

,

with the u

i

’s pairwisely linearly independent, if and only if the set of polynomials whose
common zeros are the u

i

’s are apolar to T .

Example 4. ([1]) Take the tensor T =

2

6664

1
1
...
1

3

7775

⌦3

+

2

6664

1
�1
...
�1

3

7775

⌦3

as an example. First, we convert

T to its polynomial form T (x0, · · · , xn

) = (x0 + x1 + · · · + x

n

)3 + (x0 � x1 + · · · � x

n

)3.
Then, we observe that p

i

(x0, · · · , xn

) = x

2
0 � x

2
i

for i 2 [n] are all apolar to T , since

@

2

@x

2
0

T (x0, · · · , xn

) = 6(x0 + x1 + · · ·+ x

n

) + 6(x0 � x1 � · · ·� x

n

) =
@

2

@x

2
i

T (x0, · · · , xn

),

for i 2 [n], which is precisely the definition of apolarity.

With the apolarity lemma and Proposition 2.2 of [5], the generating polynomials can
be identified in the following way. Let C[x1, · · · , xn

]
k

be the space of polynomials with
degree k. A polynomial f(x1, · · · , xn

) 2 C[x1, · · · , xn

]
k

with k  m, the dehomogeniza-
tion of e

f(x0, · · · , xn

), is a generating polynomial if and only if e
f(x0, · · · , xn

) is apolar to
T , i.e.,

e
f(x0, · · · , xn

) = x

k

0f(
x1

x0
, · · · , xn

x0
) 2 Ann(T ).

Another approach corresponds to the formal definition of generating polynomials, and
is more useful in practice. We say that f 2 C[x1, · · · , xn

]
k

is a generating polynomial of
T if the vector of coe�cients of f belongs to the null space of the catalecticant matrix of
T , i.e,

vec(f) 2 Ker(Cat(T )), (10)

where vec(f) is the vector of coe�cients of f . Note that this condition is equivalent to
that for every � = (�1, · · · , �n

) such that |�|  3� deg(f),

X

↵:|↵|3

(f(x1, · · · , xn

)x�1
1 · · · x�n

n

)
↵

T

↵

= 0,

because the catalecticant matrix is given by Cat(T ) = (T
�+↵

)|�|1,|↵|2.
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5.4.2 Construction of the Generating Polynomials

Next, we describe how to construct these polynomials.

Definition 14. ([5]) Let B0 be the set of first r monomials in {1, x1, · · · , xn

, x

2
1, x1x2, · · · }

and B1 = (B0 [x1B0 [ · · ·[x

n

B0) \B0. For simplicity, we write � 2 B0 if x
�1
1 · · · x�n

n

2 B0

and ↵ 2 B1 if x↵1
1 · · · x↵n

n

2 B1. Let F 2 CB0⇥B1 be a matrix indexed by (�,↵). For any
↵ 2 B1, consider the polynomial

f [F,↵] =
X

�2B0

F

�,↵

x

�1
1 · · · x�n

n

� x

↵1
1 · · · x↵n

n

. (11)

The set of |B1| polynomials are the generating polynomials, F is called the generating
matrix, and the entries of F are the coe�cients of f [F,↵].

Now we illustrate how to obtain the coe�cients. Since we have to make sure that
the common zeros of the generating polynomials can be used to construct the decompo-
sition as in (5), we have to first ensure that there are r common roots of the system of
polynomials, where r is the length of decomposition. Consider the linear map from the
quotient space C[x1, · · · , xn

]/h(f [F,↵])
↵2B1i, where h(f [F,↵])

↵2B1i is the ideal generated
by the set of polynomials, to itself, represented by a matrix N

xi , that maps a polynomial
p to x

i

p. The matrices N
xi(F ) for i 2 [n] are called the companion matrices of F .

Definition 15. ([5]) Let B0 and B1 be defined as above, and � 2 B0 and  2 B1.Then
the companion matrices are N

xi(F ) of the set of generating polynomials f [F,↵])
↵2B1 are

defined by

N

xi(F )
�,

=

8
><

>:

0 if x
i

x

1
1 · · · xn

n

2 B0 and � = + e

i

1 if x
i

x

1
1 · · · xn

n

2 B0 and � 6= + e

i

F

�,+ei if x
i

x

1
1 · · · xn

n

2 B1

Example 5. ([1]) Take the tensor T =
2

4
7 �3 9 �3 13 20 9 20 19
�3 13 20 13 �27 6 20 6 6
9 20 19 20 6 6 19 6 45

3

5

for example. By the definition of catalecticant matrix, Cat(T ) = (T
�+↵

)|�|1,|↵|2 =
2

4
7 �3 9 13 20 19
�3 13 20 �27 6 6
9 20 19 6 6 45

3

5
.

We have B0 = {1, x1, x2} and B1 = {x2
1, x1x2, x

2
2}. Then the set of generating polynomials

is 8
><

>:

F(0,0),(2,0) + F(1,0),(2,0)x1 + F(0,1),(2,0)x2 � x

2
1

F(0,0),(1,1) + F(1,0),(1,1)x1 + F(0,1),(1,1)x2 � x1x2

F(0,0),(0,2) + F(1,0),(0,2)x1 + F(0,1),(0,2)x2 � x

2
2

.

If we compute the kernels of the three corresponding submatrices of the catalecticant
matrix and scale them, we get the system of generating polynomials

8
><

>:

14
5 � 1

5x1 � 4
5x2 � x

2
1

4
5 �

6
5x1 +

6
5x2 � x1x2

14
5 + 4

5x1 +
1
5x2 � x

2
2

.
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Furthermore, the companion matrices are

N

x1 =

2

4
0 14/5 4/5
1 �1/5 �6/5
0 �4/5 6/5

3

5
, N

x2 =

2

4
0 4/5 14/5
0 �6/5 4/5
1 6/5 1/5

3

5
.

The necessary condition for (f [F,↵])
↵2B1 to have r complex roots is that the compan-

ion matrices commute, i.e.,

N

xi(F )N
xj(F ) = N

xj(F )N
xi(F ), i < j, i, j 2 [n]. (12)

If the set of generating polynomials has r solutions, then they are called consistent gener-
ating polynomials. In addition to ensuring that there are r common roots of the system
of polynomials, we have to make sure that the r roots are distinct so that they can be
used in symmetric tensor decomposition. By proposition 2.4 of [5], this is true if and
only if the companion matrices N

xi(F ) are simultaneously diagonalizable. In this case,
the generating polynomials are called nondefective.

5.4.3 Properties of the Generating Polynomials

For a tensor T 2 S

3(Cn+1), the symmetric decomposition is T =
P

r

i=1 u
⌦3
i

for u
i

2 Cn+1.
If [u

i

]0 6= 0, which is usually the case, then the decomposition is equivalent to

T =
rX

i=1

�

i


1
v

i

�⌦3

, (13)

where �

i

= ([u
i

]0)3 and v

i

=

2

64
[u

i

]1/[ui

]0
...

[u
i

]
n

/[u
i

]0

3

75. Next, we introduce some useful results about

the properties of the generating polynomials proposed by Nie [5]. The first result is
important since it illustrates the relationship between the generating polynomials and
the symmetric tensor decomposition.

Theorem 9. ([5]) If b1, · · · , br are the distinct zeros of the generating polynomials (f [F,↵])
↵2B1,

then (b1, · · · , br) is a permutation of (v1, · · · , vr) in (14), i.e.,

T =
rX

i=1

�

⇡(i)


1
b

i

�⌦3

,

where the �

⇡(i)’s are the the �

i

’s permuted in the same way.

Proof. Given ↵ 2 B1, denote the homogenization of f [F,↵](x1, · · · , xn

) as e
f [F,↵](x0, · · · , xn

).
By proposition 2.2 of [5], e

f [F,↵](x0, · · · , xn

) is apolar to T . Since the v

i

’s are distinct

zeros of (f [F,↵])
↵2B1 , they are pairwisely linearly independent. Since the


1
v

i

�
’s are the

pairwisely linearly independent common zeros of ( ef [F,↵])
↵2B1 , we can find the �

i

’s to
construct the symmetric tensor decomposition as in (14) by the apolarity lemma.
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This result proves that the common zeros of the generating polynomials can be used to
construct the symmetric decomposition of the tensor. Recall that �

r

is the Zariski closure
of equivalent classes of

P
r

i=1 u
⌦3
i

in PS3(Cn+1) and let d = r(n+1)� 1� dim(�
r

) be the
dimension gap. The second result, by proposition 3.8 of [5], is that for a general tensor T 2
�

r

, the dimension of the space of consistent generating polynomials is d, and if d > 0, the
consistent generating polynomials in a subspace of CB0⇥B1 with codimension d form a finite
set. This result specifies the condition of finitness of the consistent generating matrices.
The third result, by proposition 3.10 of [5], is concerned with the nondefectiveness of
the generating polynomials, that is, the generating polynomials are defective, i.e., have a
repeated root only if the discriminants of the companion matrices are all 0, i.e.,

dis(N
x1(F )) = · · · = dis(N

xn(F )) = 0

where dis(N
xi(F )) =

Q
i<j

(�
i

� �

j

)2, with the �

i

’s as the eigenvalues of N
xi(F ). If one

of the discriminants is not 0, then the generating polynomials are nondefective.

5.5 Implementation of Symmetric Tensor Decomposition

In this subsection, we examine the implementation methods used in the symmetric tensor
decomposition. We consider how to accomplish the two main goals: finding a generating
matrix F such that the set of generating polynomials (f [F,↵])

↵2B1 is nondefective, and
obtaining the common zeros v1, · · · , vr of (f [F,↵])↵2B1 and the corresponding coe�cients
�1, · · · ,�r

. We explore the methods proposed by Nie [5].

5.5.1 Finding the Generating Matrix

Let us first see how to get the generating matrix F , which provides the coe�cients of the
generating polynomials (f [F,↵])

↵2B1 . Let T 2 S

3(Cn+1) be a symmetric cubic tensor.
For ↵ 2 B1, define

A[T,↵]
�,�

= T

�+�

, |�|  3� |↵|, � 2 B0,

b[T,↵]
�

= T

�+↵

, |�|  3� |↵|.

The generating polynomials (f [F,↵])
↵2B1 are consistent if the columns of the generating

matrix F satisfies that
A[T,↵]F:,↵ = b[T,↵].

This system of equations may have no solution if the symmetric rank of T is greater than
r, in which case the length of decomposition r needs to be increased.

Example 6. ([5]) Take the tensor T =

2

4
7 �3 9 �3 13 20 9 20 19
�3 13 20 13 �27 6 20 6 6
9 20 19 20 6 6 19 6 45

3

5

for example. We have B0 = {1, x1, x2} and B1 = {x2
1, x1x2, x

2
2}. Then the set of generating

polynomials is 8
><

>:

F(0,0),(2,0) + F(1,0),(2,0)x1 + F(0,1),(2,0)x2 � x

2
1

F(0,0),(1,1) + F(1,0),(1,1)x1 + F(0,1),(1,1)x2 � x1x2

F(0,0),(0,2) + F(1,0),(0,2)x1 + F(0,1),(0,2)x2 � x

2
2

.
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Then A[T,↵] for ↵ 2 B1 are

A[T, (2, 0)] = A[T, (1, 1)] = A[T, (0, 2)] =

2

4
T(0,0) T(1,0) T(0,1)

T(1,0) T(2,0) T(1,1)

T(0,1) T(1,1) T(0,2)

3

5
,

and b[T,↵] for ↵ 2 B1 are

b[T, (2, 0)] =

2

4
T(2,0)

T(3,0)

T(2,1)

3

5
, b[T, (1, 1)] =

2

4
T(1,1)

T(2,1)

T(1,2)

3

5
, b[T, (0, 2)] =

2

4
T(0,2)

T(1,2)

T(0,3)

3

5
.

If the system of equations is consistent, then we can solve for the generating matrix
b
F . In the context of cross moment tensors, since the symmetric rank r is assumed to be
smaller than the dimension n, the consistent system, according to the construction of B0

and B1, has a unique solution b
F . Due to the noise in the cross moment tensors, the com-

panion matrices N

xi( bF ) commute approximately and are simultaneously diagonalizable
approximately.

5.5.2 Finding the Roots of the Generating Polynomials

Next, we examine the method to compute the common roots of the system of generat-
ing polynomials (f [ bF ,↵])

↵2B1 . According to the implication of Stickelberger’s theorem
[24], the set of common zeros to the generating polynomials is the set of eigenvalues
corresponding to the common eigenvector of the companion matrices N

xi( bF ) for i 2 [n].
Hence, the goal is to find the common eigenvectors of the companion matrices.

Corless, Gianni and Trager [10] proposed a more practical method than finding the
common eigenvectors of N

xi(F (b⌘)). Here, we assume the set of polynomials is nondefec-
tive. Pick a tuple of positive scalars ⌧ = (⌧1, · · · , ⌧n) such that

P
n

i=1 ⌧i = 1. Let N(⌧) be
a linear combination of N

xi(F (b⌘)),

N(⌧) =
nX

i=1

⌧

i

N

xi( bF ).

Then, obtain the Schur decomposition N(⌧) = QUQ

⇤, where Q 2 Cr⇥r is unitary and
U 2 Cr⇥r is an upper triangular matrix

U =

2

6664

U11 U12 . . . U1r

0 U22 . . . U2r
...

...
. . .

...
0 0 . . . U

rr

3

7775
.

Next we compute e
N

xi( bF ) = Q

⇤
N

xi( bF )Q, so that

e
N

xi(F (⌘)) =

2

6664

N

(i)
11 N

(i)
12 . . . N

(i)
1r

0 N

(i)
22 . . . N

(i)
2r

...
...

. . .
...

0 0 . . . N

(i)
rr

3

7775
.
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The vectors v
j

=

2

64
N

(1)
jj

...

N

(n)
jj

3

75 for j 2 [r] are the r roots of the set of generating polynomials

(f [ bF ,↵])
↵2B1 .

5.6 Application to Parameter Estimation

In this subsection, we relate parameter estimation of the latent variable model to the
symmetric tensor decomposition introduced in the previous subsections by applying the
method to the third-order cross moment T . We look at the exchangeable single topic
model, in which the cross moments have the form M =

P
r

i=1 wi

µ

⌦2
i

and

T =
rX

i=1

w

i

µ

⌦3
i

,

with µ

i

2 Rn+1. Applying the previous method to the the cross moment tensor T , we get
the decomposition

T =
rX

i=1

u

⌦3
i

.

Now, the task is to recover the weights w

i

’s and the conditional expectations µ

i

’s from
the decomposition vectors u

i

’s. Note that the obtained decomposition can be written as

T =
rX

i=1

w

i

(
u

i

3
p
w

i

)⌦3
, (14)

where µ

i

= ui
3p
wi
.

The next step is to determine the weights w
i

so that we can also get the conditional
expectations µ

i

= ui
3p
wi
. The easiest way is to use the first-order moment E[x1]. In the

exchangeable single topic model,

E[x1] =
rX

i=1

P (h = i)E[x1|h = i] =
rX

i=1

w

i

µ

i

=
rX

i=1

w

i

u

i

3
p
w

i

=
rX

i=1

w

2/3
i

u

i

.

Then, we can form a system of linear equations to solve for w2/3
i

, i.e.,

Uw = V, (15)

where

U = [u1| · · · |ur

], w =

2

4
w

2/3
1

· · ·
w

2/3
r

3

5
, V = E[x1].

Here, U 2 R(n+1)⇥r, w 2 Rr and V 2 Rn+1. Since r < n+1, this system is overdetermined
and has a unique solution. This ensures that we can identify the weights w

i

from the
solution w.

Theorem 10. Suppose that a symmetric tensor T 2 S

3(Cn+1) has a symmetric decom-
position with T =

P
r

i=1 u
⌦3
i

where r < n+ 1 and the u

i

’s are linearly independent. Then
the symmetric decomposition is unique. Also, in order to recover the w

i

’s and µ

i

’s in
T =

P
r

i=1 wi

( ui
3p
wi
)⌦3, we can solve the system of linear equations Uw = V as in (15),

which has a unique solution.
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5.7 Algorithm for Parameter Estimation

In this subsection, we propose an algorithm for parameter estimation of the latent variable
models using the techniques and methods introduced in Section 5. Suppose that the
empirical first-order cross moment b

V and the empirical third-order cross moment b
T are

available. Also, for simplicity, assume the length of decomposition r is given. Algorithm
2 is provided to give the estimated parameters.

Algorithm 2

Input vector b
V 2 Rn+1, symmetric tensor b

T 2 S

3(Rn+1), length of decomposition r

Output the estimated parameters bw
i

, bµ
i

1: Solve the system of equations A[bT ,↵] bF:,↵ = b[bT ,↵] to get the generating matrix b
F

2: Obtain the companion matrices N
xi( bF ), generate a tuple ⌧ = (⌧1, · · · , ⌧n), and compute

N(⌧) =
P

n

i=1 ⌧iNxi( bF )

3: Obtain the Schur decomposition N(⌧) = QUQ

⇤, compute e
N

xi( bF ) = Q

⇤
N

xi( bF )Q, and get
v

j

2 Rn with the i-th entry equal to the jj-th entry of e
N

xi( bF ), for i 2 [n] and j 2 [r]

4: Solve b
T =

P
r

i=1 �i


1
v

i

�⌦3

and obtain u

i

= 3
p
�

i


1
v

i

�

5: Solve U bw = b
V , where the entries of w are bw2/3

i

6: return bw
i

and bµ
i

= ui
3p bwi

6 Numerical Experiments

6.1 Tensor Power Method

In this subsection, we assess the tensor power method using the average Euclidean norms
of the di↵erences of the actual eigenvectors and the estimated eigenvectors. The numerical
experiment is done in MATLAB. First, we create 107 samples of x1, x2, x3 of the exchange-
able single topic model randomly. Next, we estimate the second-order and third-order
cross moments using the method of moments. Then, we orthogonalize the third-order
cross moment as described in Section 4.3, and implement the tensor power method on
the orthogonalized third-order moment. The results are presented in the following tables.
We use the length of decomposition r = 2, 3, 4 and dimension n = 5, 10, 20, 30, 40, 50.

Dimension n Error

5 4.60⇥ 10�4

10 5.71⇥ 10�4

20 0.0012
30 7.19⇥ 10�4

40 9.83⇥ 10�4

50 6.88⇥ 10�4

Table 1: Tensor Power Method Error Measured by Average Euclidean Norm for r = 2
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Dimension n Error

5 8.14⇥ 10�4

10 0.0018
20 0.0020
30 0.015
40 0.0014
50 0.0013

Table 2: Tensor Power Method Error Measured by Average Euclidean Norm for r = 3

Dimension n Error

5 0.0040
10 0.0026
20 0.0029
30 0.0023
40 0.0022
50 0.0022

Table 3: Tensor Power Method Error Measured by Average Euclidean Norm for r = 4

As we can see, for r = 2, the error (the average Euclidean norms of the di↵erences of
the actual eigenvectors and the estimated eigenvectors) is small except for n = 20. For
r = 3, 4 the errors are larger. For r = 3, we have a relatively small error for n = 5 and a
relatively large error for n = 30. For r = 4, the errors for di↵erent dimensions are similar.
Also, it is clear that as r becomes larger, the error becomes larger, which may be a defect
of the tensor power method.

We also record the time used for the tensor power method, which is the time elapsed
until the end after the estimation of the cross moments. As we can see in the following
tables, it takes approximately 3 to 21 seconds for the power iteration to give the estimated
robust eigenvectors. As n and r grows, it takes longer times for this method to compute
the results. For n = 50, it takes approximately 5 more seconds than the case of n = 5,
and for r = 4, it takes approximately 13 more seconds than the case of r = 2. Hence, we
doubt if the tensor power method could work e�ciently for larger values of n and r.

Dimension n Time(s)

5 3.076
10 3.137
20 3.778
30 3.503
40 4.10
50 8.98

Table 4: Tensor Power Method Elapsed Time for r = 2
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Dimension n Time(s)

5 9.005
10 9.415
20 9.582
30 9.748
40 8.860
50 13.252

Table 5: Tensor Power Method Elapsed Time for r = 3

Dimension n Time(s)

5 16.980
10 16.312
20 16.958
30 17.094
40 17.932
50 21.298

Table 6: Tensor Power Method Elapsed Time for r = 4

6.2 Generating Polynomials Method

In this subsection, we test symmetric tensor decomposition by the method of generating
polynomials using the average Euclidean norms of the di↵erences of the actual decom-
position vectors and the estimated decomposition vectors. The numerical experiment is
done in MATLAB. In order to compare this method to the tensor power method, we also
use the length of decomposition r = 2, 3, 4 and dimension n + 1 = 5, 10, 20, 30, 40, 50.
First, we create r linearly independent vectors of dimension n + 1 randomly, and create
a third-order symmetric tensor using the sum of the tensor product of the generated
vectors. Next, we obtain the catalecticant matrix and the generating polynomials as in
Section 5.3 and 5.4. Then, we obtain the companion matrices and compute the common
roots of the generating polynomials as described in Section 5.4 and 5.5. Let us examine
five random examples,

Dimension n+ 1 Error

5 1.06⇥ 10�15

10 3.54⇥ 10�16

20 3.71⇥ 10�15

30 5.50⇥ 10�16

40 4.88⇥ 10�14

50 8.79⇥ 10�16

Table 7: Generating Polynomials Method Error Measured by Average Euclidean Norm
for r = 2
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Dimension n+ 1 Error

5 2.46⇥ 10�16

10 4.33⇥ 10�15

20 1.40⇥ 10�14

30 3.12⇥ 10�15

40 2.70⇥ 10�13

50 3.77⇥ 10�12

Table 8: Generating Polynomials Method Error Measured by Average Euclidean Norm
for r = 3

Dimension n+ 1 Error

5 5.10⇥ 10�16

10 1.87⇥ 10�14

20 2.10⇥ 10�15

30 1.74⇥ 10�14

40 1.45⇥ 10�14

50 9.06⇥ 10�15

Table 9: Generating Polynomials Method Error Measured by Average Euclidean Norm
for r = 4

In general, the method of generating polynomials behaves much better than the tensor
power method, since the error (the average Euclidean norms of the di↵erences of the actual
eigenvectors and the estimated vectors) is significantly smaller for r = 2, 3, 4. In fact, the
errors for all cases are smaller than 4 ⇥ 10�12, which is about 108 to 109 times smaller
than the error given by power iteration, and the errors for most cases are smaller than
2⇥10�14, which is about 1010 to 1011 times smaller than the error given by power iteration.
Thus, we can claim that the generating polynomials method does a much better job in
recovering the linearly independent decomposition vectors of the symmetric tensors.

With respect to the time of computation, the generating polynomials method still
performs much better. We record the time used for the tensor power method, which is
the time elapsed until the end after the construction of the third-order tensor. As we can
see in the following tables, it takes approximately 0.16 to 0.29 seconds for the generating
polynomials method to give the estimated decomposition vectors, which is approximately
19 to 73 times faster than the power iteration. As n and r grows, the time od computation
barely changes. For n = 50, it takes 0.255 seconds in the case of r = 2, 0.261 seconds in
the case of r = 3, and 0.279 seconds in the case of r = 4. Thus, we may expect that the
method of generating polynomials would work e�ciently for larger values of n and r, as
opposed to the tensor power method.
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Dimension n+ 1 Time(s)

5 0.169
10 0.212
20 0.205
30 0.239
40 0.238
50 0.255

Table 10: Generating Polynomials Method Elapsed Time for r = 2

Dimension n+ 1 Time(s)

5 0.195
10 0.225
20 0.240
30 0.269
40 0.251
50 0.261

Table 11: Generating Polynomials Method Elapsed Time for r = 3

Dimension n+ 1 Time(s)

5 0.192
10 0.260
20 0.245
30 0.255
40 0.296
50 0.279

Table 12: Generating Polynomials Method Elapsed Time for r = 4
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7 Conclusion

In this paper, we analyze the symmetric tensor structures of the cross moments of latent
variable models like the single topic model and the multi-view model, and assess two
methods for symmetric tensor decomposition, based on orthogonal tensor decomposition
and generating polynomials respectively. As a consequence, the parameter estimation
of the latent variable models mentioned in this paper can be done by symmetric tensor
decomposition using the two methods.

The method of generating polynomials can be applied if the symmetric tensor is not
orthogonally decomposable (odeco), since the eigenvectors of the tensor are not decompo-
sition vectors anymore, and hence the tensor power method will not converge. Moreover,
the method of generating polynomials gives significantly smaller errors, and cost signifi-
cantly less computation time, so we may claim that the method of generating polynomials
is more applicable and e�cient than the power iteration.
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