
Shallow Neural Networks, Gradient Descent,

and Overparameterization

Xingfan Jia
Advisor: Professor Ery Arias-Castro

xij034@ucsd.edu

Abstract

This paper focuses on regression using fully connected one-hidden-layer ReLU
activated neural networks. Weights are updated via gradient descent algo-
rithm. We show that when we have the number of hidden nodes exactly as
needed, there exist bad local minimums, so the convergence is not guaran-
teed. However, in the over-parameterized regime, we show that, under certain
reasonable conditions, gradient descent will always find the global minimum.
And due to the implicit regularization of gradient descent, the solution often
has small generalization error surprisingly. We show the above with theoret-
ical and some experimental support, thus accounting for the great success of
neural networks nowadays.

Keywords: Regression, Neural Networks, Gradient Descent,
Over-parameterization, Implicit Regularization

1. Introduction

Neural network was first introduced in 1960s, as an iformation process-
ing system, and is now a very important factor in statistical learning. For
example, in supervised learning, very deep network structures can complete
image classification task at the level of human performance. The key of the
network are the weights connecting di↵erent layers, which transforms inputs
to desired outputs. Though the great success should be credited to many
techniques applied to the networks, such as deep structures, convolutional
layers, skip connections, and etc., but the most fundamental one is gradient
descent.

Preprint submitted to June 7, 2019

Figure 1: Fully connected one-hidden-layer Neural Network.

In this paper, we focus on analyzing gradient descent of fully connected
one-hidden-layer ReLU activated neural network with m hidden nodes. Here
is the setting, input x

i

2 Rd, output y 2 R, and y = f(x) + e, where e is
some noise. Figure 1 shows the structure of our network. Input is connected
to each hidden node by weight w = [w1w2...wm

] 2 Rd⇥m, w
i

2 Rd, and bias
b = [b1b2...bm]T 2 Rm. Output of each node goes through a rectified linear
unit(ReLU) with activation function �(x) = max(0, x)1. Then the output
from each ReLU are combined by weight v = [v1v2...vm] 2 R and bias b0 2 R.
Formally, we consider the network of the following form:

f
m

(x) =
mX

i=1

v
i

�(xTw
i

+ b
i

) + b0 (1)

Rewrite it in matrix form:

f
m

(x) = vT�(xTw + b) + b0.

For simplicity, we expand x and let b be part of the w, then we have

f
m

(x) = vT�(xTw) + b0

Given n data pairs (x, y), the goal is to estimate the true underlying
function f . We use least mean square error as loss function:

L(v, w) =
1

2n

nX

i=1

(f
m

(x
i

)� y
i

)2 (2)

1
If there is no non-linear activation function, network output is always a linear function.

2

.
We use gradient descent to update the weights. Gradient descent is an

optimization algorithm that iteratively moves the weights along the direction
which decreases the loss function most steeply. This direction is defined by
the negative of the gradient. Let w(t) be the weight of time t,

w(t+ 1) = w(t)� ⌘
@L(v, w)

@w
,

and
@L(v, w)

@w
r

=
nX

i=1

(f
m

(x
i

)� y
i

)v
r

x
i

1{xT

i

w
r

� 0},

where w
r

and v
r

are weights connect input to rth hidden node and rth
hidden node to output respectively, and ⌘ is a hyper-parameter learning rate,
indicating how far w moves along that direction. Same updating process for
v. In practice, people often use Stochastic Gradient Descent (SGD), a variant
of gradient descent. Instead of taking derivative of every input data, it takes
a batch of input data each time. So for SGD,

@L(v, w)

@w
r

=
lX

i=1

(f
m

(x
i

)� y
i

)v
r

x
i

1{xT

i

w
r

� 0},

where l is the batch size, much less than n.
Experiments are conducted in Python with keras, a deep learning library

backuped by TensorFlow. Noises are i.i.d. random normal.

2. Capacity of Neural Networks

Let’s start with an example. Suppose we have a function with domain
[�1, 2], as shown in figure 2(b):

f(x) =

8
><

>:

0.5x, if x 2 [�1, 0]

2x, if x 2 [0, 1]

2, if x 2 [1, 2],

then clearly, one hidden node is not capable of fitting f . As shown in figure
2(a), one hidden node can achieve one of the 4 patterns. However, network
with 2 hidden nodes can fit f . One of the possible optimal solution is shown

3

in figure 2(c), where h1 = �(�1.5x) = max(�1.5x, 0) is the output of first
hidden node, h2 = �(�2x + 4) is the output of second hidden node. v =
[�1, 1], b0 = 2, y = vT [h1, h2] + b0 = �h1 + h2 + 2.

With more nodes, such network can fit more complicate functions. The
following theorem states the capacity of single-hidden-layer neural networks.

Theorem 1 (Universal Approximation Theorem). Let �(·) : R �! R be a

nonconstant, bounded, and continuous function. Let the space of real-valued

continuous functions on any compact set S in Rd

be denoted by C(S). Then,
given any ✏ > 0 and any function f 2 C(S), there exist an integer m, real

constants v
i

, b
i

2 R, and real vectors w
i

2 Rd

for i in {1, 2, ..., m}, such
that we may define

f
m

(x) =
mX

i=1

v
i

�(xTw
i

+ b
i

) + b0

which achieves

|f
m

(x)� f(x)| < ✏ for all x 2 S.

This concept was introduced in late 1980s. It was first proved by Hornik,
Stinchcombe and White (and also by George Cybenko independently) in
1989 for sigmoid activation functions, and later proved by Stinchcombe and
White[1] for other activation functions. Here we use argument from Zhang
et al [2] to show proof idea.

Theorem 2 (Zhang et al [2]). There exists a two-layer neural network with

ReLU activation and 2n + d weights that can represent any function on a

sample of size n in d dimensions.

Proof. For any two interleaving sequences of n real numbers b1 < z1 < b2 <
z2 < ... < b

n

< z
n

, the n ⇥ n matrix A = [max(z
i

� b
j

, 0)]
ij

has full rank,
since A is lower triangular and all diagonal entries are nonzero. Its smallest
eigenvalue is min

i

z
i

� b
i

.
Let the notations be same as in (1), we want to show that there exist

weights w, v, b0 so that y
i

= f
m

(x
i

) for all i 2 1, ..., n. First, choose w and b
such that with z

i

= wTx
i

we have b1 < z1 < b2 < z2 < ... < b
n

< z
n

. Then
we can write the n equations of unknown v y

i

= f
m

(x
i

) for i 2 1, ..., n and
y = Av. Since A has full rank, we can solve the linear system y = Av to find
suitable weights.

4

Figure 2: (a) shows 4 patterns of output of a hidden node, and (b) shows function f , and
(c) shows how to achieve estimating f with 2 hidden nodes.

Figure 3: (a) Example of learning process stuck at bad local minimum. Trained with 2

hidden nodes. (b) Trained with 10 hidden nodes.

3. Bad Local Minima

As we can see from (2), the loss function is highly non-convex and non-
smooth, with many critical points. In this section, we will talk about the
regime where the optimization can be stuck at bad local minima. An example
is given in figure 3. The blue dots are training data from some simple function
(plus some Gaussian noises) that 2-hidden-node neural network is able to
fit. And the green line is the network output estimation f

m

, with h1 =
�0.52x + 1.51, h2 = �0.07x, and f

m

(x) = 1.54�(h1) + 0.04�(h2) + 1.49.
Trying to change any parameter(s) with a fairly small amount would result
in an increase in the loss, which is the case of stuck at bad local minima.

Safran and Shamir [3] studies this problem in a slightly di↵erent setting.
They study the process of fitting w only, i.e. f

m

=
P

m

i=1 �(wi

x). Train-
ing data pairs (x, y) are generated using the weight w⇤ 2 Rk⇥k, x 2 Rk,
y =

P
k

i=1 �(w
⇤
i

x). Let L be a thrice-di↵erentiable objective/loss function
with a gradient rL(·) and a Hessian r2L(·) in a neighborhood of wm,
wm = [w1, w2, ..., wm

] 2 Rkm is the vector of parameters. Let R
w

m
,u,t

be

5

the remainder from the second-order Taylor expansion of L about a point
wm 2 Rkm, in a direction given by a unit vector u 2 Rkm:

L(wm + tu) = L(wm) + trL(wm)Tu+
1

2
t2uT tr2L(wm)u+

1

6
t3R

w

m
,u,t

To show the existence of local minima, we want to show that at some
point, the loss is significantly greater than 0, gradient norm is very close to
0, and Hessian is strictly positive definite. Now suppose that the point wm

satisfies k rL(wm) k ✏, k r2L(wm) k⌫ �
min

I, and |R
w

m
,u,t

| B
t

, for some
positive ✏, �

min

, and B
t

(�
min

is the smallest eigenvalue of Hessian matrix),
uniformly for all u. Fix ↵ > 0, and let B = sup

t2[0,↵]Bt

, by the Taylor
expansion above, we have

L(wm + tu) � L(wm)� t k rL(wm) k · k u k +
t2

2
�
min

k u k2 �t3

6
B

= L(wm)� ✏t+
t2

2
�
min

� t3

6
B

= L(wm) + t(
�
min

2
t� t2

6
B � ✏)

(3)

The second term is strictly positive in the closed interval of
3�min±

p
9�2

min�25B✏

2B .

Let r =
3�min�

p
9�2

min�25B✏

2B , and assuming r < ↵, we have a ball B
r

of radius
r centered at wm with boundary S, such that

L(wm) < min
w

0m2S
L(w0m).

Since L is continuous, it is minimized over the ball at w⇤m, and

L(w⇤m) = min
w

0m2Br

L(w0m) L(w
m

) < min
w

0m2S
L(w0m).

Thus, w⇤m must be in the interior of B
r

, so it is a local minimum. We refer
readers to [3] for exhaustive proof, such as lower bound for �

min

, etc.
Safran and Shamir then show the likelihood of converging to bad local

minima empirically. Again, k is the number of nodes used to generate training
data, and m is the number of nodes used to fit the training data. Result of
converging to bad local minima when using exact number of nodes as needed
is shown in figure 4 (left half).

6

There are several ways to deal with this problem. For example, Du et al.[4]
show that for such networks with Gaussian inputs, if we initialize network
weights as (w, v), among {(w, v), (w,�v), (�w, v), (�w,�v)}, there is a pair
that enables gradient descent to converge to the global minimum. Another
direction for dealing with this problem is trying to design networks with
loss landscapes that do not have such local minima. Including more nodes
(parameters) is one way to achieve that.

In Safran and Shamir’s experiment, they also show using one more node
than needed could help greatly reduce the probability of converging to bad
local minima. Also for the example given in figure 3, figure 3(b) shows the
result of using 10 hidden nodes. Fitting the same function using 10 nodes
gives much higher convergence rate in the experiment, though the estimated
function is kind of zig-zag, where the true function f has only one kink point
at x = 4.

We can think of two reasons for such behavior:

• Since the initialization is random, it is possible that certain nodes are
never activated, i.e. rectified linear unit always outputs 0. In this case,
we would have insu�cient number of nodes.

• Since gradient descent implicitly penalizes the weights to go far from
initialization(will be discussed later), the fitting process is very hard if
the function requires large weights. However, if there are more nodes,
each node with relatively small weights could be added up to achieve
that.

4. Over-parameterization Regime

4.1. No Bad Local Minima

Last section encourages the idea of having more parameters than needed.
Indeed, in practice, over-parameterized networks actually have great results.
For example, AlexNet[5] achieves state-of-art image classification perfor-
mance with about 650K hidden nodes, 60M parameters. And there is a
large amount of work in the literature, saying that there is no bad local
minima when the network is over-parameterized under di↵erent conditions.
Here we use the argument from Soudrya and Carmon [6] to show the following
theorem.

7

Figure 4: Result of convergence to bad local minima. Cited from [3].

Theorem 3 (Soudrya and Carmon [6]). Let m be the number of hidden nodes

in the network. If m � dn, then all di↵erentiable local minima(DLM) of the

loss function L(v, w) = 1
2n

P
n

i=1(fm(xi

) � y
i

)2, are global minima with L(v,

w) = 0.

Proof. Bias terms are ignored for simplicity. Let a = [a1, a2, ..., an], where
a
i

is the slope of the activation function given ith data point x
i

. Let e =
[e1, e2, ..., en], where e

i

= f
m

(x
i

)� y
i

, then we can rewrite

L(v, w) =
1

2n
k e k2= 1

2n
Ee2

=
1

2n
E(y � vTdiag(a)wx)2

=
1

2n
E(y � aTdiag(v)wx)2

=
1

2n
E(y � aT W̃x)2,

(4)

where W̃ = diag(v)w for simplicity. Let W̃ be a DLM of loss function,
equivalent to (w, v) is a DLM.

To we take derivative of (4), we can switch the order of di↵erentiation
and expectation and average over a finite training set. Also, derivative of
a with respect to weights is 0. Thus we have the following, which equals 0
because W̃ is a DLM:

r
W̃

L = E[eaxT] = 0 (5)

8

Figure 5: Number of parameters on x-axis. Classic “overfitting” curve on the left, and

double descent curve on the right. Cited from [8].

Reshape this using Kronecker product ⌦, and define the gradient matrix:

G = [A �X] = [a1 ⌦ x1, ..., an ⌦ x
n

] 2 Rdm⇥n, (6)

where � is the Khatari-Rao product, and x
i

2 Rm. Then (5) becomes

Ge = 0 (7)

So e lies in the nullspace of G, which is of dimension n � rank(G). If
rank(G) = 0, then e = 0, meaning the DLM is a global minimum.

To show G is generally full rank, we use the fact that if B 2 Rb⇥n and
C 2 Rc⇥n with n bc, we have, (B,C) almost everywhere, rank(B �C) = n.
But we can not apply the fact directly since A depends on X, instead we
apply it for for all (finitely many) possible values of sign(wX) to get the
desired result.

4.2. Good Generalization Behavior

In statistics, it is very common to encounter the “overfitting” problem
when there are too many parameters. As there are many parameters, the
model starts to fit the noises of input data, thus having poor generation
behavior when predicting unseen data. Suppose we divide available data
into two groups, training set and testing set. Training set is used to fit the
model, we define the loss of training set as training risk. Then we use the
resulting model to predict data in testing set, and define the loss over testing
set as testing risk. The classic “overfitting” situation is shown in figure 5
(left plot).

However, Belkin et al.[8] find that test risk will increase and then decrease
by keeping adding more parameters to the model. And their experiment with
neural networks is shown in figure 6. The intuition behind such behavior is

9

Figure 6: Two sets of experiments (one on each row) on MNIST dataset. Cited from [8].

that, by considering larger function classes, which have higher complexity,
we have more ways to interpolate training data. Then we can choose the one
with best generalization property among them.

Indeed, for over-parameterized networks, the loss function often has (un-
countably infinite) many global minima on a given data set. And such net-
works, even without any explicit regularization, have good generalization
behaviors in practice. It turns out that gradient descent has implicit reg-
ularization in terms of L2 norm, i.e. gradient descent always converge to
the global minimum with the smallest L2 distance from initialization. There
are many works in literature showing such property, for example, N. Azizan,
and B. Hassibi[7][9] show that stochastic (a variant of gradient descent) with
least-mean-square loss is a minimax optimizer (called H1 optimizer) which
regularizes the solution in terms of L2 norm, Gunasekar et al.[10] and S.
S. Du, et al.[11] use matrix factorization and Gram matrix2, respectively,
to show gradient descent with quadratic loss converges to the solution with
minimum nuclear norm of weight matrix from initialization.

We will show work of N. Azizan, and B. Hassibi[7] to illustrate the good

2
Gram matrix is defined by H1 2 Rn⇥n

with

H1
ij = Ew⇠N(0,I)[x

T
i xj1{xT

i w > 0, xT
j w > 0}].

10

convergence and implicit regularization of SGD, and refer readers to [7] for
detailed proof. Their works is inspired by the H1 estimation and control
theory that was first introduced in 1980s. The main idea is that, for linear
model, SGD has the desired property as mentioned above. For our non-
linear model (because of ReLU activation), it has that property locally. And
over-parameterization gives infinitely many global minima, ensuring that,
with high probability, there is at least one global minimum near random
initialization, thus giving non-linear model that desired property.

Let f be a linear function, y
i

= f(x
i

, w) + e
i

, and let W be the set of
parameters vectors that are consistent with input data, i.e. L(w) = 0 for all
w 2 W . Let

c
i

= y
i

� xT

i

w
i�1, cp,i = xT

i

w � xT

i

w
i�1.

Batch size for SGD is 1, and w
i

is the weight after ith iterations, i.e. after
feeding in ith input data point.

Lemma 1. As in the setting described above, for any weight w, and for any

step size ⌘ > 0, for the SGD iterates {w
i

} given in

w
i

= w
i�1 � ⌘(xT

i

w
i�1 � y

i

)x
i

, (8)

the following relation holds

||w � w
i�1||2 + ⌘e2

i

= ||w � w
i

||2 + ⌘(1� ⌘||x
i

||2)c2
i

+ ⌘c2
p,i

(9)

for all i � 1.

This can be easily proved with (8) and rewriting e
i

= y
i

� xT

i

w as e
i

=
(y

i

� xT

i

w
i�1) � (xT

i

w � xT

i

w
i�1). This Lemma views SGD as a process of

transferring uncertainty3.
By summing (9) over i = 1, ..., T , we have the following Lemma.

Lemma 2. Let the setting and condition be the same as in Lemma 1, we

have

||w � w0||2 + ⌘
TX

i=1

e2
i

= ||w � w
T

||2 + ⌘
TX

i=1

(1� ⌘||x
i

||2)c2
i

+ ⌘
TX

i=1

c2
p,i

. (10)

3
Uncertainty of noise {ei} and uncertainty of weight w � wi.

11

Now consider the minimax problem,

min
{wi}

max
w,{ei}

||w � w
T

||2 + ⌘
P

T

i=1 c
2
p,i

||w � w0||2 + ⌘
P

T

i=1 e
2
i

. (11)

The numerator is the energy of uncertainty of the unknown weight vector
plus the energy of uncertainty of the prediction error after using T data
points. The denominator is the energy of uncertainty of the unknown weight
after initialization plus the energy of uncertainty of the noises. In one word,
this minimax estimator minimizes the max energy gain from the uncertainties
to prediction errors (c

p,i

), which explains the robustness and conservativeness
of the estimator because it safeguards the worst-case scenario. The next
theorem shows that SGD is such estimator.

Theorem 4. For any initialization w0, any step size 0 < ⌘ < min
i

1
||xi||2 , and

any number of steps T � 1, the stochastic gradient descent iterates {w
i

} given

in (8) are the optimal solution to the minimax problem (11). Furthermore,

the optimal minimax value (achieved by SGD) is 1.

An older paper [9] shows that the algorithm achieves optimal solution
1 as long as w is closed enough to initialization. Having the convergence
of SGD, now we show that it regularizes the solution in terms of l2 norm
without any explicit regularization term. When interpolating, e

i

’s are zero4,
so c

i

= c
p,i

. Then (10) becomes

||w � w0||2 = ||w � w
T

||2 + ⌘
TX

i=1

(2� ⌘||x
i

||2)c2
i

(12)

for all w 2 W . As T ! 1,

⌘

1X

i=1

(2� ⌘||x
i

||2)c2
i

 ||w � w0||2,

so for 0 < ⌘ < min
i

1
||xi||2 , e

i

has to go to 0 as i ! 1. When e
i

! 0,
SGD update vanishes, so w ! w1 thus we get convergence. We also have
w1 2 W because e

i

! 0. If we take T ! 1 and minimize both side of (12)
with respect to w5, we have

w1 = arg min
w2W

||w � w0||2.

4
Since f is linear in the current setting.

5
Since (12) does not depend on w, it depends only on xi, yi, and w0.

12

5. Discussion

This work intends to explain the excellent of over-parameterized neural
networks. We provide some of the numerous approaches in the literature to
this problem. However, there are still some restrictions and pre-assumptions
on the settings in order to make the results valid. We believe that, as the
restrictions are being removed, the picture will be much more clear, and
people will have better ideas on how to improve their models.

References

[1] M. Stinchcombe, H. White, (1989). “Universal approximation using
feedforward networks with non-sigmoid hidden layer activation func-
tions.” In Proceedings of the International Joint Conference on Neural

Networks (pp. 1:613-618). San Diego: SOS Printing.

[2] C. Zhang, et al. “Understanding deep learning requires rethinking gen-
eralization.” arXiv preprint arXiv:1611.03530 (2016).

[3] I. Safran, and O. Shamir. “Spurious local minima are common in two-
layer relu neural networks.” arXiv preprint arXiv:1712.08968 (2017).

[4] S. S. Du, et al. “Gradient Descent Learns One-hidden-layer CNN: Don’t
be Afraid of Spurious Local Minima.” arXiv preprint arXiv:1712.00779
(2017).

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification
with deep convolutional neural networks.” Advances in Neural Informa-

tion Processing Systems. 2012.

[6] D. Soudry, and Y. Carmon. “No bad local minima: Data independent
training error guarantees for multilayer neural networks.” arXiv preprint
arXiv:1605.08361 (2016).

[7] N. Azizan, and B. Hassibi. “Stochastic gradient/mirror descent:
Minimax optimality and implicit regularization.” arXiv preprint

arXiv:1806.00952 (2018).

[8] M. Belkin, et al. “Reconciling modern machine learning and the bias-
variance trade-o↵.” arXiv preprint arXiv:1812.11118 (2018).

13

[9] B. Hassibi, A. H. Sayed, and T. Kailath. “Hoo optimality criteria for
LMS and backpropagation.” Advances in Neural Information Processing

Systems. 1994.

[10] S. Gunasekar, et al. “Implicit regularization in matrix factorization.”
Advances in Neural Information Processing Systems. 2017.

[11] S. S. Du, et al. “Gradient descent provably optimizes over-parameterized
neural networks.” arXiv preprint arXiv:1810.02054 (2018).

14

	Introduction
	Capacity of Neural Networks
	Bad Local Minima
	Over-parameterization Regime
	No Bad Local Minima
	Good Generalization Behavior

	Discussion

