
ZETA FUNCTION FOR FERMAT HYPERSURFACES

RANDY MARTINEZ

Abstract. In this paper we find a way to compute the number of solutions to Fermat hy-
persurfaces over finite fields. This can be developed by first considering characters over these
finite fields and introducing Gauss sums and Jacobi sums. Then we proceed with introducing
the zeta function for hypersurfaces and showing some wonderful properties and results about
it. We then put everything together to compute the number of points on these hypersurfaces
and use this to compute the zeta function.
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1. Introduction

Computing the number of points of objects is a fundamental problem in several areas of math-
ematics. Arithmetic geometry is a field where this issue is investigated in great detail, and our
goal is to study the number of solutions of the equation

xn + yn + zn = 0

over a finite field. We will investigate this in more generality by looking at Fermat hyper-
surfaces. Fermat hypersurfaces over a field F are subsets of projective n-space defined by
equations of the form

xm1 + xm2 + ...+ xmn = 0

from the ring of polynomials F [x1, ..., xn]. When F is a finite field, it makes sense to ask for
the number of points in this set. We will take the approach using characters over Fq and the
zeta function over hypersurfaces and follow Ireland and Rosen [2] closely while developing the
theory needed.

2. Projective Hypersurfaces

2.1. Affine and Projective n-space.

Definition 2.1. Let F be a field and An(F ) = {(a1, ..., an) : ai ∈ F} be the n-tuples of
elements in F . We call An(F ) the affine n-space over F .

Consider the set of points An+1 \ {0}, where 0 is the zero vector in An+1(F ). Let a =
(a1, ..., an+1) and b = (b1, ..., bn+1) and define the equivalence relation:

a ∼ b if there exists c ∈ F× such that ai = cbi for all i.

This is an equivalence relation because of the fact that the units of F form a group under
multiplication.

Definition 2.2. The set of equivalence classes is called projective n-space over F and is denoted
Pn(F ).

In the case where F is a finite field of order q, it is easy to see that |An(F )| = qn. In the
construction of Pn(F ) we started with qn+1−1 points from An+1\{0}, and there are |F×| = q−1

points in an equivalence class, which gives us that |Pn(F )| = qn+1−1
q−1 = qn + qn−1 + ...+ q + 1.

Now let a = (a0, a1, ..., an) and consider the subset of Pn(F ) where the first coordinate is zero:
H := {[a] ∈ Pn(F ) : a0 = 0}. H is known as the hyperplane at infinity. Notice that H has the
structure of Pn−1(F ).

Proposition 2.1. Φ : Pn(F ) \H → An,Φ([a]) = (a1/a0, ..., an/a0), is a bijection.

Proof: If Φ([a]) = Φ([b]), then ai/a0 = bi/b0 for all i. Let c = b0/a0 ∈ F×. Then ai = cbi,
which implies that [a] = [b], so Φ is injective. Let for any a = (a1, ..., an) ∈ An(F ), take
b = (1, a1, ..., an) ∈ Pn(F ) \H. Then Φ([b]) = a, so that Φ is surjective. �

Hence Proposition 2.1 tells us that Pn(F ) is made up of An(F ) and Pn−1(F ).
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2.2. Polynomials and Hypersurfaces.
Let F [x1, ..., xn] be the ring of polynomials in n variables over the field F . Any f ∈ F [x1, ..., xn]
can be written as

f(x) =
∑

(i1,...,in)

ai1i2···inx
i1
1 x

i2
1 · · · x

in
n ,

and the terms of the form xii1 · · ·xinn are called monomials. The sum i1 + ...in is called the total
degree of the monomial and deg f will denote the maximum of the total degrees of monomials
in f(x). A polynomial whose monomials all have total degree l is called a homogeneous poly-
nomial of degree l.

Let K be a field extension of F and f ∈ F [x1, ..., xn]. For a ∈ An(K), we can consider the
evaluation map

ϕ : An(K)→ K, ϕ(a) = f(a) (substituting ai for xi).

Definition 2.3. The points a such that f(a) = 0 are called the zeros of f and the set

Hf (K) = {a ∈ An(K) : f(a) = 0}

is called the hypersurface defined by f .

In the case of f being a homogeneous polynomial of degree l, we have that f(ca) = clf(a) = 0
for all c ∈ K×. Hence we can similarly define a projective hypersurface

Hf (K) = {[a] ∈ Pn(K) : f(a) = 0}.

For any given f ∈ F [x1, ..., xn] and y = (y0, ..., yn), define f(y) = ydegf0 f(y1/y0, ..., yn/y0). This
defines a homogeneous polynomial of degree equal to f . This is called the projective closure of
an affine hypersurface.

2.3. Chevalley’s Theorem.
In this section the field F will be a finite field with q elements. The existence of solutions to any
given equation is non-trivial in general. However, the following theorem by Claude Chevalley
gives us the existence of non-trivial solutions to projective hypersurfaces over a finite field F
when the number of variables in F [x1, ..., xn] exceeds the degree of the polynomial.

Theorem 2.2. Let f ∈ F [x1, ..., xn]. Assume that f(0, ..., 0) = 0 and that deg f < n. Then f
has more than one zero.

To prove this statement we will need a couple lemmas.

Lemma 2.3. If a polynomial f ∈ F [x1, ..., xn] has degree less than q and vanishes on all of
An(F ), then f is identically zero.

Proof: We proceed by induction on n. When n = 1 we have that a polynomial in one variable
of degree less than q vanishes on all of F , and hence must be identically zero. Now assume
that this is true for polynomials in n − 1 variables. Let f(x1, ..., xn) ∈ F [x1, ..., xn]. Then we
may write f in terms of xn as the following:

f(x1, ..., xn) =

q−1∑
i=0

gi(x1, ..., xn−1)x
i
n.
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For any a ∈ An−1(F ) and substituting a in g, we have that

f(a1, ..., an−1, xn) =

q−1∑
i=0

gi(a1, ..., an−1)x
i
n

is a polynomial in xn which vanishes on F . Hence by the base case gi(a1, ..., an−1) = 0 for all
i. By induction hypothesis, since a is arbitrary, gi must be identically zero, and hence f . �

Definition 2.4. Let f, g ∈ F [x1, ..., xn]. We say f is equivalent to g, f ∼ g if f(a) = g(a) for
all a ∈ An(F ). A polynomial is called reduced if each variable has degree less than q.

Lemma 2.4. Every f ∈ F [x1, ..., xn] is equivalent to a reduced polynomial.

Proof: Note that it is enough to show this for the case of a single variable since for a given
monomial xi11 · · · xinn , we can reduce each variable individually and each will have degree less
than q. Because xq − x = 0 over F , we have that xq ∼ x. For arbitrary k, let j be minimal
such that xk ∼ xj . Now it must be the case. that j < q. For if not, then by the divi-
sion algorithm there is an a, b ∈ Z such that j = qa + b with a > 0 and 0 ≤ b < q. Then
xk ∼ xj = xqaxb ∼ xaxb = xa+b, and a+ b < j, contradicting the fact that j was minimal. �

We can now prove Chevalley’s Theorem:

Proof of Theorem 2.2 : Let f ∈ F [x1, ..., xn] be of degree d and suppose to the contrary that 0
is the only zero. Then the polynomial 1 − f q−1 has the property that (1 − f q−1)(0) = 1 and
zero elsewhere. Notice that the polynomial

(1− xq−11 )(1− xq−12 ) · · · (1− xq−1n )

has the same property. By Lemma 2.4, 1 − f q−1 is equivalent to a reduced polynomial r, so
the polynomial

r − (1− xq−11 ) · · · (1− xq−1n )

vanishes on An(F ) and has degree n(q − 1) (since deg r < q). By Lemma 2.3 we have that

r − (1− xq−11 ) · · · (1− xq−1n ) is identically zero. Hence r = (1− xq−11 ) · · · (1− xq−1n ), implying
that r has degree n(q − 1). Since r is the reduced form of f , we have that deg r ≤ deg f , and
so n(q − 1) ≤ d(q − 1). Thus n ≤ d = deg f , which is a contradiction. �
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3. Trace and Norm over Finite Fields

We will use the fact that any finite extension Fp is Galois, for if E has pn elements then E
is the splitting field of the separable polynomial xp

n − x and splitting fields are unique up to
isomorphism.

3.1. Trace and Norm.
Let E/F be a field extension.

Definition 3.1. The trace and norm of an element α ∈ E are defined to be the trace and
determinant, respectively, of the endomorphism given by left multiplication

T : E → E, T (β) = αβ,

TrE/F (α) = Tr(T ), NE/F (α) = det(T ).

It is a basic result in algebraic number theory that if E/K is a finite separable extension, then
we may consider all F -embeddings σ ∈ Hom(E,F ), where F is an algebraic closure of F and
obtain the following:

Lemma 3.1. Let {σ1, ..., σn} be the F -embeddings of E into F . Then

TrE/F (α) =
n∑
i=1

σ(α), NE/F (α) =
n∏
i=1

σ1(α).

We will mostly be considering The next lemma is also useful as it shows that the trace and
norm are transitive.

Lemma 3.2. Let F ⊆ E ⊆ K be a chain of fields and α ∈ K. Then

TrK/F (α) = TrE/F (TrK/E(α)), NK/F (α) = NE/F (NK/E(α)).

We will be primarily interested in the case where F = Fp. Since any finite extension of Fp
is Galois, these embeddings can be seen as the Galois conjugates of α for any α ∈ E. It is
a fact from finite field theory that Gal(Fpn/F) is generated by the Frobenius endomorphism

σ : Fpn → Fpn , σ(α) = αp. More generally, for any finite field F of order q = pk, we have that

Gal(Fs/F ) (where Fs is an extension of F of degree s) is cyclic of order s generated by σk.
This gives us a way of writing an the trace and norm of any α ∈ Fs as

TrFs/F (α) =

s−1∑
i=0

αq
i
, NFs/F (α) =

s−1∏
i=0

αq
i
.

For more on trace and norm of field extensions, one can refer to Jürgen Neukirch’s Algebraic
Number Theory [3].
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4. Characters, Gauss Sums, and Jacobi Sums over Finite Fields

Characters play in an important role in our discussion on solutions of xn + yn + zn = 0 over
F in the case where n divides q − 1. It turns out that over these finite fields the number of
solutions to equations of the form xm = a can be written explicitly in terms of characters,
which will be fruitful in our computations.

4.1. Characters.

Definition 4.1. A character of a finite abelian group G is a map χ : G → C× such that
χ(ab) = χ(a)χ(b) for all a, b ∈ G.

For example, the character 1, 1(a) = 1 for all a ∈ G, is known as the trivial character. Since
finite fields are finite abelian groups, we will be most interested in studying the case where
G = F×, the multiplicative group of a finite field. A few observations that are immediate
from the definition and the structure of finite fields are that χ(1) = 1; if |F | = q, then

χ(a)q−1 = χ(aq−1) = χ(1) = 1 (i.e. χ(a) is a (q − 1)st root of unity), and χ(a)−1 = χ(a),
the complex conjugate of χ(a). One of the most useful basic results whose argument is used
frequently is the following proposition:

Proposition 4.1. If χ is not trivial, then∑
a∈F

χ(a) = 0.

If χ is trivial, then this sum is |F |.

Proof: Since χ is not trivial, there is a b ∈ F such that χ(b) 6= 1. Let S =
∑

a∈F χ(a). Note
that as ab varies through F as a does. Hence

χ(b)S =
∑
a∈F

χ(ab) = S.

Hence (χ(b)− 1)S = 0. Since χ(b) 6= 1, we deduce that S = 0. �

By defining a multiplication of characters χ, λ of G to be χλ(a) = χ(a)λ(a), χ−1(a) = χ(a−1),
then the characters of G form a group with identity element 1. In fact, if G is cyclic, then the
characters form a cyclic group:

Theorem 4.2. If G is a cyclic group of order n, then the characters of G form a cyclic group
of order n.

Proof: Let g be a generator of G. Then gn = 1, which implies that χ(g)n = χ(gn) = 1 for all
characters χ of G. As every element of G is a power of g, we have that all characters are nth
roots of unity, which implies that the number of characters is at most n. Let χ(gk) = e2πki/n.

Then χ is a character on G and χ(gk) = χ(g)k, so χ is completely determined by g. e2πi/n is

a primitive nth root of unity, and χ(gk) = χ(gl) implies e2πki/n = e2πli/n (or e2π(k−l)i/n = 1),
so that k ≡ l (mod n). In particular, n is the smallest positive integer such that χ(g)n = 1

as e2πmi/n = 1 if and only if n|m. Thus there are n distinct characters ofG generated by χ(g). �

One immediately sees from this that for all a ∈ G with a 6= 1, then there is a character χ
such that χ(a) 6= 1. In fact, letting g be a generator of G and λ(g) being the the generator of

the group of characters, we see that if a = gk 6= 1 (so n - k), then χ(a) = e2πki/n 6= 1. This
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observation also shows that for all a 6= 1:∑
χ

χ(a) = 0,

where is the sum is taken over all characters of G, by using the same strategy as in Proposition
3.1 by multiplying the sum by the appropriate χ(a) 6= 1 and using the fact that characters are
a group.

Now we consider the case where G = F×p . As the multiplicative group of a finite field is cyclic

and F×p has p−1 elements, the character group of F×p is a cyclic group of order p−1 by Theorem
3.2. It is useful in many situations to extend a character to all of Fp. By setting 1(0) = 1 and
χ(0) = 0 for all non-trivial χ, we extend the homomorphism property as a function from Fp to
C. To relate the theory of characters to solutions of equations over Fp, it is useful to first deal
with solutions of monomials modulo p. Let N(xn = a) denote the number of solutions in Fp.
Observe that in order to have a character of F×p , we must require that it be a (p− 1)st root of
unity, so if n|p− 1, we obtain the following lemma:

Lemma 4.3. If n|p−1, then N(xn = a) =
∑

χ χ(a), where the sum is taken over all characters
χ of order dividing n.

Proof: By Theorem 4.2, the character group of F×p is generated by some χ(g) = e2πi/p−1, where

g is a generator of F×p . Since n|p − 1, we can define a new character γ(g) = (e2πi/p−1)
p−1
n =

e2πi/n, which generates the nth roots of unity. Note that there are n distinct powers of γ since
χ has order p− 1. Hence there are n characters of order dividing n.
We now consider the case where a = 0. Then xn = 0 (mod p) has the unique solution x = 0,
which implies that N(xn = 0) = 1. Note that the trivial character is of order dividing n, and
so the sum in the statement contains a 1. As all non-trivial characters send zero to zero, this
gives us the claim.
Now suppose xn = a (mod p) is solvable. Then there are n unique solutions to this equation.
Let x0 be a particular solution. Since all characters in the sum have order dividing n, χ(a) =
χ(xn0 ) = χ(x0)

n = 1 for all χ. Thus the sum is just n as well.
Now suppose xn = a (mod p) is not solvable. Then N(xn = a) = 0. Letting g and γ be as
above with a = gk, and, since xn = a is not solvable, k - n. Hence γ(a) = γ(g)k 6= 1. Letting
S =

∑
χ χ(a) be the sum in the statement, we have that

γ(a)S = S =⇒ (γ(a)− 1)S = 0 =⇒ S = 0

since γ permutes the characters of F×p , which gives us the claim. �

4.2. Gauss Sums.
Gauss sums will be important to understanding the number of points on a projective hyper-
surfaces. In fact, we will be able to write the number of solutions of a hypersurface based off
Jacobi sums, which for the most part can be computed using Gauss sums (which are easier to

compute in general). To define the Gauss sum, let ζ = e2πi/p.

Definition 4.2. Let F be a finite field, χ a character on F , and α ∈ F . Define the Gauss sum
of χ to be

gα(χ) =
∑
a∈F

χ(a)ζTrF/Fp (αa).
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Note that it is simple to compute gα(χ) when χ = 1, the trivial character. If α = 0, then
g0(χ) = q since χ(a) = 1 for all a ∈ F and e0 = 1. If α 6= 0, then
We will be more interested in the case where χ is not trivial. Notice that for such χ and α 6= 0,

χ(α)gα(χ) =
∑
a∈F

χ(αa)ζTrF/Fp (αa) = g1(χ),

so we have the relation that gα(χ) = χ(α−1)g1(χ). If α = 0, then the sum is 0 as χ(0) = 0 for
nontrivial χ. We will let g(χ) = g1(χ) throughout the rest of this paper for simplicity. Gauss
sums can become quite difficult to compute as the character varies, but we always know its
magnitude. Ireland and Rosen give the wonderful proof of the following lemma:

Lemma 4.4. Suppose χ 6= 1 and α 6= 0. Then |gα(χ)| = √q.

Proof: Since gα(χ) = χ(α−1)g(χ), it is enough to show that |g(χ)| = √q. To show the equality,
we will evaluate the sum ∑

a∈F
ga(χ)ga(χ).

By our above observations, we have for a ∈ F×: ga(χ) = χ(a−1)g(χ), so

ga(χ)ga(χ) = χ(a−1)g(χ)χ(a)g(χ) = |g(χ)|2.

For a = 0 the Gauss sum is zero, so taking the sum over all a gives (q − 1)|g(χ)|2.
Directly computing the sum, we see that

ga(χ)ga(χ) =
∑
s∈F

χ(s)ζTrF/Fp (sa)
∑
t∈F×

χ(t−1)ζTrF/Fp (ta) =
∑

s,t∈F×

χ(st−1)ζTrF/Fp ((s−t)a).

Let S denote the last sum above. Since Tr is an additive function, we can pull out the a and
get

S =
∑

s,t∈F×

χ(st−1)(ζTrF/Fp (s−t))a.

Since Tr : F → Fp, ζTrF/Fp (s−t) is just a power of ζ, and hence remains a p-th root of unity.
Summing over a gives ∑

a∈F
S =

∑
s,t∈F×

χ(st−1)
∑
a∈F

(ζTrF/Fp (s−t))a.

If s − t 6= 0, then this inner sum is, or else it is |F | = q. In this case, χ(st−1) = 1, and so we
just get q for all pairs (s, t) ∈ F× × F× such that s = t. Since t is completely determined by

s, there are q − 1 ways this can happen, and so
∑

a∈F ga(χ)ga(χ) = (q − 1)q. Comparing both
ways we evaluated the sum, we get that

(q − 1)|g(χ)|2 = (q − 1)q,

and hence |g(χ)| = √q. �

4.3. Jacobi Sums.
At first sight, the Jacobi sum does not appear to give much information or intuition on its
usefulness in computing the number of points. To deal with this, we motivate this definition
with an example. Consider the equation

xn + yn = 1.



ZETA FUNCTION FOR FERMAT HYPERSURFACES 9

When n|p − 1, we may ask for N(xn + yn = 1) using characters of order dividing n. Notice
that we can look at the equation a + b = 1 and ask for N(xn = a) and N(yn = b), giving us
N(xn = a)N(yn = b) possible solutions to the equation. Hence

N(xn + yn = 1) =
∑
a+b=1

N(xn = a)N(yn = b)

=
∑
a+b=1

(∑
χ

χ(a)
)(∑

λ

λ(b)
)

=
∑
χ,λ

( ∑
a+b=1

χ(a)λ(b)
)
,

where the sum is over all characters χ, λ of order dividing n. This inner sum is what we will
be studying and will be the Jacobi sum. It is more interesting to immediately generalize this
notion to multiple characters.

Definition 4.3. Let χ1, ..., χn be characters on a finite field F . The Jacobi sum is defined to
be

J(χ1, ..., χn) =
∑

∑
ai=1

χ1(a1) · · · χn(an).

We also define the sum that represents Fermat hypersurfaces, the focus of this paper, as:

Ĵ(χ1, ..., χn) =
∑

∑
ai=0

χ1(a1) · · · χn(an).

We first make some quick observations that allow us to compute or even simplify the Jacobi sum.

Proposition 4.5. (a) If χi = 1 for all i, then J(χ1, ..., χn) = Ĵ(χ1, ..., χn) = qn−1.

(b) If at least one but not all χi = 1, then J(χ1, ..., χn) = Ĵ(χ1, ..., χn) = 0.
(c) If χn 6= 1, then

Ĵ(χ1, ..., χn) =

{
0, if χ1 · · · χn 6= 1

χn(−1)(q − 1)J(χ1, ..., χn−1), otherwise

Proof: (a) Note that there are qn−1 solutions to the equation an = −a1 − ... − an−1 by
varying a1, ..., an−1 ∈ F . Since all χi are trivial, we are just adding 1 qn−1-many times,

and so Ĵ(χ1, ..., χn) = qn−1. We can do the same thing for J(χ1, ..., χn) since the equation
an = 1− a1 − ...− an−1 also has qn−1 solutions.
(b) Without loss of generality, we can assume that χ1 is nontrivial and χn is trivial. Since we
can write an = −a1− ...−an−1 as in (a) and χn(an) = 1 for all an, we can drop the constriction
and get

Ĵ(χ1, ..., χn) =
∑

a1,...,an−1

χ1(a1)···χn−1(an−1) =
(∑

a1

χ1(a1)
) ∑
a2,...,an−1

χ2(a2)···χn−1(an−1) = 0

by Proposition 4.1. This works the same way for J(χ1, ..., χn) as in (a).
(c) If χn 6= 1, then χn(0) = 0, and so we can write

Ĵ(χ1, ..., χn) =
∑
an 6=0

( ∑
a1+...+an−1=−an

χ1(a1) · · ·χn−1(an−1)
)
χn(an).

Since an 6= 0 in this sum, we can write ai = −anbi for some bi and all i = 1, ..., n − 1. This
inner sum then becomes∑
b1+...+bn−1=1

χ1(−anb1) · · ·χn−1(−anbn−1) =
∑

b1+...+bn−1=1

χ1 · · ·χn−1(−an)χ1(b1) · · ·χn−1(bn−1).
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We are thus left with

Ĵ(χ1, ...χn) = χn(−1)
∑
an 6=0

χ1 · · ·χn(an)J(χ1, ..., χn−1).

By Proposition 4.1, this sum will be zero if χ1 · · ·χn is not trivial, and χn(−1)(q−1)J(χ1, ..., χn−1)
if it is trivial, giving us the claim. �

This proposition makes computing the number of solutions easier. For example, consider the
hypersurface defined by the polynomial x2 + y2 = 1 over Fp for any odd prime p (so 2|p− 1).
The character of order 2 is the Legendre symbol ( ·p). Hence N(x2 = a) = 1 + (ap ) Then

N(x2 + y2 = 1) =
∑
a+b=1

N(x2 = a)N(y2 = b) =
∑
a+b=1

(
1 +

(a
p

)
+
( b
p

)
+
(a
p

)( b
p

))
= J(1,1) + J(χ,1) + J(1, χ) + J(χ, χ).

By the proposition, the first term is p, the middle two terms are 0, so all that is left is to figure
out what J(χ, χ) is. In this case, χ = χ−1, and we prove a more general result:

Proposition 4.6. J(χ, χ−1) = −χ(−1).

Proof: By definition,

J(χ, χ−1) =
∑
a+b=1

χ(a)χ−1(b).

From a+ b = 1, we have ab−1 = a
1−a where a 6= 1. Thus χ takes all values a

1−a in F except for

the value −1 (if a
1−a = x, then a = x

1+x for x 6= −1), and hence

J(χ, χ−1) = −χ(−1).

�
This proposition gives us that N(x2 + y2) = p−χ(−1) = p− (−1p ). Elementary number theory

classifies this Legendre symbol for all odd primes p as(−1

p

)
=

{
1, p ≡ 1 (mod 4)

−1, p ≡ 3 (mod 4).

Thus N(x2 + y2 = 1) = p− 1 if p ≡ 1 (mod 4) and N(x2 + y2 = 1) = p+ 1 if p ≡ 3 (mod 4).
We now show the relation between Gauss sums and Jacobi sums.

Proposition 4.7. (a) Let χ1, ..., χn and χ1 · · · χn be nontrivial characters. Then

g(χ1) · · · g(χn) = J(χ1, ..., χn)g(χ1 · · ·χn).

Proof: (a)

g(χ1) · · · g(χn) =
(∑

t1

χ1(t1)ζ
t1
)
· · ·
(∑

tn

χn(tn)ζtn
)

=
∑
k

( ∑
∑
ti=k

χ1(t1) · · ·χn(tn)
)
ζk.

If k = 0, then Proposition 4.5(c) implies that the inner sum is 0. When k 6= 0, substitution
gives us that ∑

∑
ti=k

χ1(t1) · · ·χn(tn) = χ1χ2 · · ·χn(k)J(χ1, ..., χn).

Thus

g(χ1) · · · g(χn) =
∑
k 6=0

χ1χ2 · · ·χn(k)ζkJ(χ1, ..., χn) = J(χ1, ..., χn)g(χ1 · · ·χn). �
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4.4. The equation y = a1x
m
1 + ...+ anx

m
n and the Main Theorem.

Theorem 4.8. Let F be a field with q elements. If q ≡ 1 (mod m), then the number of points
on hypersurface defined by the equation a0x

m
0 + ...+ anx

m
n = 0 is

N = qn−1 + qn−2 + ...+ 1 + (q − 1)−1
∑

χ0,...,χn

χ0(a
−1
0 ) · · · χn(a−1n )Ĵ(χ0, ..., χn),

where χi 6= 1 and χmi = 1 (i.e. the nontrivial characters of order dividing m), and χ0 · · ·χn = 1.
In this case,

1

q − 1
Ĵ(χ0, ..., χn) =

1

q
g(χ0) · · · g(χn).

Proof: First observe that

N(a0x
m
0 + ...+ anx

m
n = 0) =

∑
∑
aiti=0

N(xm0 = t0) · · ·N(xmn = tn).

Since m|q − 1, for each i,

N(xmi = ti) =
∑
χ

χ(ti)

where the sum ranges over all characters of order dividing m. Hence

N(a0x
m
0 + ...+ anx

m
n = 0) =

∑
χ0,...,χn

∑
∑
aiti=0

χ0(t0) · · ·χn(tn).

By the substitution si = aiti, we can reduce this to∑
χ0,...,χn

Ĵ(χ0, ..., χn).

From using the results in Proposition 4.5, we see that we can eliminate the summands where
at least one, but not all, χi are trivial. We could also take all χi to be trivial to get qn. Hence

N(a0x
m
0 + ...+ anx

m
n = 0) = qn +

∑
χ0,...,χn

Ĵ(χ0, ..., χn),

where the sum is over the characters given in the theorem. Note that these are points on affine
An+1 space. Hence if we want projective zeros, the number of zeros is given by

N(a0x
m
0 + ...+ anx

m
n = 0)− 1

q − 1
=
qn − 1

q − 1
+ (q − 1)−1

∑
χ0,...,χn

Ĵ(χ0, ..., χn)

and the first claim follows by geometric sums. The last claim follows from propositions 4.5(c)
and 4.7. �

Note that in the case of Fermat hypersurfaces, ai = 1 for all i. So to calculate the number
of points on the hypersurface defined by xm0 + ...+ xmn = 0 is given by

N = qn−1 + qn−2 + ...+ 1 + (q − 1)−1
∑

χ0,...,χn

J(χ0, ..., χn).

Thus our problem boils down to being able to compute these Jacobi sums or Gauss sums.
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5. Zeta Function on Projective Hypersurfaces

We now introduce the zeta function for projective hypersurfaces.

5.1. Zeta Function.
Let F be a finite field of order q, and let Fs/F be an extension of degree s (containing qs

elements). Fix a homogeneous polynomial f ∈ F [x0, ..., xn] and define Ns to be the number
of points in Hf (Fs). Note that since any two finite fields of the same order are isomorphic, it
follows that Ns is independent on the choice of Fs, hence Ns only depends on s. If we consider
the power series

∞∑
s=1

Nst
s,

then we may regard it as an analytic function with radius convergence q−n (since we have

Ns ≤ qs(n+1)−1
qs−1 ≤ (n+ 1)qsn), or simply as formal power series.

Definition 5.1. The zeta function of the hypersurface defined by f ∈ F [x0, ..., xn] is given by

Zf (t) = exp
( ∞∑
s=1

Nst
s

s

)
.

One of the most interesting questions to ask about the zeta function of a hypersurface is whether
it is rational, and if so, in what cases. First observe that Zf (0) = e0 = 1. If the zeta function

were rational with Zf (t) = P (t)
Q(t) for some polynomials P and Q, then P (0) = Q(0) = 1, so we

may assume that the constant term of P and Q are both 1. By scaling, we can thus write

Zf (t) =

∏n
i=1(1− zit)∏m
j=1(1− wjt)

, zi, wj ∈ C.

Writing the zeta function in this way allows us to prove the following important theorem:

Theorem 5.1. Zf (t) is rational if and only if there are zi, wj in C such that

Ns =
∑
j

wsj −
∑
i

zsi .

Proof: If Zf (t) is rational, then we can write

Zf (t) =

∏n
i=1(1− zit)∏m
j=1(1− wjt)

.

Then

log(Zf (t)) =
n∑
i=1

log(1− zit)−
m∑
i=1

log(1− wjt).

By taking the derivative of both sides,

Z ′f (t)

Zf (t)
=

n∑
i=1

−zi
1− zit

−
m∑
i=1

−wj
1− wjt

.

Using geometric series, we may write this is
n∑
i=1

( ∞∑
s=0

−zs+1
i ts

)
−

m∑
j=1

( ∞∑
s=0

−ws+1
j ts

)
.
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Multiplying by t on both sides of our equation thus gives

t
Z ′f (t)

Zf (t)
=

∞∑
s=1

( m∑
j=1

wsj −
n∑
i=1

zsi

)
ts.

On the other hand, by definition,

Zf (t) = exp
( ∞∑
s=1

Nst
s

s

)
.

By taking log and the derivative, we also get that

t
Z ′f (t)

Zf (t)
=

∞∑
s=1

Nst
s.

Thus by looking at the coefficients, we see that

Ns =
m∑
j=1

wsj −
n∑
i=1

zsi .

Conversely, suppose such zi, wj in C exist. Then we can write

Zf (t) = exp
( ∞∑
s=1

(
∑
wsj −

∑
zsi )t

s

s

)
= exp

(( m∑
j=1

( ∞∑
s=1

(wjt)
s

s

)
−

n∑
i=1

( ∞∑
s=1

(zit)
s

s

))
.

Because of the identity

− log(1− wjt) =

∞∑
s=1

(wjt)
s

s

for all j, and similarly for z′is,

Zf (t) = exp
( n∑
i=1

log(1− zit)−
m∑
j=1

log(1− wjt)
)

=

∏n
i=1(1− zit)∏m
j=1(1− wjt)

.

So Zf (t) is rational. �

We now want to show that the zeta function has integral coefficients. To do this, we require
the notion of a prime divisor. Let V ⊆ An(F ) be an algebraic set and α = (a1, ..., an) ∈ V .
Let Fd be the smallest extension of F that contains all ai, we say that α is of degree d. Then

αq = (aq1, ..., a
q
n) is also in V as F is fixed by Frobenius. Hence α, αq, ..., αq

d−1
are all distinct

points in V , for if αq
i

= αq
j

for some 1 ≤ i < j < d, then αq
j−i

= 1, and so α ∈ Fj−i and
0 < j − i < d, which contradicts the minimality of d.

Definition 5.2. We call the set p = {α, αq, ..., αqd−1} a prime divisor on V .

Lemma 5.2. Ns =
∑

d|s d ·#(prime divisors of degree d).

Proof: For any α ∈ V , we can find a d such that α ∈ Fd, and so the prime divisors partition
V . From field theory, we know that α ∈ Fd for some d|s, as Fd ⊆ Fs if and only if d|s. There
are d elements in every prime divisor of degree d, and the equality follows. �
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Proposition 5.3. ZV (t) =
∏

p
1

1−tdeg p .

Proof: Let kn be the number of prime divisors of degree n. Then∏
p

1

1− tdeg p
=
∞∏
n=1

( 1

1− tn
)kn

.

Taking the logarithmic derivative would give us

Z ′V (t)

ZV (t)
=
∞∑
n=1

knnt
n−1

1− tn
,

and so

t
Z ′V (t)

ZV (t)
=

∞∑
n=1

knnt
n

1− tn
=

∞∑
n=1

knn
( ∞∑
m=0

tmn
)
.

The coefficient of ts after dividing by t is
∞∑
s=1

(∑
d|s

dkd

)
ts−1 =

∞∑
s=1

Nst
s−1

by Lemma 5.2. By integrating, we get

logZV (t) =
∞∑
s=1

Ns

s
ts,

and so ∏
p

1

1− tdeg p
= ZV (t) = exp

( ∞∑
s=1

Ns

s
ts
)
.

�

6. The Weil Conjectures

All of the results we have seen are a part of much greater phenomena: the Weil Conjectures.
Let F be a finite field of order q and f ∈ F [x0, x1, ..., xn] is homogenous of degree d. Assume
that f is non-singular, i.e. that all partial derivatives of f share no common projective zeros
in any algebraic extension of F (in algebraic geometry, we can work with a smooth projective
variety). Then for the hypersurface defined by f = 0, B. Dwork and P. Deligne proved the
following conjectures:

(1) (Rationality) There is a polynomial P such that

Zf (t) =
P (t)(−1)

n

(1− t)(1− qt) · · · (1− qn−1t)
.

(2) We can factor P (t) = (1− z1t) · · · (1− zmt) and the map z → qn−1

a is a bijection of the
reciprocal roots zi.

(3) (Riemann Hypothesis) |zi| = q(n−1)/2.

(4) deg P (t) = d−1[(d− 1)n+1 + (−1)n+1(d− 1)].
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These proofs of these conjectures are far beyond the scope of this paper; one would need
knowledge of Etalé cohomology. A good reference is Robin Hartshorne’s Algebraic Geometry
[1].

7. Hasse-Davenport Relation

The Hasse-Davenport relation will be one of the main tools in computing the zeta function as
it allows us to compute Gauss sums in extensions of F based solely on characters of F . Let
Fs/F be an extension of degree s. Let χ be a character of F and χ′ = χ ◦NFs/F . Notice that
χ′ is a character as both the norm function and χ are multiplicative.

Theorem 7.1. −g(χ′) = (−g(χ))s.

To prove this, we will need a few observations and a lemma. The Gauss sum of a character

χ over F is g(χ) =
∑

a∈F χ(a)ζTrF/Fp (a). To write the Gauss sum of a character χ′ in Fs, we
may use the above observation that χ′ = χ◦NFs/F . By transitivity of the trace given in section
3, we have that TrFs/Fp

= TrF/Fp
◦TrFs/F . Hence we can already see the relationship given by

the theorem. Also note that ζa+b = ζaζb. We can then create a function as follows: for monic
f = tn − an−1tn−1 + ...+ (−1)na0, define

F (f) = χ(a0)ζ
an−1 .

Notice that if g = tm− bm1t
m−1 + ...+ (−1)mb0, then fg = tm+n− (an−1 + bm−1)t

m+n−1 + ...+
(−1)m+na0b0, and so

F (fg) = χ(a0b0)ζ
an−1+bm−1 = χ(a0)ζ

an−1χ(b0)ζ
bm−1 = F (f)F (g),

i.e. F is multiplicative. From the basic properties of trace and norm and field theory, we
automatically get the following lemma:

Lemma 7.2. Let mα,F (t) be the irreducible polynomial of α ∈ Fs over F . Then

F (mα,F )s/d = χ′(α)ζTrFs/Fp (α).

Proof of Theorem 6.1: First observe the relation∑
f∈F [x]:f is monic

F (f)tdeg f =
∏

f∈F [x]:f is monic and irreducible

(1−F (f)tdeg f )−1.

To see this, expand the terms on the right into a geometric sum. Since F [x] is a unique
factorization domain, any monic polynomial can be written uniquely as a product of monic
irreducible polynomials. Hence every monic polynomial will appear as a product of these
geometric sums, and this only happens once.
we now partition the sum by degrees:∑

f∈F [x]:f is monic

F (f)tdeg f =

∞∑
s=0

( ∑
deg f=s

F (f)
)
ts.

When s = 0, the only monic polynomial is f = 1, and so we need F (1) = 1 for the above
equality to hold.
When s = 1, the irreducible polynomials of degree 1 are of the form x− a for a ∈ F . Hence∑

deg f=1

F (f) =
∑
a∈F

F (x− a) =
∑
a∈F

χ(a)ζTrF/Fp (a) = g(χ)
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For s ≥ 2, notice that if we take an arbitrary monic polynomial f = xs − as−1xs−1 + ... + a0,
then F (f) will take all possible values of F for as−1 and a0 while letting the other coefficients
vary. Thus ∑

deg f=s

F (f) =
( ∑
as−1∈F

χ(as−1)
)
· · · = 0.

This implies that ∏
f∈F [x]:f is monic and irreducible

(1−F (f)tdeg f )−1 = 1 + g(χ)t.

Taking the logarithmic derivative and multiplying by a factor of t gives∑
f∈F [x]:f is monic and irreducible

F (f)deg ftdeg f

1−F (f)tdeg f
=

g(χ)t

1 + g(χ)t
.

Writing both sides in a geometric series gives:∑
f

( ∞∑
k=1

F (f)deg fktk
)

=
∞∑
s=1

(−1)s−1g(χ)sts.

Looking at the coefficient of ts on each side gives

(−1)s−1g(χ)s =
∑

deg f |s

(deg f)F (f)s/deg f )

Note that by Lemma 6.2 and taking every root of each polynomial, it follows that the right
side is g(χ′), which establishes the theorem. �
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8. The Number of Solutions to xn + yn + zn = 0

Let Hn denote the (projective) hypersurface defined by the equation xn+ yn+ zn = 0 over the
finite field F .

8.1. The case n = 1.
The case where n = 1 is simple. For the equation x+y+z = 0, we can simply write z = −x−y
and vary all x, y ∈ F . So if |F | = q, then there are q2 solutions. More generally, for any Fermat
hypersurface x1 + ...+ xm = 0 with m > 1, we could write xm = −x1 − ...− xm−1 to get that
there are qm−1 solutions.

8.2. The case n = 2.
For this case we generalize to xn1 + ...+ xnm = 0 for m even. Then by Theorem 4.9, the number
of points over F is given by

qn−2 + qn−1 + ...+ q + 1 + (q − 1)−1
∑

χ1,...,χm

Ĵ(χ1, ..., χm)

where χi are the nontrivial characters of order 2 such that χ1 · · ·χm = 1. This only holds when
every character is the character of order 2, call it χ. Then

N1 = qn−2 + qn−1 + ...+ q + 1 + χ(−1)
1

q
g(χ)m.

But g(χ)2 = χ(−1)q, and hence

N1 = qn−2 + qn−1 + ...+ q + 1 + χ(−1)
m
2
+1qm/2−1.

We focus on the case where -1 is a square or m
2 + 1 is even. Then by the Hasse-Davenport

relation,

Ns = qs(n−2) + ...+ qs + 1 + qs(
m
2
−1).

Hence

Z(t) = exp(
∞∑
s=1

Nst
s

s
) = exp

( ∞∑
s=1

(qn−2t)s

s
+ ...+

(qt)s

s
+
ts

s
+

(qm/2−1t)s

s

)
= (1− qn−2t)−1 · · · (1− qt)−1(1− t)−1(1− qm/2−1t)−1.

In the other case, we can see that χs(−1) = 1 for the even extensions s and χs(−1) = −1 in
the odd degree extensions. Hence

Z(t) = (1− qn−2t)−1 · · · (1− qt)−1(1− t)−1(1 + qm/2−1t)−1.

In the case of x2 + y2 + z2 = 0, we can see from the proof of the main theorem that N(x2 +
y2 + z2 = 0) = q + 1 since there is no way to take an odd product of nontrivial characters of
order 2 to obtain the trivial character. This also shows that for general for odd m > 2, we
obtain qm−2 + qm−1 + ...+ q + 1 solutions.

8.3. The case n = 3.
Let χ be a character of order 3. By Theorem 4.9,

N1 = q + 1 +
1

q
g(χ)3 +

1

q
g(χ2)3.

Let π = J(χ, χ). One can inductively use the relation in Proposition 4.7(a) with all χi = χ to
deduce the following lemma:

Lemma 8.1. g(χ)3 = qπ.
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This lemma implies that N1 = q + 1 + π + π. By the Hasse-Davenport relation, we can also
extend this to all extensions Fs as:

Ns = qs + 1− (−π)s − (−π)s.

Then

Z(t) = exp
( ∞∑
s=1

Ns

s
ts
)

= exp
( ∞∑
s=1

qs

s
ts
)

exp
( ∞∑
s=1

ts

s

)
exp

(
−
∞∑
s=1

(−π)s

s
ts
)

exp
(
−
∞∑
s=1

(−π)s

s
ts
)

=
(1 + πt)(1 + πt)

(1− qt)(1− t)
.

8.4. The case of n > 3.
It is less obvious on how to proceed when n > 3. We can still use the main theorem to deduce
that the number of points over F is given by

q + 1 +
∑

χ1,...,χm

Ĵ(χ1, ..., χm)

where these χi are nontrivial characters of order n over F that satisfy χ1 · · ·χm = 1. However,
unlike the previous cases, there is no real way of knowing what the characters over arbitrary F
look like. There also is not an obvious relation that simplifies the Gauss sums as in the n = 3
case.

It should be emphasized again here that these results come from the fact that n|q − 1 so
that we can define characters over F . If this relation does not hold, then this is either of no
use, or we need a way to reduce the problem to something that we can apply the theory to.
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