
Determining Causal Effects on Small-Cluster Data

Nathan E. Liittschwager

Department of Mathematics

University of California, San Diego

La Jolla, CA, 92093

nliittsc@ucsd.edu

June 8, 2019

Abstract

In statistical applications, the assumption of independent and identically distributed
data greatly simplifies the process of analysis. However, when data may be ordered into
hierarchical clusters in which the clusters are independent, but units within each cluster
are correlated, the assumption of independence and identical distribution need not hold.
While the statistical literature provides methods of analysis for such situations, analysis
is greatly complicated when trying to determine causal effects, which are necessarily
much stronger than simple statistical association. In this paper we investigate the
methodology of determining causal effects in small-cluster data in a real data application,
as well as present a simulation study to investigate the consequences of a misspecified
causal model.

(Note: This paper is a working draft and results/conclusions may change. The author
humbly apologizes for typos, bad notation, and unclear mathematics. All mistakes are
entirely his.)

1 Introduction
“Correlation is not causation” is a mantra often repeated in introductory statistics classes.
Professors in statistics and the sciences often take great pains to caution beginning students
against the pitfalls of erroneous causal conclusions in their data, which may beg the question:
When can causation be concluded from data? Intuition and scientific practice appeals to
the notion of the randomized experiment, of treatment and control units, and well-defined
interventions. Yet this intuition may be misleading when the data is observational, as is
often the case in reality. However, determining causal inferences from observational data is
not an intractable problem, and under a set of assumptions and careful data modeling, causal
inferences may be extracted. However, when the data are not i.i.d. - independent and identi-
cally distributed - the problem of causal inference in observational data becomes much harder.

This paper was inspired by a real-world problem of determining the causal effect of pre-natal
exposure to a particular drug on the presence of minor malformations in new-born infants, in
which some infants have a twin. The difficulty of the problem comes from the fact that the
drug exposure was necessarily on the pregnant mother, but the outcome of interest was on her
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newly born children, which is further complicated by the fact that some of the children had a
twin. In this case, the data may be viewed as hierarchical, in which children are clustered ac-
cording to their mother. While many of the mothers in our data set bore only one child, twins
born from one mother are necessarily correlated with each other, yet received the same treat-
ment. Our work is in modeling this data and unearthing the causal effect of the drug exposure.

The paper will be organized as follows. We first provide a theoretical summary of the assump-
tions and theorems that allow an investigator to make causal inferences from observational
data. In particular, we work in the Potential Outcomes framework that was developed in the
Rubin-Neyman Causal Model, and will be more expository in nature. We then present our
data as a motivating example of the need for causal methodology, and give an overview of
the statistical methodology used in the analysis of this data. Finally, we present the results
of our real-data analysis as well assess model fit by means of a simulation study that mimics
postulated data-generation mechanism.

2 The Potential-Outcomes Framework
The following discussion is a summary of the results that may be found in (Imbens, G.,
Rubin, D., 2015). We provide the summary primarily to introduce the reader to our notation,
assumptions regarding the data-generating process, as well as justify methodological choices.
The main benefit of operating within this framework is it allows us to encode the language of
causal theory into a probabilistic framework, though we ignore the measure-theoretic details.

2.1 Notation and Definitions.

To avoid some confusion later down the road, we will initially use our own notation. Suppose
we have a finite population of N units, a real valued response Y, and a dichotomous treatment
variable z = 0, 1 at a particular point in time. For the ith person, if z = 1 we say they are
treated and if z = 0, we say they are a control or untreated. Then for the ith person, we say
Y (i, 1) and Y (i, 0) are potential outcomes - the value of the response Y under the treatment
z = 1 and z = 0, respectively, for the ith person. We say that z has a causal effect for the
ith person if

Y (i, 1)� Y (i, 0) 6= 0. (1)

Note that presently Y (i, z) is not a random variable if z is fixed - rather it is a character-
istic of that person, much like hair or eye color, but under the different treatment conditions
of z = 0 or z = 1. We usually say that Y (i, 0) and Y (i, 1) are counterfactuals for each other,
or what would have happened under the conditions induced by z = 0 or z = 1. The issue
here becomes surprisingly philosophical, but we can form a mental model for this by perhaps
imagining Y (i, 0) and Y (i, 1) as (say) the starting salaries of the ith person had they pursued
a master’s degree (z = 1) or had they not (z = 0). If Y (i, 1) > Y (i, 0), then we can say that
the master’s degree had a causal effect for person i. We acknowledge that this example is
overly simple.
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In the finite population case, we define the average causal or the treatment effect as:

⌧ATE =

1

N

NX

i=1

Y (i, 1)� 1

N

NX

i=1

Y (i, 0). (2)

There is a glaring issue in this definition: it requires that we observe both Y (i, 1) and
Y (i, 0) for each person i = 1, 2, ..., N in the population. Since a treatment is defined as
occurring at a particular point in time, it is impossible to solve this problem - we cannot go
back in time to administer a different treatment, even if we had access to all N individuals.
Moreover, if we suppose that the population is infinite, we cannot necessarily even write
down the average treatment effect of the individuals in the population. This problem is
called the Fundamental Problem of Causal Inference (Holland, Paul W., 1986). However,
probability theory provides some solutions.

In the event that we are sampling from a hypothetical super population, the individual i is
the result of a random sample, and hence the potential outcomes Y (i, 0) and Y (i, 1) become
realizations of a proper random variable. We’ll write these random potential outcomes as
Y (0) and Y (1) respectively, and say that for a random sample of n people, we have the
independent and identically distributed random variables Yi(0) and Yi(1) for i = 1, 2, ..., n.
In this case, (2) becomes

⌧ATE = E[Y (1)]� E[Y (0)] (3)

which then gives the expected value of the treatment effect on the population. However, for
each individual i, we may not necessarily know which potential outcome we are observing,
Yi(0) or Yi(1). Moreover, in observational data, the sample will not represent the population
as a whole, but rather a specific subset of the population. For example, election polls
conducted in major cities only represent those individuals who happen to live in a major
city. When dealing with imperfect samples, each individual i comes with a set of covariates
Xi which may distinguish them from other individuals in the population. These covariates
Xi introduce what is often called a confounding relationship, though the exact definition of
a “confounder” is still debated (VanderWeele, 2013).

2.2 Assumptions

In order to make meaningful causal inferences, we work with several main assumptions. They
are Consistency, Conditional Exchangeability, and Positivity (Hernan and Robins 2019).

Assumption 1: Consistency. By Consistency, we do not mean the statistical property
of an estimator converging in probability. Rather, suppose the outcome of interest is the
random variable Y and (Yi)

n
i=1 is a sequence of i.i.d. realizations. In order to tie each Yi to

potential outcomes Yi(0) and Yi(1), we suppose that each individual i is randomly assigned
to control or treatment conditions as the result of a random variable Z which we call the
treatment assignment mechanism. Let (Zi)

n
i=1 be a sequence of i.i.d. binary random variables

where Zi = 1 assigns the ith individual to treatment and Zi = 0 assigns the ith individual
to control. Then the assumption of Consistency is

Yi = ZiYi(1) + (1� Zi)Yi(0). (4)
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That is, if Zi = 1, we observe Yi(1) and if Zi = 0, we observe Yi(0). Therefore, it is
meaningful to take expectations of Yi.

Assumption 2: Conditional Exchangeability. Suppose we are in observational data
setting, and for each individual i in the random sample, they come with a set of covariates
Xi. Then, under Conditional Exchangeability, we suppose that {Yi(1), Yi(0)} ?? Zi|Xi. That
is, we hope that within levels of Xi, the treatment assignment mechanism is independent of
the potential outcomes.

To gain intuition on what this means, suppose Xi is a covariate that indicates how ill
a patient is, and Zi is the result of a doctor choosing to treat or not. If Xi indicates the
patient is in severe condition, it is more likely that Zi = 1, since the doctor would be more
inclined to treat the patient. But, patients with worse levels of Xi will also have worse levels
of Yi(1) and Yi(0). So Xi introduces confounding in that it is not independent of Zi and
Yi(z), which will introduce statistical correlation between Yi(z) and Zi, z = 0, 1. Essentially,
without conditioning on Xi, the average treatment effect ⌧ATE may actually be biased. In
our example, since more ill patients receive treatment, but also have worse outcomes, it may
appear that treatment does nothing at all, or even has negative effects.

Assumption 3: Positivity. By Positivity, we assume that for every person i in the
sample, 0 < Pr(Zi = 1|Xi) < 1. In other words, every person has a non-zero probability
of being given control or treatment. In the case that Pr(Zi = 1|Xi) = 0 or 1, then by
Consistency, we cannot observe one of Yi(1) or Yi(0) within certain levels of Xi. The problem
of causal inference becomes unsolvable in this case.

2.3 Statistical Consequences

Under the 3 assumptions given above, the problem of causal inference fundamentally becomes
a “missing data” problem which may be solved by statistics. Given a random sample, we
observe Yi after randomly assigning individuals to treatment and control conditions. Now,
by our three assumptions,

E[Yi|Zi = 1, Xi]� E[Yi|Zi = 0, Xi]

= E[Yi(1)|Zi = 1, Xi] + E[Yi(0)|Zi = 0, Xi]

= E[Yi(1)|Xi]� E[Yi(0)|Xi]

where we used Consistency in the first equality, and Conditional Exchangeability in
the second equality. Note that Positivity is required to make it conditional expectations
meaningful.

Now, by the Double Expectation Theorem, taking the expected value of the conditional
expectations above gives

E
�
E[Yi|Zi = 1, Xi]� E[Yi|Zi = 0, Xi]

 

= E
�
E[Yi(1)|Xi]� E[Yi(0)|Xi]

 

= E[Yi(1)]� E[Yi(0)]

= ⌧ATE .
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Therefore, by finding the treatment effect within levels of Xi, we can infer the population
average treatment effect by taking the expectation over Xi. One way of doing this is by
postulating a model to generate the data. In other words, we postulate a function f that
generates the conditional expectation

E[Yi|Zi, Xi] = f(Xi, Zi). (5)

We know from statistical theory that the best linear approximation of f is the model

E[Yi|Zi, Xi] = �0 + �1Xi + ✓Zi, (6)

where � = (�0,�1)
0 is a vector of coefficients and ✓ is the average change in Yi when Zi = 1.

This lends ✓ its interpretation of the average treatment effect. In essence, under Consistency,
Conditional Exchangeability, and Positivity, linear regression has a causal interpretation, and
(6) may be estimated with Ordinary Least Squares. When Yi ⇠ Bernoulli(pi), then (6) may
be modeled with a logit link function and maximum-likelihood.

Aside. What is the difference between “regular" linear regression and a “causal" linear
regression? Largely, the assumptions on one’s data. When doing descriptive inference or
analysis, we are concerned with modeling the statistical associations between Yi and some
observed covariates Xi. However, if Xi is vector valued, say Xi = (Xi1, Xi2)

0, a statistical
model for association is still legitimate if (say) Xi2 is unobserved and thus not included in the
model. In causal inference, we must observe both Xi1 and Xi2, since without both, we have no
guarantees that Conditional Exchangeability holds. This requirement is sometimes called the
No Unmeasured Confounders assumption. Moreover, in the case that Yi is correlated with Xi,
there exists no statistical test for whether Yi "caused" Xi, or whether Xi "caused" Yi, since
statistical correlation is simply a measure between two random variables, and not a measure
of causal direction. Generally, domain expertise is needed to determine the direction of causal-
ity, and this often depicted with directed acyclic graphs, also called DAGs (Judea Pearl, 2009).

In general, causal inference requires heroic assumptions on one’s data, and should not be
taken lightly. The consolation is that in the case of a randomized experiment, where individ-
uals are randomly sampled from a population, then randomly given treatment or control
with equal probability, all three of our required assumptions are satisfied. In observational
data, we can only hope that if the most important confounders are observed (those with large
effects), then the bias introduced into the estimate of ✓ is relatively small, maintaining the
legitimacy of causal inferences. Naturally, the problem of unmeasured confounders becomes
more important as the true treatment effect ✓ shrinks to 0, as even small amounts of bias
may flip the sign on the estimate ˆ✓.

2.4 The Propensity Score

Rosenbaum and Rubin provided a useful tool for the purposes of causal inference in their
seminal paper The Central Role of the Propensity Score in Observational Studies of Causal
Effects. In the case where Xi is vector valued and high dimensional, there may be non-
overlapping regions in the distribution of Xi among certain groups in the sample. Such lack
of overlap may violate one of the causal assumptions and make inference impossible. On the
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other hand, the high dimension of Xi may make comparisons of treatment effects within
levels of Xi computationally expensive and hard to interpret. What Rubin and Rosenbaum
showed was that it is sufficient to condition not just on Xi, but also on a function of Xi,
which they call a balancing score. We will sketch what this is, and its implications for casual
inference. For a complete exposition on the theory, please see the original paper (Rosenbaum
and Rubin, 1983).

Let e(Xi) = Pr(Zi = 1|Xi). We call this a propensity score as it is the ith individual’s
propensity towards receiving treatment. Rosenbaum and Rubin define a balancing score as
any function b of Xi such that

{Yi(1), Yi(0)} ?? Zi|b(Xi). (7)

That is, Conditional Exchangeability holds given b(Xi). They note a trivial balancing score
is b(Xi) = Xi. In particular, Rosenbaum and Rubin prove that e(Xi) is a balancing score,
and that all of the assumptions of causal inference hold with respect to e(Xi). Therefore,

E[Yi|Zi = 1, e(Xi)]� E[Yi|Zi = 0, e(Xi)] (8)
= E[Yi(1)|e(Xi)]� E[Yi(0)|e(Xi)]. (9)

Therefore, taking the expectation of (8) with respect to e(Xi) gives

E
�
E[Yi|Zi = 1, e(Xi)]� E[Yi|Zi = 0, e(Xi)]

 
(10)

= E{E[Yi(1)|e(Xi)]� E[Yi(0)|e(Xi)]
 

(11)
= ⌧ATE . (12)

This result, with its corresponding lemmas in (Rosenbaum and Rubin, 1983) is sometimes
called the Propensity Score Theorem. The main implication of this result is that the propensity
score serves as a data-reduction method that may reduce the high dimensional distribution
of Xi to that of a single continuous function. The propensity score is usually estimated with
a logistic regression to produce ê(Xi). From there, it may be used in a variety of ways, from
non-parametric weighting, to regression adjustment, or a weighted regression (Imbens and
Rubin, 2015).

3 Motivating Example
Working with our notions of exchangeability, we can take a covariate X as a confounder if
X is required for the conditional independence of Y and Z. That is, Y ?? Z|X and Y 6?? Z
otherwise. In other words, a model of causal inference should condition on all random
variables X that are predictive of both treatment assignment and the outcome (Dorie et al.,
2016). Matters are somewhat complicated in the case that the data exhibits a hierarchical
structure - in which individual response variables may be naturally organized into a structure
that induces correlation among the responses. For example, patients may be organized
into hospitals, and Yhk may be a quantitative score of health of the kth patient in the hth
hospital, for k = 1, 2, ..., nh, h = 1, 2, ..., H. In this case, the health-scores of patients may
be i.i.d. within a particular hospital, but not i.i.d. across hospitals, since the hospitals
themselves are subjected to varying levels of funding, resources, skill of medical staff, etc.
Matters are further complicated when trying to estimate treatment effects at the cluster- or
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individual-level, though the problem is not intractable.

In light of the above, our real-world data provides a motivating example for the difficulties
in addressing the fundamental problem of causal inference.

3.1 The Data

(Note: Due to the sensitive nature of the data, some information cannot be divulged. In
particular, the treatment of interest was exposure to a proprietary drug, which may not be
named in this paper.)

Our data consist of 261 infants born to a cohort of 248 mothers who voluntarily partic-
ipated in a study measuring the effect of prenatal exposure to a proprietary drug on the
occurrence of minor malformations in the infant. A minor malformation is defined as “a
minor anomaly is a structural defect that deviates from the normal standard and has no
major surgical, medical, or cosmetic importance" (AAP News and Journals). Since we have
262 infants born to 248 mothers, some mothers gave birth to multiple infants in the form
of twins. There were 13 pairs of twins, hence 26 children total who were a part of a twin
pairing. The rest of the infants were born as singletons. The data is naturally hierarchical,
and we denote a particular mother with h for h = 1, 2, ..., 248. The kth child of the hth
mother is denoted with h, k. No mother had more than two children.

The binary response of interest is a binary random variable Y on the infant level. That
is, for the hth mother and the kth child, we have Yhk = 0 if there were less than 3 minor
malformations and Yhk = 1 if there were three or more minor malformations. Among all
children, there were 63 positive instances of 3+ minor malformations, and 198 negative
instances. Similarly, the treatment indicator Zh = 0 if the mother was not exposed to the
drug, and Zh = 1 if the mother was exposed to the drug. Note that given z = Zh, all children
from the hth mother has treatment level z. Among all children, 172 children were exposed
to the drug in prenatal, and 89 were unexposed.

The data contained 41 other covariates. A significant number of these covariates were
related to whether the mother presented an autoimmune disorder or not. In particular,
there were binary indicators for Rheumatoid Arthritis and Chrohn’s Disease, and ‘Other’
autoimmune diseases. The exposure of interest is a drug related to treating autoimmune
disorders, hence nearly every mother in the data also presented some form of autoimmune
disorder. 134 mothers had Rheumatoid Arthritis imputed, and various indicators for disease
severity recorded. There were binary indicators for other psychiatric history and a history
of birth defects. There were also indicators for history of smoking, alcohol use, psychiatric
drug use, parity, prenatal care, and how they were referred to the study.

With only 261 individuals, 45 covariates is fairly high dimension, and much of the
challenge is in coming up with a good causal model.

3.2 The models

There are two distinct levels present in our data. There is the clustering level (the mothers)
and the unit level which are grouped by a cluster (the infants). The unique situation we
find in our data is that the treatment is on the cluster-level, and determines the treatment
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Figure 1: Proportion of infants who suffered minor malformations, divided by sex and drug
exposure, with associated error bars. From left to right, the proportions are 0.248, 0.181,
0.349, 0.239.

status at the individual level. However, the response of interest is also at the individual level.
However, the majority of potential confounders may be found at the clustering level - in
fact, the sex of the infant is the only covariate at the unit level. However, domain expertise
hypothesizes the infant’s sex has a confounding effect with the response of interest, and thus
should be included in a causal model.

We now present a possible statistical model to generate the data. Here “clusters” refer to
our hypothetical mothers, as in the real data. We assume that the treatment assignment
is generated at the cluster level, in a way that mimics the mother’s pregnancy status and
other confounders. Let V be a cluster covariate, and suppose there is a vector of binary
indicators X = (X1, X2, X3, X4, X5) which denote the pregnancy type. Here if X1 = 1, then
the mother is having a single male, if X2 = 1, then the mother is having a single female. If
X3 = 1, the mother is having twins of mixed sex. X4 and X5 similarly denote whether the
mother is having twin males, or twin females, respectively. Note that for each person, only
one of the Xi may be 1, and the rest are zero. Assuming V and X are confounders, the
treatment assignment of the hth mother (cluster) is assumed to follow

logitPr(Zh = 1|Vh, Xh) = ↵0 + ↵1Vh +X0
h↵2 (13)

where ↵2 = (↵21 ,↵22 ,↵23 ,↵24 ,↵25)
0 is a vector of coefficients that each correspond to the

pregnancy type.
We have Yhk ⇠ Bernoulli(phk), where phk = Pr(Yhk = 1|Vh,X⇤

hk), where X⇤
hk is the

result of some transformation of Xh. For example, since Xh indicates the type of pregnancy
in the hth mother, the individual outcomes may depend not on the pregnancy type, but on
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the sex of the offspring, and whether they are a twin or not. Then, X⇤
hk = (sexhk, twinhk)

0

which gives rise to the following model:

logitPr(Yhk = 1|Vh,X
⇤
hk) = �0 + �1Vh + �2sexhk + �3twinhk + ✓Zh. (14)

Here sexhk and twinhk are just binary indicators.

3.2.1 Justification

1. The treatment clearly occurs at the mother or cluster level, as the drug exposure was
delivered as a treatment to the mother’s disease while she was pregnant. Therefore, if Zh = z,
then Zhk = z for each child k.

2. The outcome may be seen as a binomial random variable at the mother level, but we
suffer from a missing data problem there are only 13 pairs of twins (thus 26 children who
make up a twin), but 31 positive indicators that a child is part of a twin. Hence there are at
least 5 missing twins in the data and their outcome with respect to minor malformations
is unknown. It’s possible that the children expired shortly after birth, or were otherwise
unrecorded. This complicates matters in that our data has some missing elements. If all the
children were present, one could simply record the number of occurrences of birth defects
with each mother, and model the data as Yh ⇠ Binomial(nh, ph). But since the data are
missing, we have to use the nominal outcomes. That is, Yhk ⇠ Bernoulli(phk), and try to
estimate phk.

4 Methodology
We use three main methods to estimate the causal effects.

4.1 Estimation

4.1.1 Multivariate Generalized Estimating Equations

Generalized Estimating Equations (GEE) is a generalization of maximum-likelihood esti-
mation, in which the data may be grouped into clusters as we have seen, and instead of
specifying a specific probability distribution, we merely specify a link, variance, and “working
correlation” matrix. Hence, GEE are often called “semi-parametric”. We give a brief summary.
For a good overview of GEE, see (Agresti, 2013) and (Pawitan, 2001).

Generalized Estimating Equations are closely linked with the idea of Maximum Likelihood
and the exponential family of models. Given a sequence of observations (yi)

n
i=1, for a sample

size n, each observation yi contributes to the log-likelihood of an assumed exponential family
model. However, in GEE, we use a “quasi-likelihood”, in which the only assumptions we
make are the form of mean-function, the variance function, and the link function. That is,
given an observation yi, we assume a mean and variance model:

E[yi] = µi(�) = f(x0
i�) (15)

var(yi) = �vi(�) (16)

9



for known functions ui and vi, where � is an unknown dispersion parameter, and � is an
unknown regression parameter. Then, the best estimate of � is the solution of

nX

i=1

@µi

@�
V �1
i (yi � µi) = 0.

In Zeger and Liang’s seminal paper (1986, Biometrics), they showed that the above
equation may actually be generalized. Suppose we have our data organized into h = 1, 2, ..., H
clusters, with units k = 1, 2, ..., nh. Then we can take µi to be µhk to denote the mean
function of the kth unit in the hth cluster. Now, given a mean model µhk for the hth cluster
and the kth unit in the cluster, regression parameters �j , and a variance structure Rh, we
solve the estimating equations

X @µhk

�j
R�1

h

�
yh � µh(�)

�
= 0. (17)

Here µ is a model for the conditional mean given in (6). In our case, µ corresponds
to a regression with a logit-link function, but we make no distributional assumptions on
yhk. Typical Logistic Regression requires i.i.d. data, which is not present in our situation.
Distributional concerns aside, GEE has the advantage of providing consistent estimates of
�, even when the variance structure Rh is misspecified. Hence it is often referred to as a
“working correlation". Because our data most nearly satisfies an independent correlation
structure, our default working correlation structure is “independence”, which is known to
produce efficient estimates even when misspecified. Due to the correlated nature of our data,
all regression estimates are obtained via solving the GEE with a logit link. GEE estimates
may be obtained in standard statistical software in R or Python.

4.1.2 Regression Adjustment

As shown in Section 2.4, it is sufficient to condition on a function of the covariates X. In
particular, the propensity score is of use. Suppose a propensity score (Xi) is obtained, for
each i in the sample. Then an estimate of the treatment effect ✓ may be obtained by fitting
the model

E[Yi|Zi, e(Xi)] = �0 + �1e(Xi) + ✓Zi. (18)

This generalizes to the situation presented in (14) by obtaining an estimator of the
propensity score, ê(Xi). It’s also possible to use the Logit of the propensity score to recover
the continuous linear predictor ⌘i:

⌘i = logit
�
e(Xi)

 

then (16) becomes

E[Yi|Zi, ⌘i] = �⇤
0 + �⇤

1⌘i + ✓Zi. (19)

This is sometimes desirable, as ⌘i may have a nicer distribution closer to normality
than the propensity score e(Xi), which may be heavily skewed towards 0 or 1. This again
generalizes quite easily to (14).
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4.1.3 IPW Regression

Yet another option for estimating causal effects is the weighted regression model. Upon
obtaining propensity scores ei = e(Xi), we obtain stabilized probability weights by computing
the following for each unit i in the sample:

wi =
ZiPr(Z = 1)

ei
+

(1� Zi)Pr(Z = 0)

1� ei
, (20)

where Pr(Z = 1) and Pr(Z = 0) denote the marginal probability of treatment within the
sample. The sequence of weights (wi)

n
i=1 is then used to weight a regression model of the

following form:

E[Yi|Zi] = �0 + ✓Zi. (21)

This is essentially the regression analogue of the non-parametric Inverse Probability
Weighting Estimator. Or a Horvitz-Thompson Estimator. In our case, we use a weighted
GEE solution. While estimators may be directly weighted with the inverse of the propensity
score, using the stabilized form in (18) can help mitigate the issues that arise when propensity
scores are very close to 0 or 1, resulting in extremely large weights (Austin and Stuart, 2015).

4.2 Estimating Propensity Scores

In section 3.2.1, we noted the difficulty of estimation of the true propensity score model
induced by some children being missing from the data. While we might believe that model
(13) is what generated the propensity scores, the vector Xh has some missing values, and
since we have no indicators on whether the twins are identical or merely fraternal, there is
no way to impute the values without consulting the mothers themselves. Hence, instead of
(13), we need to estimate

logitPr(Zhk = 1|Vh,X
⇤
hk) = ↵0 +V0

h↵
0
1 + ↵2sexhk + ↵3twinhk (22)

where Vh is a vector of confounders for the hth mother. Such a model is not exactly correct
since it essentially models treatment assignment independently for each child, but with only
13 pairs of twins present in the data, and the rest singletons, the model is not far from
the truth either. The data is clustered, but approximately independent. We hope that our
estimates would be fairly efficient, and the estimated propensity scores êhk not far from the
truth of eh.

4.3 Confounder Screening

We performed a univariate screening prior to estimating any causal effects or propensity
scores in order to reduce the dimensionality of our data and thereby reduce the variance of
our estimate. Exploratory analysis preceding this screening may be found in the Appendix
in Figure 4. Screening is done in two ways. In the first case, for a given covariate Xhk, we
estimate both

logitPr(Zhk = 1|Xhk) = ↵0 + ↵1Xhk (23)
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and

logitPr(Yhk = 1|Xhk) = �0 + �1Xhk. (24)

We select Xhk as a potential confounder if and only if | exp(↵1) � 1| � 0.50 and
| exp(�1) � 1| � 0.50. This metric corresponds to the odds ratio being for Xhk being
above 1.5 or below 0.50 in both treatment and outcome. In this case, Xhk has a statistical
association with the treatment and outcome and thus may induce confounding.

In the second screening, we fit two outcome models:

logitPr(Yhk = 1|Zhk) = �0 + ✓1Zhk (25)

and

logitPr(Yhk = 1|Xhk, Zhk) = �0 + �1Xhk + ✓2Zhk (26)

where Zhk is the realized binary treatment indicator from the sample. Thus we obtain two
estimates ˆ✓1 and ˆ✓2. We then select Xhk as a confounder if and only if

����
exp(

ˆ✓1)� exp(

ˆ✓2)

exp(

ˆ✓1)

���� � 0.10. (27)

4.4 Results

Table of
estimates of
✓

1st Screening Method 2nd Screening Method

Model Type Estimate 95% CI
(upper)

95% CI
(lower) Estimate 95% CI

(lower)
95% CI
(upper)

Not
Including
Sex

Multivariate -0.590 -1.21 0.03 -0.556 -1.20 0.09
Reg. Adjust. -0.548 -1.18 0.09 -0.556 -1.19 0.08
IPW -0.569 -1.20 0.06 -0.466 -1.11 0.19

Including
Sex

Multivariate -0.666 -1.30 -0.03 -0.608 -1.25 0.03
Reg. Adjust. -0.636 -1.28 0.013 -0.608 -1.26 0.05
IPW -0.633 -1.27 0.01 -0.605 -1.24 0.03

Table 1: Results from the different estimating procedures. All confidence intervals are from
the Robust Sandwich Estimator. Estimates are in log-odds.

In the first method, we obtain the 8 potential confounders, which include indicators
for in-vitro-fertilization, maternal age, history of birth defects, referral source, and infant
sex, as well as some indicators for pre-natal care. In the second method, we obtain only 4
potential confounders, 3 of which are indicators for presence of rheumatoid arthritis and its
severity level. The 4th is a covariate for year of enrollment into the study. Curiously, the
indicator for twins did not make it past screening. The indicators for rheumatoid arthritis
are all redundant for each other, and speculated to be post-treatment effects (since the drug
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exposure was intended to treat auto-immune disorders). Since it’s not appropriate to control
for post-treatment effects, only the indicator for enrollment year makes it into the model.
Thus, we have two sets of confounders from which we can use to build a model to estimate
treatment effects. In the first screening method, we have 8 potential confounders, in the
second screening method, we have only one potential confounder: the year of enrollment
into the study.

Using the two sets of confounders, we estimate the treatment effect in the form of a
log-odds ratio via the estimation methods in section 4.1. Since the infant’s sex is thought
to be a potential confounder by the medical researchers of Rady’s Children’s Hospital from
whom we obtained the data, we estimate treatment effect in two ways for each set of potential
confounders. First, we use the confounders without the infant sex included, and estimate
the treatment effect with each estimation method in section 4.1. Then we add in infant
sex to each set of confounders, and measure the treatment effect again. This procedure
obtains 12 estimands for the treatment effect, which are displayed in Table 1. Overall,
simple estimations of the treatment effect via an ordinary multivariate GEE model had the
largest changes with respect to model choice. Regression Adjustment stayed fairly similar
under different choices. Weighted regression proved sensitive to modeling choices as well - in
particular to method of screening.

We find that across modeling and screening choices, the treatment effects are all esti-
mated to be fairly similar. With respect to the first screening method, the three models
estimate an average treatment effect (on the log-odds scale) of -0.569 when sex was not
included in the model. The average estimate decreased to -0.645 when infant sex was
included into the there models. With respect to the second screening method, the three
models had an average treatment effect estimate of -0.526 when sex was not included into
the model. However, note that the IPW model had a fairly different estimate of -0.466
when compared to the other two. On the other hand, when infant sex was included into
the models, we estimated an average treatment effect of -0.607, and each model performed
similarly. The confidence intervals were estimated with the Robust Sandwich Estimator
and all performed similarly, with lower bounds between -1.30 and -1.18, and upper bounds
between 0.03 to 0.19. To understand the clinical significance of these bounds, note that a
treatment effect of -1.30 on the log odds scale produces an odds ratio of approximately 0.27.
This corresponds to those having received treatment being 83% less likely to see a minor
malformation, and would be an extremely large effect size. On the other hand, a log odds
closer to the average upper bound of 0.10 corresponds to an odds ratio of 1.10, which im-
plies a 10% increase in the odds of experiencing a minor malformation in the treatment group.

Of course, the estimated treatment effects near the center of the confidence intervals
are the most likely outcome given this data, which are close to -0.60 on the log odds scale.
This corresponds to an odds ratio of roughly 0.55, which implies that the exposed are 45%
less likely to have a minor malformation. This result indicates that treatment has a mild
protective effect, but more data is likely needed, as these confidence intervals are fairly wide
in size, an thus present a great deal of uncertainty.
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5 Simulation
Since our models are only approximately correct, to explore the consequences of our modeling
choices, we performed a large simulation study. Our interest is in assessing the bias, power,
and efficiency of each of 3 estimators given in section 4. We also observe confidence interval
coverage.

5.1 Simulation Design

We assume the models (13) and (14) for generating the propensity score and the outcome.
To reiterate, we assume that for the hth mother

logitPr(Zh = 1|Vh, Xh) = �0 + �1Vh +X0
h↵ (28)

gives the group-level propensity score, eh. Here Xh = (X1h, X2h, X3h, X4h, X5h)
0, where

Xjh indicates the type of pregnancy the hth mother has. For the hth mother, X1h = 1 if
she is pregant with a single boy, X2h = 2 if she is pregnant with a single girl, X3h = 1 if she
is pregnant with twin boys, X4h = 1 if she is pregnant with twin girls and X5h = 1 if she is
pregnant with mixed sex twins. Note only one of the Xjh may equal 1. Then we assume the
probability of the outcomes for the kth infant with the hth mother is generated by

logitPr(Yhk = 1|Vh, sexhk, twinhk) = �0 + �1Vh + �2sexhk + �3twinhk + ✓Zh. (29)

We let Vh ⇠ N(0, 1
4 ) and we generate Xh by drawing a uniform random variable U and

selecting cutoffs so that with 0.95 probability, the hth mother is having a singleton child
(boy or girl, with equal probability) and with 0.025 probability she is having twins of mixed
sex, and with 0.0125 probability she is having twin boys, or twin girls. We fix �0 = �1,
�1 = �0.75. In order to get a sense of how our treatment effect estimates vary with changes
in the effect size of the propensity score model, we set ↵1 = (0.80, 0.55, 1.33, 0.250, 1)0 and
then cycle the entries in ↵1 in order to create new ↵j , j = 2, 3, 4 so that ↵1 6= ↵j . That is,
we generate

↵1 = (0.80, 0.55, 1.33, 0.250, 1)0 (30)
↵2 = (0.55, 1.33, 0.250, 1, 0.80)0 (31)
↵3 = (1.33, 0.250, 1, 0.80, 0.55)0 (32)
↵4 = (0.250, 1, 0.80, 0.55, 1.33)0 (33)

and fit a propensity score model as in (28) using �0 = �1, �1 = �0.75 and each of
the ↵i’s, i = 1, 2, 3, 4. The effect sizes in the vector ↵ are admittedly arbitrary, but range
between small (0.250) to very large (1.33), so cycling them should produce a diverse set of
datasets.

For the outcomes, we let the vector � = (�0,�1,�2,�3) take on 4 different sets of values
to observe the their role in the estimation of treatment effects when the outcome model was
specified correctly and misspecified. Keeping �0 and �1 fixed, we simulated the response
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level data using the following vectors of coefficients.

�1 = (�0.50,�2, 0, 1)0

�2 = (�0.50,�2, 1, 0)0

�3 = (�0.50,�2, 1, 1)0

�4 = (�0.50,�2, 0, 0)0.

Here �4 corresponds to a null-effect of the sex and category of twin status, since the
coefficient of sex and the category of twin status are 0. We are interested in the case where a
model is fit with extra variables, so we include these terms. We also let the treatment effect
✓ take on 0, 0.50, 1.0 and 1.5. Naturally ✓ = 0 corresponds to a null treatment effect.

Using each ✓, ↵i, �j , we generate approximately 400 individual data points to form a
data set. We repeat this 300 times. Since we have 4 of each ✓, ↵i, and �j , we end up with
a total of 4 ⇤ 4 ⇤ 4 ⇤ 300 = 19200 total data sets. On each of these data sets, we estimate
the treatment effect ✓ using a multivariate model, a regression adjusted model, and an IPW
regression model. For each of the 300 data sets with a fixed ✓, ↵i and �j , we record the bias
of the estimate ˆ✓ from each model, and average the bias over the 300 data sets by computing
n�1

Pn
i=1(

ˆ✓i)� ✓, where n = 300. We also record the variance, and estimate the power (or
type I error), as well as the confidence interval coverage.

From now on, references to �j refer to the vectors present above.

5.2 Simulation Study Results

The majority of the results of the simulation study may be found in the Appendix. We
provide a brief summary here. All regression models were fit by solving the Generalized
Estimating Equation with an independent working correlation matrix in Python using the
StatsModels package.

Under the null hypothesis, ✓ = 0, and correct model specification (inclusion of the
simulated infant sex indicator) all methods performed similarly with respect to bias, variance,
MSE and coverage, for each of the ↵i’s and the �j ’s However, each method presented
confidence intervals slightly too wide, with coverage proportions between 0.96 to 0.97. Type-I
error rates were between 0.03 and 0.04. Bias was nearly perfect in each of the models.

When the model was misspecified, each model performed similarly, but bias increased
the most with �2 and �3, with the largest amount of bias occurring in the latter case in the
misspecified benchmark model. The bias positive and still relatively small, ranging from 0 to
0.05. The misspecified models slightly undercovered with �2 and �3 but were slightly too
wide with �1 and �4.

When ✓ = 0.50, the treatment effect is moderate, on the scale that we actually ob-
serve in our real data. When the model was correctly specified, all approaches had low
levels of average bias, in the neighborhood of -0.03 to 0.01, with multivariate GEE per-
forming the best in terms of bias, power, and confidence interval coverage. This is likely
because GEE is closest to the true data generating process, so it might have had an advantage.
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When the model was misspecified, bias ranged from very small, such as 0.002 in the
multivariate GEE with �1 to extremely large relative to ✓ = 0.50, such as the bias of �0.208
in the IPW regression model under �3. This indicates a sudden sensitivity to modeling
choices, under a permutation of the entries in ↵. This seems to make sense, as the propensity
scores are directly utilized in an IPW model, where it has been shown they can cause issue
if they are too close to 0 or 1.

When ✓ = 1.0, the treatment effect is demonstrably large, and all modeling choices saw
power converging to 1, and performed almost exactly the same, though it should be noted
that with �3, each of the each model’s confidence interval coverage dropped to nearly 80%,
and had large biases of around �0.200. While relatively small compared to the effect size of
✓ = 1, this should not be ignored.

With ✓ = 1.5, the treatment effect is enormous, and so the power for each model reached
1.0, even when misspecified. Each model appeared to perform similarly, with good confidence
interval coverage, and low bias, except in the problematic case of �j , j = 2, 3. Here, each
model performed dreadfully, with multivariate GEE tending to be slightly better in terms of
bias and confidence interval coverage.

6 Discussion
Upon consideration of the results of our simulation, multivariate models and regression
adjustment models tend to perform well, with the IPW models tending to be more sensitive
to modeling choices. It should be noted that the multivariate GEE proved to be fairly robust
to modeling choices, even when misspecified, at least relative to the other two methods of
regression adjustment and IPW. The average bias in the simulation was fairly low, and
confidence intervals fairly appropriate. With respect to our real data, this gives us some
willingness to believe that our estimate of the treatment effect is fairly robust to modeling
choices, especially since the treatment effect estimate was not particularly sensitive to choices
of model (except IPW, which did not perform well in our simulation). Those in our cohort
who were exposed to the drug of interest may see a mild protective effect against minor
malformations. That said, the real data set presented a unique challenge and situation, and
one must always take time to consider what assumptions are being involved in the modeling
process. E.g., an assumption of independence was incorrect for our real data, but is ap-
proximately correct when one considers that nearly 90% of the data were independent samples.

Undeniably, when it comes to the art and craft of causal inference, model specification
and its related assumptions are a difficult aspect of the data analysis to get correct. In order
to correctly specify a causal model, all relevant confounders must be accounted for. However,
due to the bias-variance trade-off, one cannot simply fit a causal model on each covariate
present in the data set. Doing so needlessly increases the variance of the treatment effect
estimates (potentially rending them inactionable, if the resulting confidence intervals are
too wide to be of use), and may open so-called “backdoor paths" which may actually induce
confounding into the estimator.

As a work-around, one needs to rely on statistical association in order to prioritize
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confounders by the strength of their statistical association with the outcome and treatment.
Moreover, domain expertise is required in order to determine the exact role of the potential
confounder in the data. It is not appropriate, for example, to control confounders that are
considered “post-treatment effects" (Pearl, 2009).

This thesis has served as a cursory summary of some of the theory and methods of causal
inference. We applied these methods to a real data set, as well as verified our results via
simulation. In general, we feel that fake-data simulation is a useful tool to sanity check data
modeling choices when there is no clear theory to guide practitioners, as in our situation
of approximately independent data. We believe our simulation would be improved by con-
sidering a wider variety of choices for the ↵i’s and �j ’s, and by perhaps manipulating the
proportion of twins present in the data set.

We also believe it may be worth exploring the drug’s effects on the response of a major
malformation, in conjunction with the minor malformations and contrasting the two sub-
populations. This idea lends itself well to a larger replication study.
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Appendix
The astute reader may notice that with 4 choices for ↵ and 4 choices for � in the simulation
study, we should have 16 tables of the style given below, but only 8 are present. 8 Tables
have been omitted, mostly as a desire to save paper and considerably shorten the length
of this thesis. Moreover, the results in the remaining tables do not vary greatly from those
already presented. The inquisitive reader may email the author at the email given in the
title in order to see the remaining tables.
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Figure 2: Forest plots for the Univarite Screening. Each predictor was fit by itself with an
intercept on the outcome (top) and the treatment (bottom). Points give the point estimate,
and bands give the 95% confidence intervals.
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Table 2: Table of simulation results, under ✓ = 0 and ↵1 as described in the Section 5. Under
these conditions, all models perform fairly well, with low bias, variance and MSE across the
board.
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Table 3: Simulation results with ✓ = 0.50 and ↵1. All models perform similarly as when
✓ = 0.
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Table 4: Simulation results when ✓ = 1.0 and with ↵1. Power is converging to 1 now, and
each model does well, though the correctly specified multivariate model is among the best.
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Table 5: Simulation results with ✓ = 1.5 and ↵1. Power is 1 now for each method, as the
effect size of 1.5 on the log-odds scale is enormous. Bias is slightly larger, but still very small
in comparison with the effect size of ✓.

23



✓
=

0
In

di
vi

du
al

Se
x

Se
x

In
cl

ud
ed

In
di

vi
du

al
N

ot
In

cl
ud

ed

↵
2

M
od

el
T

yp
e

B
ia

s
V

ar
ia

nc
e

M
SE

C
ov

er
ag

e
Po

w
er

B
ia

s
V
ar

ia
nc

e
M

SE
C

ov
er

ag
e

Po
w

er

�
1

M
ul

ti
va

ri
at

e
0.

00
8

0.
04

5
0.

04
5

0.
95

0.
05

0.
00

9
0.

04
4

0.
04

4
0.

94
3

0.
05

7
R

eg
.

A
dj

.
0.

00
9

0.
03

9
0.

03
9

0.
95

0.
05

0.
01

1
0.

03
9

0.
03

9
0.

95
0.

05
IP

W
0.

02
4

0.
03

9
0.

03
9

0.
95

3
0.

04
7

0.
00

8
0.

03
8

0.
03

8
0.

95
3

0.
04

7

�
2

M
ul

ti
va

ri
at

e
0.

01
6

0.
04

8
0.

04
8

0.
94

3
0.

05
7

-0
.1

64
0.

04
5

0.
07

2
0.

86
0.

14
R

eg
.

A
dj

.
0.

01
1

0.
03

9
0.

03
9

0.
96

0.
04

-0
.1

58
0.

04
3

0.
06

8
0.

86
3

0.
13

7
IP

W
0.

00
7

0.
03

9
0.

03
9

0.
95

7
0.

04
3

-0
.1

54
0.

04
0.

06
4

0.
86

7
0.

13
3

�
3

M
ul

ti
va

ri
at

e
-0

.0
08

0.
04

3
0.

04
3

0.
95

3
0.

04
7

-0
.1

86
0.

03
9

0.
07

4
0.

86
3

0.
13

7
R

eg
.

A
dj

.
-0

.0
11

0.
03

5
0.

03
5

0.
97

3
0.

02
7

-0
.1

76
0.

03
6

0.
06

7
0.

87
0.

13
IP

W
0.

00
1

0.
03

4
0.

03
4

0.
97

7
0.

02
3

-0
.1

71
0.

03
4

0.
06

3
0.

88
0.

12

�
4

M
ul

ti
va

ri
at

e
-0

.0
08

0.
05

3
0.

05
3

0.
92

7
0.

07
3

-0
.0

04
0.

04
9

0.
04

9
0.

93
0.

07
R

eg
.

A
dj

.
-0

.0
09

0.
04

8
0.

04
8

0.
93

0.
07

-0
.0

03
0.

04
7

0.
04

7
0.

93
7

0.
06

3
IP

W
-0

.0
08

0.
04

8
0.

04
8

0.
92

7
0.

07
3

-0
.0

04
0.

04
4

0.
04

4
0.

94
7

0.
05

3

Table 6: Simulation results with ✓ = 0 and ↵2. Similar results as with ↵1.
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Table 7: Simulation results with ✓ = 0.50 and ↵2. While initially identical to the case of ↵1,
note the large bias in the misspecified models, reaching nearly -0.20. This is nearly half the
size of ✓, indicating that the model choices are sensitive to misspecification.
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Table 8: Simulation results when ✓ = 1.0 and ↵2. Note the models perform well, except in
the case of misspecification and �j , j = 2, 3.26
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Table 9: Simulation results when ✓ = 1.5 and ↵2. When misspecified, bias gets as large as
-0.32 in the IPW model. 27
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