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Abstract

Algebraic topology allows us to use tools from abstract algebra and directly ap-
ply them for analyzing topological spaces. This paper aims to discuss the literature
and provide a satisfying explanation for the fundamentals of persistent homology
(PH). Simplicial complexes and homology are discussed as building blocks for ac-
cessing and using the concept of PH that was developed in 2005 by Zomorodian et
al., and Carlsson et al,. PH helps to find higher-dimensional topological features
(i.e., n dimensional holes) that persist through the filtration process. By imple-
menting some of the techniques discussed, one of the objectives of the paper is to
provide a case study on the California school market.
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“Shape is the global realization of local constraints.”

— Dr. Anthony Bak

1 Introduction

In the recent decade, the notion of Big Data and its opportunities and challenges has been
of particular interest to specialists within and beyond the field of data science. The main
challenge in systematically extracting useful information from big data is not the size of
the data per se, but rather its complexity. Datasets representing molecule structure as well
as texts and images that are potentially corrupted by noise of incompleteness or have high
dimensional components; pose significant complications for conventional methodologies
of analysis. Thus, alternative organising principles are required for capturing significant
features of data.

“Data has a shape and that shape has a meaning.” [1] For example in economics,
regression models are used to approximate the shape of the data points using the simplest
one dimensional figure such as the line. Basic regressions are built on the principle of
least square distance that attempts to fit a line by minimizing the least square distances
as depicted in figure 1 below. Such modeling principles give a basic understanding of
which variables vary to which way and also allows to make predictions. However, not all
the data can be fit with a line. Algebraic methods are particularly unreliable when used
for exploring noisy datasets. The simplicity of algebraic methods limits their ability in
capturing singular behavior. In this paper, I deviate from capturing individual shapes to
modeling: capturing all shapes at once. First, I aim to present satisfying explanation of
fundamental tools that are unique for analyzing the shape of the data. I then go onto to
discuss their direct application in studying robust features of California school market.

(a) Each point on the graph represents various developing coun-
tries such as Tanzania, Albania, Uganda, etc. X - axis shows the
average logarithmic amount of liquid assets in the household,
while Y - axis represents the percentage of self - employment
observed in country. The straight line passing in between the
points is the line of best fit according to the least square regres-
sion where the algorithms simply aims to minimize the sum of
square distances of R shown as a dotted line. Panel data used
for scattering the graph is obtained from various World Bank
household surveys.

Figure 1: Simple Example of Modeling

The set of tools discussed in this paper stem from topological algebra which stud-
ies measuring and representing of shapes. Topological algebra itself is a branch of pure
mathematics which was developed in the 1700s. The three main principles of topology
that allow for extracting information about shapes are: coordinate freeness, invariance
under small deformations and compressed representation of shapes. Topologists like to
use the example of transforming a “donut” (i.e., torus) into a cup with a handle as an
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Figure 2: It can be seen how the torus in the top left hand corner of the figure is deformed
into a cup with a handle. Boundaries are preserved as our initial dough-nut has a hole similar
to the handle of the cup represented on the top left corner of the figure. Retrieved: https:

//cems.riken.jp/en/laboratory/qmtrt

example that demonstrates what topology studies. In figure figure 2 below, one can see
how the transformation is done while stretching the torus but keeping the boundaries
identical. In topology stretching/diminishing objects when keeping structural measures
results in a more fundamental knowledge about the shape.

To learn about the shape of a data set, first it needs to be reduced in a comprehen-
sive way. Simplicial complexes, which will be described in chapter (2) approximate the
structure of the data and allow numerical computation of its features. Simplices further
expand on representing data in the form of points, line segments, triangles and other
n - dimensional realizations of simplices. In applied work, metric data sets are simply
transformed into simplicial complexes by building filtered complex on top of the data.

Moreover, homology, a well established qualitative principle in abstract algebra, serves
the purpose of decomposing higher dimensional features of simplices into its subsequent
lower dimensional versions. Homology aims to identify the relationship between n and
n − 1 dimensional components of simplices. This is done through finding boundary
homomorphisms of the chain groups by discarding n - dimensional cycles that are also
boundaries of the simplicial complex. Such cycles, which are not boundaries, are called

(a) Looking at the torus discussed above, we can notice
that it has two types of holes. One dimensional hole which
is represented as a 2-cycle is represented with a red con-
tour. Besides slicing the torus through its x - axis, one can
try slicing it using the y - axis which will allow to iden-
tify another type of hole. Furthermore, the blue contour
describes 2 dimensional hole which are voids. Retrieved
from: https: // www. wikiwand. com/ en/ Torus# /Topology

Figure 3: Torus an example of a figure containing both 1 and 2 dimensional holes
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(a) noise: std=0.2
(b) noise: std=0.8

Figure 4: Uniformly Distributed Point Cloud Data Set (Randomly chosen 1000 points) of a
Circle with Varying Noise

to be “holes”. For example, 1-dimensional holes such as loops and 2 dimensional holes
such as voids are depicted in Figure 1.2 below.

The artificially created grid of point clouds drawn in figure 4 above both resemble
the structure of a one dimensional hole as the points are accumulated around a circle,
drawn with a green contour. The figure 4a varies from the figure 4b with the noise that
is introduced in the set of data. Unlike conventional methods of analysis, the tools and
techniques that are discussed in this paper are not prone to failure when data is colluded
with such noise. Another example of a 2 dimensional hole is depicted in figure 5 where
points are accumulated on the outline of a void with a radius of one.

Originally, persistent homology and particularly the persistence algorithm was intro-
duced in 2002 with a strong emphasis on the data analysis aspect of it [16]. Three years
later, in 2005 paper, Zomorodian et al. and Carlson et al. published a paper that was
devoted to the ore mathematical framework of persistent homology. Particularly the pa-
per aimed to show that the algorithm works not only for Z ⊕ Z field coefficent but for
any field of coefficients. PH discussed in Chapter (4), is the study of inclusive subsets of
simplicial complexes that are increasing through filtration. This will give insight on the
structure of n-dimensional holes along different sublevel sets of filtration. Interpretation
tools, such as barcodes and persistent diagrams, reveal the structural complexity of the
holes with its corresponding persistence intervals. Exploring such holes would allow us
to see which features are long lasting (i.e., persistent) and which features are temporary
shocks in the data.

Figure 5: Uniformally distributed Point Cloud Data of 1000 points

4
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Topological data analysis and particularly the novel tool of persistent homology has
been a topic of interest to a miscellaneous set of scientific fields such as Data Science,
Statistics, Machine Learning and more. Generally, it can be divided into two types of
developments: analysing forms of complicated point cloud data and further developments
in the concept itself. Point cloud data, or its equivalent input types, can range from
weighted network data, wherein the location of vertices in space do not have meaning, to
types of data where vertices express their spatial location of units of interest in a given
system.

The paper is organised as follows. In chapter (2), and (3), I introduce the required
fundamental background in topology. Firstly, I present the concept of simplical represen-
tation of data. Secondly, I introduce homology in the simplicial representation of data in
chapter (3). Chapter (4) will serve as an introduction to the tool of persistent homology
which is based on applying homology to the simplices that are produced in increasing
sequence of spaces. In chapter (5), I will implement techniques to provide a PH case
study on the California school market.

2 Simplicial Complexes

2.1 Simplex

2.1.1 Vectors

On Euclidean space, two distinct points determine a line segment. The subset of points
between the vertices v0 and v1 can be expressed by λ0v0 + λ1v1 such that {λ0 + λ1 =
1, λ0 ≥ 0, λ1 ≥ 1}. Similarly a point P which is either on the edges of a triangle or inside
the triangle, can be denoted as a convex combination of the three non-colinear vertices
v0, v1, and v2. Here, point P can be written as P = λ0v0 + λ1v1 + λ2v2 such that the
barycentric coordinates λ1, λ2, λ3 impose two conditions:

∑2
i=0 λ

i = 1 and λi ≥ 0 where
i = 0, 1, 2. These two examples motivate definitions of a-independent and a-dependent
vectors which is required for defining simplices.

Definition 2.1. Affinely Independent (a-independent) Vectors
Given (n+ 1) set of vectors v0, . . . , vn ∈ Rn where n > 1 are called a-independent of one
another if {v1 − v0, . . . ,vn − vn−1} are linearly independent.

Definition 2.2. Affinely dependent (a-dependent) Vectors
Conversely, given v0 . . . vn ∈ Rn, vector v is called affinely dependent if ∃λi such that

λ0 + · · ·+ λn = 1 and v = λ0v0 + · · ·+ λ1v1

Two arbitrary points are a-independent iff they are not the same. Similarly, three points
are a-independent iff they are not colinear. The definition about the independence of the
set of vectors are required for defining simplices. In order to mark arbitrary points of an
object one can utilize its barycentric coordinates and the boundary points.

5
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Figure 6: Examples of N -dimensional Simplices

2.1.2 Closed Simplex

Definition 2.3. Closed Simplex
A closed simplex is defined by

en = e(v0, . . . , vn) = {
n∑
i=1

λivi : λi ≥ 0,
n∑
i=1

λi = 1}

where v0, . . . , vn are a set of a-independent vectors and λi ≥ 0 are the barycentric coor-
dinates of the points.

The points v0, v1, . . . , vn are called the vertices of simplex en and the number n signifies
the dimension of the simplex. In the case where λi > 0 for all i the points are in
the interior of the simplex. Expanding on the definition above, an open simplex is
composed exclusively of the interior points of the simplex. If at least one of the barycentric
coordinates is equal to 0 the points of interest lie on the boundary of the simplex. For
example, if one of the barycentric coordinates of a 2-simplex is equal to 0 then the points
of analysis formulate one of the three edges of the triangle.

Below, are some examples of simplices: 0-simplex constitutes a vertex which is a
point itself; The line segment (1-simplex) results from connecting two 0-simplices; The
2-simplex is a triangle produced by three non-colinear points or equivalently three linearly
independent 1-simplices; Finally, the 3-simplex is a tetrahedron built from a union of four
0-simplices and four 2-simplices.

Any simplex that is spanned by the subset of v0, . . . vn is called a face of the simplex.

Definition 2.4. Face
The face of a simplex en = (v0, . . . ,vn) is a simplex created from a subset of vertices {v0,
. . . ,vn}. If ef is a face then we write en > ef or ef < en. If the subset does not include
all of the vertices of the simplex, the face is called a proper face.

Remark. (On Boundaries)
It is important to note that faces are simplices as well. Faces and other lower dimensional
elements such as vertices, edges, triangles are connected together to create higher dimen-
sional structures. To better understand simplices realized in Rn, one needs to understand
their composite structure. For example, the boundaries of the 3-simplex is composed of
four 2-simplices; while the boundary of the 2-simplex itself is created by three 1-simplices.
Thus, boundaries of the simplex can be described as the union of all the proper faces
ef of the simplex en. Simplices are inductively developed by using building blocks such
as faces and lower dimensional topological structures. In an n-simplex there are

(
n+1
f+1

)
,

f -dimensional faces. Moreover, there is a total of
∑n

f=−1

(
n+1
f+1

)
= 2n+1 faces. Working

6
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with simplices may seem to be computationally heavy. However, simplicial world pro-
vides a medium where complex objects can be easily decomposed into their simpler, lower
dimensional topological counterparts.

2.2 Simplicial Complexes

2.2.1 Introducing Simplicial Complexes

A simplicial complex is a set |K| together with its subset of simplices. Simplicial com-
plexes approximate the structure of the data and allow calculation of its properties.

Definition 2.5. Simplicial Complex
Simplicial complex K is a finite set of simplices in Rn that satisfy the following two
properties

(i) If e ∈ K and f is a face of e (f < e) then f ∈ K
(ii) If e ∈ K and f ∈ K then e ∩ f = ∅ or is a face of e and f .

Condition (i) suggests that every face of a simplex of K is also in K. Whereas, condi-
tion (ii) implies that the inteersection of any two simplices of K is a face of both simplices.
For example, a 2-simplex with all of its faces is a simplicial complex. The dimension of
a simplicial complex determines its highest dimensional simplex. The underlying space
called the carrier of a simplicial complex can geometrically be realized by a-independent
points in Rn. At the same time, these points must be elements of at least one sim-
plex in K. Simplicial complex, referred as a complex, is the union of low-dimensional
n-simplices such as vertices, edges, triangles, etc. Later in the paper I introduce the
concept of simplicial homology that focuses on the homological features of a given data.

2.2.2 Examples of Simplicial Complexes

The union of simplices however, are imposed by two restricting conditions 2.2.1(i) and
2.2.1(ii). The latter one is called an intersection condition between two simplices. In
the diagram below one can see simplices of dimensions ranging from zero to two coming
together to form a simplicial complex K. One can check that both of the conditions
2.2.1(i) and 2.2.1(ii) hold true in figure 7.

Figure 7: Example of a simplicial Complex

7
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Simplical complexes can be formed in many differnnt ways but generally, violations in
forming simplicial complexes are caused by the failure to satisfy the intersection condition.
In figures 8 (a), (b), (c) some classical violations are drawn out. In all three examples
an intersection of an arbitrary face with a simplex does not result in an empty set or
a common face of the simplices in the complex. Figure 8(a) represents a shared partial
edge which is not a face of either of the two simplices. In figure 8(a and b), one can
easily notice that there are no common faces emerging from the intersection of the two
simplices. The 2-simplex in figure 8(c) is slicing through a 3-simplex which is a violation
as of itself.

Figure 8: Frequent Violations of Simplicial Complex Construction

2.2.3 Abstract Simplicial Complexes

This section looks into simplicial complexes from a combinatorial perspective rather than
discuss its geometric interpretations. Simplicial complexes gain their underlying geomet-
ric information when they are realized in Rn. However geometric realizations of simplicial
complexes are not necessary to study topology of complexes. In the 2.1.2 simplicial com-
plex is described as a set with the collection of all its subsets (power set). Abstract
simplicial complex I defines the union of the underlying subsets of K.

Definition 2.6. Abstract simplicial Complex
Given a finite set σ, an abstract simplicial complex on σ is a collection T of subsets of σ
such that

(i) If v ∈ σ, then {v} ∈ T
(ii) if τ ∈ T and e ⊂ τ , then e ∈ T .

The elements of T are called simplices and if |τ | = k + 1, then τ is called a k-simplex.

The structural units of an abstract simplicial complex (ASC) are families of sets that
satisfy the conditions 2.2.2(i) and 2.2.2(ii). Mappings between simplices can be used to
present the equivalence set of K without realizing it in Rn. V ertex scheme diagram of
K in figure 9b is constructed based on figure 9a by removing simplices and retaining
their sets of vertices. The dimension of an ASC is defined by its highest dimensional
n−simplex ∈ T that also belongs to the complex. Thus, one can extrapolate information
about high dimensional simplicial complexes without its geometric construction in high
dimensional space.

Two abstract simplicial complexes I1, I2 are called isomorphic if there is a bijection
g : I1 −→ I2 such that (σ0, ..σn) ∈ T1 if and only if (g(σ0), ...g(σn)) ∈ T2. Two simplicial
complexes are isomorphic if the abstract realizations of those corresponding complexes
are isomorphic as well. Abstract graphs composed of points as vertices and edges as line
segments between unordered pairs of vertices can be realized in R3. One can show that
any four points of twisted cubic are not in the same plane and consequently no three

8
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(a) Abstract simplicial Complex I (b) Diagram Representing simplicial Complex of Part a)
Where Vertices describe the Subsets of n-simplices

Figure 9: Abstract simplicial Complex is Described Using a Family of Sets

points can be on the same line. With a similar concept of proof, i will show that abstract
simplicial complexes can be realized in R2n+1.

Theorem 1. Geometric Realization
Every n-dimensional simplicial complex can be realized in R2n+1

Proof. First I need to show that any n-dimensional simplicial complex embeds linearly
in R2n+1. Let us define the mapping f(K(vi)) ⇒ R2n+1 of n-dimensional complex K be
the injection of vertices to the points in R2n+1, specifically in a way that no hyperplane
contains more than 2n+ 1 points. Let v1, . . . , vi be vertices. Pick distinct (t1, . . . , ti) ∈ R
and define f(vi) = (ti, t

2
i , . . . , t

2n+1
i ). Our goal here is to show that f is an embedding.

Any arbitrary simplex of K has no more than n+1 vertices sent to a-independent points.
Let e1 ∈ K be a simplex with dim = n1 and e2 ∈ K be a simplex with dim = n2 where
e1 6= e2. We have n1 + n2 ≤ 2n + 2. Thus, the points in e1 ∪ e2 are a-independent
and unique. This follows from the fact that we require any 2n + 2 of the points to
be a-independent. To check this condition, we need to show that the Vandermonde’s
determinant does not vanish.

δ =

∣∣∣∣∣∣∣∣∣
x1 − x2 x2

1 − x2
2 · · · x2n+1

1 − x2n+1
2

x1 − x3 x2
1 − x2

3 · · · x2n+1
1 − x2n+1

3
...

...
. . .

...
x1 − x2n+2 x2

1 − x2
2n+2 · · · x2n+1

1 − x2n+1
2n+2

∣∣∣∣∣∣∣∣∣
The determinant δ vanishes if and only if the x’s are not distinct. As a result, f(l) and
f(m) are disjoint which means that f is an embedding for K.

2.2.4 Relations Between simplicial Complexes

Up until now, I used simplices as fundamental units for constructing simplicial complexes.
However there are many more interesting subdivisions of simplicial complexes, namely:
subcomplexes. Sub-collection of |K| the contains all faces of the elements defines the
subcomplex.

Definition 2.7. simplicial Subcomplex
A subset L of simplicial complex K, that contains all of its faces, is called a subcomplex
if

∀e ∈ L and ∀f ∈ K (such that f < e)⇒ f ∈ L

9
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A subcomplex is called proper when L 6= K. To gain a better understanding of
subcomplexes, let’s take two arbitrary subcomplexes of K: K1 and K2. Now, let us
explore the union and intersection of these two sets. Firstly, union of empty simplices is
a simplicial face in an empty space that is often denoted to have dim = −1. Secondly, the
union of all the faces of an n-dimensional simplex e is itself a simplicial complex which
is denoted by ē.

In figure 6, it can be seen that the 3-simplex is composed of 4 triangles. These triangles
are the faces of e3, that for the simplicial complex. They are not random faces but are
proper faces of e3 with dimensions equal to n− 1. The union of all proper faces of en is
the boundary of the n-simplex which is a simplicial complex denoted by Ṡ. Alternatively,
each face of a simplex that is also an n− 1-simplex is called a boundary face. The union
of the boundary faces will give us the boundary of the whole simplex. Decomposing
simplices into their lower dimensional components would be of paramount importance
when defining boundary homomorphism in Chapter (3) and introducing the concept of
homology.

Proposition 2.1. If subcomplexes K1 and K2 of simplicial complex K are in Rn then
(i) K1 ∪K2 is a subcomplex of K
(ii) K1 ∩K2 is a subcomplex of K.

Proof. a) An abstract simplicial complex (discussed in the next section) is a subcomplex
of K where every f ∈ I belongs to the complex. If K1 and K2 are subcomplexes then K1

and K2 are abstract simplicial complexes. To prove that K1 ∪K2 is a subcomplex let us
show that all faces of K1 ∪K2 belong to the simplicial complex. Case(1): f is a face of
K1 ⊆ K1 ∪K2 ⇒ f ∈ K. Case(2): f is a face of K2 ⊆ K1 ∪K2 ⇒ f ∈ K. Case(3): f is
a face of K1 ∩K2 ⊆ K1 ∪K2 ⇒ f < K1 or f < K2 which brings us back to case(1) and
case(2). It is evident that every face of K1 ∪K2 belongs to simplicial complex K. Thus,
K1 ∪K2 is a subcomplex of simplicial complex K.

b) Let f be a face of K1 ∩K2 ⇒ f is a face of K1 and f is a face of K2. Thus, f
is in simplicial complex K. Since any face f of K1 ∩K2 belongs to a simplicial complex
then K1 ∩K2 is a subcomplex of K.

2.2.5 Useful Terms for Simplicial Complex Construction

In this section we will discuss some basic definitions of typical subsets of simplicial com-
plexes. Various scientific fields such as network architecture widely adopted the medium
of working with simplicial complexes. The medium makes it easier to analyse local neigh-
bourhoods of elements in the network.

Definition 2.8. Closure: Closure of a subset, Φ ⊆ K, denoted Cl(Φ)) is the smallest
subcomplex which contains Φ:

Cl(Φ) = {φ ∈ K : e ≤ f for f ∈ Φ}

The closure of a simplicial complex can be deduced by walking through the faces of
simplices in Φ and filtering out the smallest subcomplex that is common. Definition of
the closure is closely related to a concept known as r-skeletion of simplicial complex. For
r ≤ 0, the r-skeleton, denoted by Kr, is a subcomplex of K that is defined as the set of
simplices in K with dimension n ≤ r. For example, 0-skeleton is simply the subset of
simplices of K which has dimenison n ≤ 0. The only such subset is the set of 0-simplices
which are the vertices of the simplicial complex. The other two important substructures
of complexes are stars and links.

10
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(a) Star (b) Link

Figure 10: Examples of a Star and a Link of simplicial Complex K

Definition 2.9. Star: Given a simplicial complex K with simplices Φ ⊆ K, the star
st(Φ) is defined as

st(Φ) = {e ∈ K : f ≤ e for some f ∈ Φ}

Definition 2.10. Links: Given a simplicial complex K with simplices Φ ⊆ K, the link
lk(Φ) is defined as

lk(Φ) = {e ∈ Cl(st(Φ))) : e ∩ Φ = ∅}

The star of a vertex P in figure 10a is the face ABCDE with its interior of the
simplicial complex. It is called a closed star. The link of the same simplicial complex is
the closure of st(P ) or equivalently the intersection between closed and open stars of p.
In figure 10b, the lk(P ) is the union of line segments AB, BC, CD, DE, EA that are
painted in red.

It is important to note that open stars, such as the interior of ABCDE, do not always
form a simplicial complex. However, closed stars and links result in a proper subcomplex.

3 Homology

3.1 Oriented simplices

By the definition of simplices one can choose different permutations of vertices to con-
struct the simplex. 1-simplex can be defined either e1 = (v0v1) or equivalently e1 = (v1v0).
In this section I define the orientation of simplices which is important to further discuss
boundary homomorphism in homology groups. Oriented simplices are simplices that have
an orientation assigned to them. Thus, the vertices of an oriented simplex have a fixed
order.

Definition 3.1. Oriented Simplex: The orientation of a given simplex en = (v0...vn) is
a particular ordering of its vertices. An oriented simplex en is the n-simplex en with a
fixed orientation.

11
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(a) Clockwise Orientation (b) Counterclockwise Orientation

Figure 11: Examples of Two Oppositely Oriented 3-simplices

Clearly any 0-simplex has only one orientation but any other n-simplex has (n + 1)!
ordered simplices which corresponds to the number of permutations of vertices v0, . . . , vn.
Two distinct orderings of simplices define the same orientation if and only if they differ
by even permutations. In other words, two simplices νn = (v0...vn) and µn = (vπ(0)...vπ(n)

have the same orientation νn = µn if and only if π is even. For example, en when n > 0
has only two distinct orientations which are denoted by en and −en. Although, the 2-
simplex (v0, v1, v2) can have (2 + 1)! = 6 distinct orderings, orientation of the simplex
can be described either by (v0v1v2) or (v1v0v2). Six orientations fall into two categories:
clockwise and counterclockwise orientations.

The figures 11a and 11b, drawn above represent two different orientations that a
3-simplex can have. In 11a the clockwise oriented 3-simplex can be written out as
e3 = (v3, v2, v1, v4). Contrarily, 11b describes counterclockwise orientation of the 3-
simplex −e3 = (v3, v1, v2, v4). The same way, oriented simplicial complexes, are sim-
plicial complexes where every simplex has its own unique orientation. When discussing
chain complexes and boundary homomorphsim, we will give more rigorous definition of
oriented simplicical complexes. More information on the orientation can be found [1].
Later, I will introduce an appropriate convention that will allow us to work with bound-
aries of simplices regardless of having elements with conflicting orientation within the
same complex.

3.2 Chain Groups Boundary Homomorphism

3.2.1 Groups

Since 19-th centuary mathematicians realized that a lot of problems require fundamentally
similar/symmetric solutions which can be generalized into groups of problems. Within
those groups, one can derive various subsets such as graded/ungraded rings, fields that
are defined under certain operations. Creating this environment may simplify the initial
question by breaking it down into smaller problems.

Definition 3.2. Group
A set G is a group if its elements satisfy the conditions listed below

(1) G is closed under binary operation
(2) All elements of G have their inverse in G
(3) Operations defined under G are associative

12
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(4) There is an identity element in G

A particular type of groups, called abelian groups extend the definition of groups by
imposing one more addition condition on the set. Abelian groups, modeled on integers
Z are groups that are powered by commutative property. Based on the 4 conditions
mentioned in 3.2.1, we exclude many examples such as the group of symmetries (i.e. if
a, b ∈ G we cannot assume that a + b = b + a). Thus, groups are called abelian if
a ∗ b = b ∗ a for all a, b ∈ G.

Definition 3.3. Abelian Groups
Groups are called abelian if the underlying operation of the group is commutative.

Basic understanding of groups would allow us to talk about chain complexes which
are created upon free abelian groups. However, more information can be found in [2].

Chain groups are commutative free abelian groups that append an integer coefficient
to the elements that form an n-simplex. Chain groups appear in every dimension of
simplicial complex K.

Definition 3.4. m-chain
Let K be the oriented simplicial complex composed of oriented m-simplices denoted by
θ1, ..., θn where n is the number of m-simplices. The m-chain group C(k) is the free
abelian group on the set θ1, ..., θn. Elements of the set are called m-chains and can be
written as

∑
m λm ∗ θm where λm ∈ Z and θm ∈ K

Chain groups carry natural abelian group structure. If cm, cn ∈ C(K) then we define
(cm + cn)(θ) = (cm(θ) + cn(θ)) The concept of homology aims to identify the relationship
between n and n− 1 dimensional components of simplices. Identifying homology groups
allows for the study of the relationship of two consecutive chain groups. The idea of
boundary homomorphism allows decomposition of these higher dimensional chain groups
into its subsequent lower dimensional versions.

In examples above, the n dimensional simplex (v0...vn) is composed of various n −
1-dimensional simplices. Similarly, for the boundary of an n-dimenional simplex is a
(n − 1) dimensional chain. To compute the homology groups of a simplex, one needs
to identify the chain groups C(k). However, one is interested in simplicial complex K
where particular orientations of v1 and v2 may not be coherently consistent with the
orientation of the rest of the complex. Thus, faces of the simplex cannot be simply added
to get the boundary. The reason is that one should account for the orientation of the
different components of the complex. If the line segment v1v2 /∈ K then it will not result
in a 1-chain v1v2 when computing the group representing boundaries. The algebraically
equivalent orientation of v1v2 is denoted by −v2v1. Thus the boundary of the 2-simplex
can be written as d(2− simplex) = (v0v1 − v2v1 + v2v0).

Last paragraph motivates the convention, according to which the boundary of oriented
simplex is the (n− 1) chain denoted by

∑
i (−1)i[v0, ...v̂i...vn] where the hat on vi means

that the particular vertex is missing. The −1 in the beginning controls for the overall
orientation of the simplex depending on odd or even permutations of its elements. Below,
I give the rigorous definition of boundary homomorphism based on the convention and
the discussion of the boundary operator above.

Definition 3.5. Boundary Homomorphism
The boundary operator dp : Ck −→ Ck−1 is a homomorphism that is defined on chain c

13
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as
dp(ep) =

∑
i

(−1)i ep | [v0, ...v̂i...vp]

where v̂i is the omitted simplex and ep | [v0, ...v̂i...vp] denotes the simplex ep with vertices
(v0, v1, · · · , vp).

It is important to see that the right side of the equation describes k − 1-chain group.
The reason is that every element of the summation is mapped to n − 1-dimensional
simplex. Alternatively, the boundary homomorphism dp : Ck → Ck−1 can be described
as dp(

∑
λmep) =

∑
λmdp(ep) where m ∈ [0, n]. Such a representation is very similar

to operations performed in linear algebra. Elements of the groups can be imagined as
vectors. However, contrary to linear algebraic mathematics coefficient, λ must be an
integer.

(a) Each edge in the figure on the right side has its own bound-
aries described by a pair of vertices. I.e., d(a) = V 2 − V 1,
d(b) = V 3−V 2, d(c) = V 1−V 3 and d(d) = V 1−V 3). looking
at definition 3.2.4 The boundary homomorphsim d : C1 → C2

can be written as d(λ1a+λ2b+λ3c+λ4d) = λ1d(a)+λ2d(b)+
λ3d(c)+λ4d(d) = λ1(V 2−V 1)+λ2(V 3−V 2)+λ3(V 1−V 3)+
λ4(V 1−V 3) = V 1(λ3+λ4−λ1)+V 2(λ1−λ2)+V 3(λ2−λ3−λ4)
It is also interesting to note that d(a + b + c) = d(a) + d(b) +
d(c) = (V 2−V 1)+(V 3−V 2)+(V 1−V 3) = 0 and d(a+b+d) =
d(a) + d(b) + d(d) = (V 2 − V 1) + (V 3 − V 2) + (V 1 − V 3) = 0.
This finding is true for all cycles. When discussing homology
groups we will generalize cycles as closures whose boundaries
are equal to zero.

Figure 12: Simple Example of Boundary Calculations

Definition 3.6. Augmentation
The augmentation η : C0(K)→ Z is the homomorphism defined such that η(

∑
λmep) =∑

λm

The sequence of such group homomorphisms can be described as

...→ C2(K)
d2−→ C1(K)

d1−→ C0(K)
η−→ Z→ 0

which is called augmented chain complex of K. There is a clear pattern which suggests
that the result of boundary operator acting on a boundary operator is trivial. It means
that d2 = d ◦ d = dp ◦ dp−1 ≡ 0

Theorem 2. The sequence Cp(K)
dn−→ Cp−1(K)

dn−1−−−→ Cp−2(K) is trivial, meaning the
composition is equal to zero.

Proof. We have that

dp(ep) =
∑
i

(−1)i ep | [v0, ...v̂i...vp]

14
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then dp−1dp(ep) =
∑

i(−1)i dp−1(v0, ...v̂i...vp) =
∑
i<j

(−1)i(−1)j−1ep | [v0, ...v̂i...v̂j...vp] +

+
∑
i>j

(−1)i(−1)jep | [v0, ...v̂j...v̂i...vp] = −
∑
i<j

(−1)i(−1)jep | [v0, ...v̂i...v̂j...vp] +

+
∑
i>j

(−1)i(−1)jep | [v0, ...v̂j...v̂i...vp] ≡ 0

Finally, singular chain complex of an arbitrary topological space is a chain complex
where dp is the boundary map.

3.3 Homology Groups

Definition 3.7. p-cycles
Ker dp are the p-cycles which are denoted by Zp: Zp(K) = ker(dp : Cp → Cp−1).

Definition 3.8. p-boundaries
Im dp+1 are the p-boundaries which denoted by Bp :, Bp(K) = Im(dp+1 : CP+1 → Cp)

Theorem 3.2.1 suggests that Im(dp+1) ⊂ Ker(dp) ⊂ Cp(K). This, allows to define
p-th homology group of the augmented chain complex as a quotientent group Hp(K) =
Zp(K)/Bp(K). Homology group Hp is a finitely generated abelian group. The rank of
these groups measures the number of p-dimensional cycles in a given simplicial complex
K. More generally p-th homology group can be thought as a group of p-cycles of K that
are not boundaries.

0-th homology group H0(K), where p = 0 describes the connected components of
a simplicial complex. In this case Z0(K) are cycles that are a linear combination of
0-simplices in K. Moreover, boundaries Bp(K) are a linear combinations of 0-simplices
that are in the same connected component. As a consequence, cycles modulo boundaries
are the free abelian group of connected components.

First homology group, where p = 1 examines cycles which are the linear combination
of closed surfaces composed of 1-simplices. Boundaries on the other hand are a linear

combination of cycles in K that leap 2-simplices. Correspondingly, when C2(K)
d2−→

C1(K)
d1−→ C0(K) then H1(K) = Ker d1/Im d2 = Z1/B1 describes the free abelian group

of independent loops. In the example of torus discussed in the introduction we encounter
2 different types of holes that result in H1(T ) = Z⊕Z. Describing cycles and boundaries
is much more complicated in cases of p ≥ 2. The theorem below, on the sequence of
homology groups, makes it easier to compute higher dimensional homology groups.

Theorem 3. If K1, ..., Kn ∈ K are connected components of simplicial complex K then
Hm(K) ∼= Hm(K1)⊕ ...⊕Hm(Kp)

Proof. I want to show that the decomposition of the homology groups holds for both the
p-cycles and p-boundaries. Let Xm(K) represent the group of m-chains of K. Xn(Ki) is a
subgroup of Xn(K). Furthermore it can be written as Xm(K) = Xm(K1)⊕ ...⊕Xm(Kp).
Let the image of f on the m-chains be Bm(Ki) = f(Xm+1(Ki) then Bm(K) = Bm(K1)⊕
... ⊕ Bm(Kp). Let Zm(Ki) = ker f ∩ Xm(Ki) then Zm(Ki) = Zm(K1) ⊕ ... ⊕ Zm(KP )
Thus,

Zm(K)

Bm(K)
=
Zm(K1)

Bm(K1)
⊕ ...⊕ Zm(Kp)

Bm(Kp)
⇐⇒ Hm(K) ∼= Hm(K1)⊕ ...⊕Hm(Kp)
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In the example below I present two distinct ways of computing homology groups of a
S1 ∪ S1 (figure eight) and a S2 (a sphere.) Unlike the first one, the second example uses
reduction algorithm to identify generators (the basis of cycles) using boundary operations.
Note that curves are topologically equivalent to straight lines. In case of a circle, one
can include three 0-dimensional simplices on the contour and also add 1-dimensional line
segments. As a result, under affine transformations in Rn the circle can be replaced by
its topologically homeomorphic triangle.

3.3.1 Examples of Computing Homology Groups

In figure 13a, one can see that in the sequence of 0 → C1
d2−→ C0

d1−→ 0: C0 is generated
by a single cell of vertex v. C1 is generated by edges of e1 and e2. The sequence can

be rewritten such as 0 → Z ⊕ Z
d2−→ Z

d1−→ 0. Additionally, Im(d1) = Im(d2) = d(e1) =
d(e2) = v − v = 0, while Ker(d0) = C0 = Z and Ker(d1) = C1 = Z⊕ Z. Thus,

H0(S1 v S2) =
Ker(d0)

Im(d1)
= Z H1(S1 v S2) =

Ker(d1)

Im(d2)
= Z⊕ Z

and Hp(S1 v S2) = 0 ∀p ≥ 2 as there are no other higher dimensional generators.
For the two dimensional sphere in 13b first I triangulate the object to its equivalent

tetrahedron (Stock’s Theorem). In particular, the 3-simplex is composed of
vertices: {V 1}, {V 2}, {V 3}, {V 4}
line segments {V 1, V 2}, {V 1, V 3}, {V 1, V 4}, {V 2, V 3}, {V 3, V 4}, {V 4, V 2}
triangles: {V 1, V 2, V 4}, {V 1, V 2, V 3}, {V 1, V 3, V 4}, {V 2, V 3, V 4}.

Boundary operators of d1 can be represented by forming a matrix that describes pairwise
vertices of the 1-simplices which are in C1.

d1 =


1 1 1 0 0 0
1 0 0 1 0 1
0 1 0 1 1 0
1 0 1 0 1 1


The matrix has 4 basis which are the vertices and the rank(d1) = 3. It follows that
0-th homology group H0(S2) = Z. To identify first homology group of a two dimensional
sphere, I decompose the triangles into 1-simplices to identify independent generators.

d2 =


1 1 0 0
0 1 1 0
1 0 1 0
0 1 0 1
0 0 1 1
1 0 0 1


The rank of the above mentioned matrix is three and the rank kernel of d1 is equal to
three as well. Consequently, H1(S2) = 0. In addition, S2 composed of four triangles
lacks d3 generators despite the 2-cycles by itself. As a result H2(S2) = Z. All higher
dimensional (p ≥ 3) homology groups of a 2-dimensional sphere are empty.
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(a) The Figure-8
(b) The Sphere

Figure 13: Distinct Ways of Computing Homology Groups

4 Persistent Homology

This chapter is devoted to developing the notion of persistent homology which is based on
computing homology groups over inductive set of simplicial complexes. The construction
called a filtered complex is an increasing sequence of simplicial complexes such that:
E0 ⊂ E1 ⊂ E2 ⊂ E3.... In the example given below, the filtration process takes six
different periods starting with three 0-simplices (at t = 1) that results into K built from
three 2-simplices and two 1-simplices (at t = 4.) More rigorously such an inductive
system is E0

0 ⊂ E1
0 ⊂ E2

0 ⊂ ... ⊂ E5
0 where the superscript indicates the time during the

filtration process and the subscript suggests the dimension of simplices we are dealing
with.

Definition 4.1. The degree of a simplex li is denoted by deg(li) is equal to the time
when li enters the filtration process.

The end goal of persistent homology as a tool is to identify higher dimensional ho-
mological features that persist over the duration of the filtration process. Here, I create
simplicial complex by either adding n-dimensional n-simplices to pre-existent vertices
or by introducing previously non-existent components. In the nested sequence of com-
plexes that are triangulated by definition, I am interested in boundaries and cycles that
“emerge” or get “destroyed.”

4.1 Theoretical Background

Besides identifying homology groups in each period, by computing persistent homology,
one can learn how long particular homology groups persisted over the filtration period.
Instead of computing cycles mod boundaries, PH requires computing cycles mod bound-
aries emerging in the future dimensions of filtration such that H i,p

n = Zi
n/B

i+p
n ∩ Zi

n. It
is important to note the boundaries should be restricted to the components that only
existed in the point of outlook regardless of the new structures that came up as a result
of the filtration. Thus, cycles mod boundaries at time i + n are intersected with cycles
at time t = i.
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Figure 14: Filtered Complex

Persistent homology’s objective is to compute the i-th homology with the coefficient
in field F . Inclusion maps between spaces E0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ E4 indicate the maps
between homology groups: Hi(E

0) → Hi(E
1) → Hi(E

2) → Hi(E
3) → Hi(E

4). Thus,
homology groups are just vector spaces equipped with linear maps between them. In the
diagram below I switch boundary maps to illustrate the vertical direction. The filtration
process which is the second dimension of interest is depicted on the horizontal direction
going from the left to the right of the page.

d3��
d3��

d3��
C0

2

d2
��

f0 // C1
2

d2
��

f1 // C2
2

d2
��

f2 // · · ·

C0
1

d1
��

f0 // C1
1

d1
��

f1 // C2
1

d1
��

f2 // · · ·

C0
0

d0
��

f0 // C1
0

d0
��

f1 // C2
0

d0
��

f2 // · · ·

0 0 0

Definition 4.2. The persistence module M is a group of graded modules over a graded
ring with homomorphisms θi : M i →M i+1.

Zomorodian et al. and Carlson et al. show that there is an equivalence relation
between persistent and F [t] modules. Let the elements of the the set of F [t] module be
hi(E

0), hi(E
1), hi(E

2), hi(E
3), hi(E

4) then the list of these elements is in the direct sum
of vector spaces Hi(E

0) ⊕ Hi(E
1) ⊕ Hi(E

2) ⊕ Hi(E
3) ⊕ Hi(E

4). Moreover, the action
required by F [t] module can be given by t ∗ (h0, h1, h2, . . .) = (0, g0(h0), g1(h1), . . .). As
a result variable t acting on hn allows to encode the maps between the vector spaces.
Furthermore, finitely generated graded F [t] module can be decomposed into

Hk =

(
n⊕
i=1

αi∑
F [t]

)
⊕

(
n⊕
i=1

γj∑
F [t]/(tkj)

)
The grading part in the equation is signified by the

∑αi and the
∑γj which allow for

the shifts of subsequent spaces. Torsion free part correspond to the first component in
the equation that goes forever in persistent barcode (barcodes are introduced in the next
section.) However, the second part of the equation describes the finite bars where cycles
that started at some point during the filtration and were destroyed further in the filtration
process.
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4.2 Computing PH

In this section, I show that persistence algorithm can be thought of as Gaussian elimi-
nation. First, I list generators and relators across rows and columns of matrices. Let us
write out M1 where {d, e, c, b, a} are the generators of H1 and {ba, ac, ad, de, eb, ce, db}
are the relators of H1

M1 =


ba ac ad de eb ae ce db

d 0 0 t t 0 0 0 t3

e 0 0 0 t t t t2 0
c 0 t 0 0 0 0 t3 0
b t 0 0 0 t2 0 0 t2

a t t t2 0 0 t2 0 0


M is a graded module over a polynomial ring. We call polynomials homogeneous if all
terms have the same degree. For example, (t)a + (t)b − (1)ab ∈ C1 is a homogeneous
polynomial where all terms are from the same filtration period. Grading the module
allows us to represent the filtration period through degrees of polynomials < t >. Let us
define {li} to be homogeneous basis for Ck and {l̂i} be homogeneous basis for Ck−1. Then

deg (l̂i) + deg Ml(i, j) = deg (li)

where Ml(i, j) is the element of (l, j) entry of the matrix. Looking at the matrix,
Ml(a, ad) = t2 because deg (a) = 0 and deg (ad) = 2. It ends up that deg Ml(a, ad) =
2−0 = 2. Now we can conduct column operations to find kernel and image of the matrix.
Below we use the Basis Change lemma that can be found in the original paper [3].

Step1 Reduce M i
l to obtain Zi

k

M̄1 =


db ce ac ba z1 z2 z3 z4

d t3 0 0 0 0 0 0 0
e 0 t2 0 0 0 0 0 0
c 0 t3 t 0 0 0 0 0
b t2 0 0 t 0 0 0 0
a 0 0 t t 0 0 0 0


where z1, z2, and z3 are homogeneous basis such that z1 = ad−de−ae, z2 = de−ad−ae,
z3 = eb− (t)ba− ae, and z4 = ae− de− ad. Now I can compute B0 = ColSpace M1 =<
t3d+ t2b, t2e+ t3c, tc+ ta, tb+ ta > and Z1 = nullSpaceM1 =< ad− de− ae, de− ad−
ae, eb− (t)ba− ae, ae− de− ad. > From here on H0 = Z1/B0 can be easily computed
but for H1 = Z1/B1 I need column space of M2.

Step2 Reduce M i+p
l+1 to obtain Bi+p

k

M2 =



ace
db 0
ce 1
ae t
eb 0
de 0
ad 0
ac t2

ba 0


⇒ M̄2



ace
ba 0
ad 0
de 0
eb 0
db 0
ac 0
ae 0
z 1


19



MA-TH Rev. A

where z = ce− (t)ae− t2(ac). It is evident that B1 =< 1 ∗ z >=< ce− (t)ae− t2(ac) >
while Ker(d2) = 0.

Step 3 Compute any H i,p
n . In this example H0,b

1 and H0,b
1 are both 0 because in

filtration we only get cycles starting at t = 2. To compute H2,p
1 first I need to compute

= Z2
1/B

2+p
1 ∩ Z2

1 which is equal to Z/2Z as deg(z) = 2. The cycle abe persists for 2
periods when p = 0, 1, 2. Thus, H2,p

1 = (B2+p
1 ∩ Z2

1) = Z2 for p = 3. Using this
algorithm I can compute the rest of H i,p

n which would result in various P − intervals that
can be demonstrated on a barcode. In the original paper, one may find a pseudocode for
computing p-intervals [3]. When the ground ring is a field one can use the correspondence
to compute the infinite barcode.

4.3 Sparse Computation of PH

Let us take a look at homology groups that arise during filtration process at t = 0 and get
destroyed at t = 2. The objective is to compute H0,2

0 = Z0
0/(B

2
0 ∩ Z0

0) when Z0
0 = a, b, c,

and B2
0 = ac, ab, be, da, de. Intersection of B2

0 and Z0
0 emphasizes on the cycles that came

from t = 0 and were destroyed 2 units later. This allows to restrict the sample into pairs
of cycles that were created at a particular period of filtration and destroyed further in
the later periods. Cycles such as de, da, be are moded out because their components d, e
arise at t = 1. a + c = 0 and a + b = 0 suggests that H0,2

0 results in two components.
The vertices a, b, c which are cycles themselves are destroyed when line segments ac and
ab are introduced. Such a representation of cycles and boundaries allows us to observe
cycles that are created at i = 0 and vanished p-units later.

It is intuitive that introduction of new simplices in the filtration can either create
new cycles or destroy them. Let positive simplex signify the components whose entrance
creates a cycle. Let a negative simplex represent components whose introduction into
the filtration destroys a cycle. In computing homology, generators are denoted as cycles
and relators as boundary mappings. In persistent homology, generators are the positive
simplices whose entrance results in a creation of cycles. On the other hand, relators arise
when there is a negative simplex that destroys the generators.

Marking positive and negative simplices through the whole filtration process would
allow us to learn how long particular simplices “persisted” through filtration. The figure
below shows the sequence of components through the filtration process with the corre-
sponding + / − signs meaning positive simplex / negative simplex. The first yellow row
represents filtration process corresponding to the entrance of simplices of the second row.
The last row representing filtration value counts the number of processes happening dur-
ing the filtration. For example, a, b, and c are positive 0-simplices because these vertices
are cycles by themselves. Later on, in the the first filtration process there are multiple
positive and negative simplexs. Arbitrarily, first I list relators and then generators within
the same period. Thus, negative simplices ba and ac come before e, d positive simplices
on the same filtration level.

Figure 15: Sparse Data Structure Storage
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Ultimately I need to take these cycles and mod them out with the boundaries in future
periods according to persistence homology principles. For example ba destroys b and a
cycles but during the pairing process I will arbitrarily choose the latter one: a to pair it
with. Looking at the last row of the table, I pair:

{0, 3} {1, 9} {2, 4} {5, 8}. {11, 12}.

In the graph 16 one of the axis describes index (i) and the other one persistence (p). Here
I connect the pairs identified above in order to see how long it took until the generated
cycles were destroyed. The diagram 16 called barcode is a sequence of horizontal line
segments that represents the orderings of homology generators which persisted through
the filtration. The x-axis corresponds to the filtration value while the y-axis does not
have a meaning. Software functions when generating barcodes place the longer bars closer
to number line and shorter ones stacked above the long ones. The longer the intervals,
the more significant are the high dimensional features. Shorter intervals are interpreted
as small shocks which do not have a major effect.

Definition 4.3. The P -intervals are ordered pair of i, j where 0 ≤ i < j and j ∈ Z+{∞}

The P -intervals corresponding to the pairs above are

[a0, ba1] [b0, eb2] [c0, ac1] [e1, de2] [ce3, ace3]

The right triangles resemble entrance of a cycle where the dotted line points out the fil-
tration value of when its destroyed. Now, one can compute betti numbers which indicates
the number of n-dimensional generators at a particular level of filtration denoted by Bi,j

n .
For example B2,4

0 = 1 because the diagram shows that there is one 0-dimensional cycle
that enters at filtration value 2 and is destroyed 2 steps later at filtration value equal
to 4. Going over the mechanics of persistent homology is good way for visualizing the
process underlying PH.

Figure 16: Barcode

21



MA-TH Rev. A

5 Application on the US Schools Data

Researchers from various fields such as medicine, biology, image processing, and Re-
searchers from various fields such as medicine, biology, image processing, and statistics
adopted PH as a method for data processing. The input type of the data needs to be
converted to a point cloud for computing the PH algorithm. The points on the metric
space can represent an ally of data structures such as weighted networks, functions, or
multidimensional spreadsheet data. [6] Muthu Alagappan used data on NBA player per-
formance to cluster the players into multiple beans. The paper revealed that there are
actually 13 new playing positions/styles that were unknown before. Another paper, [7]
used high dimensional breast cancer data from participants and identified a new type of
cancer. The new type was not lethal and was the result of 7.5% of all kinds of breast
cancers. Furthermore, [8] uses brain network data (locations of ROI) and finds that peo-
ple who have ADHD tend to have more persistent brain network connections. My aim in
this paper, is to explore California private and public school data in order to find regions
that historically have suffered the most from a lack of educational resources. Also, I aim
to run different clustering algorithms to unveil whether there are any hidden topological
features for these schools.

5.1 Filtration

There are various methods of filtration that one can use to compute the persistent module.
The three main ones are called: Cech-complex filtration (runtime: 2O(N)) , Alpha-complex
filtration (runtime: NO([d/2])) (which are based on Nerve theorem), and lazy witness
filtration (runtime: (2O(|l|)). Lazy witness complex is used when the datasets are big big
enough and especially when it encompasses curves and surfaces in euclidean space [4].
There are many other filtration methods. However, they are derivatives of these three
methods mentioed above.

Lazy witness complex uses samples from data either randomly or by maxmin point
selection algorithm to compute the persistent module. In case of maxmin algorithm, the
system chooses initial random point cloud data. The rest of the point cloud enters the
filtration by maximizing the distance between the initial and randomly chosen vertices.
This can be useful when one works with big data. Re-sampling of the set assures that the
entrance of few components will not make sensitive changes to the outcome. Lazy witness
complex filtration method does not exist in the statistical packages I use. However, a
great deal of information can be found [6].

In the analysis of school data we use Vietoris-rips filtration which is a derivative of cech
filtration. Vietoris-rips complex R(x, ε) is composed of vertices X = (x1, . . . , xn) ∈ Rn

and epsilon balls with diameter d. When d the diameter of the epsilon balls is increasing
new components arise in the complex with a condition: include a and b in the R(X, ε)
when d(a, b) = ε such that a, b ∈ X. The picture in 18 below shows that as ε grew
larger while two of the balls intersected. As a result an edge needs to be drawn between
the two points. In figure 17, I create a randomly generated point cloud data in order to
demonstrate the filtration process. The point cloud is drawn within the geo-boundaries of
California. The generated data going through different steps of the filtration are depicted
in figure 19. On the left side of the figure the epsilon balls are drawn when ε is 0.3 while
on the right side I draw their corresponding 0 and 1 dimensional simplices.
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Figure 17: Randomly Generated Point Cloud Within California Boundaries

Figure 18: Example of Vietoris-Rips Filtration

Figure 19: Filtration Process on a Randomly Generated Point Cloud Within California Bound-
aries
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(a) Private Schools (b) Public Schools

Figure 20: Number of Schools Per Year

5.2 Data & Software Used

The main administrative data sources I use in this study is NCES (National Center for
Education Statistics.) NCES uses CCD (Common Core Data) and PSS (Private School
Universe Survey) to provide locations, population count and other basic information
about the private and public schools. The active school sample I use in my analysis
is composed of 219 private high schools and 1370 traditional public schools. The high
schools in my sample are defined to be schools serving students from grades 9 to 12.

Most of the data analysis is done in statistical software R. There are various topolog-
ical data analysis packages, however, we will concentrate on the main ones “TDA” and
“TDAstats”. These packages run on libraries “GUDHI” and “Dionysus” that are written
in C++.

When computing persistent homology the output of a fileration proccess has three
main components: betti number, R0, and R1. R0 represents the filtration value at which
the homological cycle appears and R1 is when the homological cycle in topology is de-
stroyed. The betti number refers to the dimension of the particular feature. The relative
dominance of the feature is defined by R1−R0

L
where L is the filtration period when the

complex becomes a single connected component. Smaller relative dominance means that
particular features are more of shocks rather than persistent features.

5.3 Results

I use point cloud data of public and private schools to run persistent homology algorithms
via Vietros Rips filtration. First, I employ the public and private school data to identify
the most persistent generators. These generators are going to be the most persistent
cycles on the map. There are two graphs we aim to generate, persistence diagrams and
the representative loop on the point cloud data.

The 21(a) is called persistence diagram where the x-axis represent the births and
the y-axis represent the deaths of the cycles. The black dots represent the 1-dimensional
cycles and the triangles mark the 2-dimensional loops. The triangles that are closer to the
identity line are considered to be shocks, shortly after the birth they get destroyed. The
shaded region is the 90% confidence band for our expected elements on the diagram. More
information about the algorithm used can be found in [9]. The most persistent 2-cycle
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Figure 21: Public Schools 1850-2020

generator was born when d = 0.2 and was knocked down at d = 0.49. The right side of
21 represents the loop of the most persistent generator. One can infer the circled region
to be secluded from wide access of schools. The area represents San Joaquin County
which includes cities like Stockton, Manteca, Tracey Morada, Lodi with an estimated
population of 700000. According to NCES, there are 668 (472 male and 196 female)
students while there are only three existing public schools registered in 2018-2019 school
year.

Similarly in 22 I create the persistent diagram conditional on California private schools
are active through the period from 1999 to 2015. One can see, the most persistent cycle
is represented by the black curves on the right side. There are a few 2-dimensional
cycles that are represented above the bootstrapped band. The most persistent cycle is
in northern California, where there are only a few private schools founded. This result is
consistent with the topmost 1-dimensional generator which is further from the identity
line on top. This is due to the fact that observed few private schools in the north are
further from the rest of the point cloud, which results in d overextending to connect the
components.

There has been a continuous discussion whether education should be privatized. The
question needs to account for a wide variety of factors including how a private school
in a region affects the composition of student body and their learning outcomes. I use
Wasserstein metric to unveil whether private schools locations in 1999 had more ties with
the public schools of the time. Or whether the private schools were effective at covering
the map of California and the locations are more closely related with the public schools
at later periods. Q-th Wasserstein distance between two persistent diagrams is defined
as

Wq(X, Y ) =

(
min
f :X→Y

(
∑
x∈X

||x− f(x)||q∞

)1/q

Information on its equivalent metric can be found in [10] where the authors discuss the
quality of the metric and its advantages. Entrance of new components in the persistent
diagram will not effect the metric much. Behind the equation there is a process of
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Figure 22: Private Schools 1851-1995

(a) The 1-dimensional barcode for private schools is repre-
sented in blue and 0-dimensional generators are colored in
red. The barcode confirms that most of the generators were
short-lived. However, as we go down closer to red we end up
identifying longer p-intervals. The longest one on the bot-
tom runs forever because after d gets big enough the whole
point cloud turns into one single generator. However, long
but not infinite lines indicate the secluded schools that were
in the northern region of California.

Figure 23: Barcode for Private Schools
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mapping the generators of one persistence to another and finding the minimal effort
needed to relocate the point cloud to match with another dataset. Wasserstain distance
between private and public schools that were open before 1995 is 0.21. However the metric
between private schools that opened before 1995 and public schools that opened up until
2020 is 0.29. It means that the grid created from private and public school locations in
1995 evolved greatly. As a result, one can observe a difference in the underlying structure
of the grids of private schools in the past and public schools of the day. Thus, there is a
possibility that private and public schools are founded in close relation with one another
when looking at the 2-dimensional cycles they create.

Private schools are different from one another and there is great heterogeneity when
looking at their characteristics. NCES data provides a wide range of characteristics that
describe the schools. The following parameters are included: population, enrollment,
teacher count, starting school grade, ending school grade, zip code foundation year. See
the correlation matrix below:

Figure 24: Correlation Matrix Private Schools

To better understand private schools, in the last step of our analysis, I use the char-
acteristics of our school to do hierarchical clustering. The cluster density tree algorithm
is based on [11]. If we assume V = (v1, . . . , v

n) ⊂ Rn is the observed dataset, the level
set of f is defined as Lf (α) = cl(v ∈ Rm : f(x) > α) . The density regions together at
different levels define the cluster tree. Collection of sets Lf (α) where T = Lf (α), α ≥ 0
is the α cluster tree.

I ran the clustering algorithm and, the result indicates that there are 7 relatively big
clusters that come up. One can suggest that private schools which are located next to
each other share a lot of characteristics. The only apparent cluster that is somewhat
separated is the one which is painted black. However, it is important to note that these
are the schools that were the first to open up in early 1900s.

5.4 Concluding Remarks

Persistent homology secures the purpose of analysing high dimensional complex data.
The type of data can vary significantly, it needs to be transformed into the form of point
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(a) Representative Clusters On The Map (b) α Cluster Tree

Figure 25: Private School Clustering

cloud data. Persistent homology allows access to the information about generators and
relators of cycles. Simplical homology in abstract algebra provides mathematical basis
for identifying these cycles using boundary maps. The output of persistent homology can
vary greatly from minute changes in data structure. In the future, it will be interesting to
explore persistent co-homology, which has similar roots in abstract algebra and provides
more stable output.

28



MA-TH Rev. A

References

[1] A. Hatcher, “Algebraic Topology: A First Course,” 2002

[2] Munkres, J. R. Elements of Algebraic Topology. Addison-Wesley, Reading, MA, 1984.

[3] A. Zomorodian and G. Carlsson, “Computing Persistent Homology,” 2004.

[4] N. Otter, M.A. Porter, U. Tillmann, P. Grindrod, and A. Harrington, “A Roadmap
for the Computation of Persistent Homology,” 2017.

[5] V. Silva, G. Carlsson, “Topological estimation using witness complexes,” Eurographics
Symposium on PointBased Graphics 2004.

[6] Muthu Alagappan. From 5 to 13: Redefining the positions in basketball. In MIT Sloan
Sports Analytics Conference, 2012.

[7] M. Nicolau, A. J. Levine, and Gunnar Carlsson ”Topology based data analysis iden-
tifies a subgroup of breast cancers with a unique mutational profile and excellent
survival”, 2011

[8] H. Lee, M. K. Chung, H., Kang, B., Kim, D., and S. Lee ”Discriminative Persistent
Homology of Brain Networks”, 2011

[9] Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A “Confidence
sets for persistence diagrams”, (2014).

[10] M. Kerber, D. Morozov, A. Nigmetov, ”Geometry Helps to Compare Persistence
Diagrams”, 2017

[11] Hartigan JA “Consistency of single linkage for high-density clusters.” Journal of the
American Statistical Association, (1981)

[12] TDAstats to calculate persistent homology (Ripser): Bauer U. Ripser: Efficient
computation of Vietoris-Rips persistence barcodes. 2019;

[13] Maria C (2014). “GUDHI, Simplicial Complexes and Persistent Homology Packages.”

[14] Morozov D (2007). “Dionysus, a C++ library for computing persistent homology.”

[15] Peter Giblin, ”Graphs, Surfaces and Homology”, 2011

[16] A. Zomorodian, G. Carlsson ”Computing persistent homology” 2002

1



MA-TH Rev. A

List of Figures

1 Simple Example of Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 It can be seen how the torus in the top left hand corner of the figure

is deformed into a cup with a handle. Boundaries are preserved as our
initial dough-nut has a hole similar to the handle of the cup represented
on the top left corner of the figure. Retrieved: https://cems.riken.jp/
en/laboratory/qmtrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Torus an example of a figure containing both 1 and 2 dimensional holes . 3
4 Uniformly Distributed Point Cloud Data Set (Randomly chosen 1000 points)

of a Circle with Varying Noise . . . . . . . . . . . . . . . . . . . . . . . . 4
5 Uniformally distributed Point Cloud Data of 1000 points . . . . . . . . . 4
6 Examples of N -dimensional Simplices . . . . . . . . . . . . . . . . . . . . 6
7 Example of a simplicial Complex . . . . . . . . . . . . . . . . . . . . . . 7
8 Frequent Violations of Simplicial Complex Construction . . . . . . . . . . 8
9 Abstract simplicial Complex is Described Using a Family of Sets . . . . . 9
10 Examples of a Star and a Link of simplicial Complex K . . . . . . . . . . 11
11 Examples of Two Oppositely Oriented 3-simplices . . . . . . . . . . . . . 12
12 Simple Example of Boundary Calculations . . . . . . . . . . . . . . . . . 14
13 Distinct Ways of Computing Homology Groups . . . . . . . . . . . . . . 17
14 Filtered Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
15 Sparse Data Structure Storage . . . . . . . . . . . . . . . . . . . . . . . . 20
16 Barcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
17 Randomly Generated Point Cloud Within California Boundaries . . . . . 23
18 Example of Vietoris-Rips Filtration . . . . . . . . . . . . . . . . . . . . . 23
19 Filtration Process on a Randomly Generated Point Cloud Within Califor-

nia Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
20 Number of Schools Per Year . . . . . . . . . . . . . . . . . . . . . . . . . 24
21 Public Schools 1850-2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
22 Private Schools 1851-1995 . . . . . . . . . . . . . . . . . . . . . . . . . . 26
23 Barcode for Private Schools . . . . . . . . . . . . . . . . . . . . . . . . . 26
24 Correlation Matrix Private Schools . . . . . . . . . . . . . . . . . . . . . 27
25 Private School Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2

https://cems.riken.jp/en/laboratory/qmtrt
https://cems.riken.jp/en/laboratory/qmtrt

	Introduction
	Simplicial Complexes
	Simplex
	Vectors
	Closed Simplex

	Simplicial Complexes
	Introducing Simplicial Complexes
	Examples of Simplicial Complexes
	Abstract Simplicial Complexes
	Relations Between simplicial Complexes
	Useful Terms for Simplicial Complex Construction


	Homology
	Oriented simplices
	Chain Groups  Boundary Homomorphism
	Groups

	Homology Groups
	Examples of Computing Homology Groups


	Persistent Homology
	Theoretical Background
	Computing PH
	Sparse Computation of PH

	Application on the US Schools Data
	Filtration
	Data & Software Used
	Results
	Concluding Remarks

	Bibliography

