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Abstract

In this paper we consider a spatial model where cells are points on a d-dimensional torus
T = [0, L]d; each unmutated cell incrementally mutates to types k ∈ N according to a col-
lection of spatial Poisson processes Πk with (mutation) rates µk. We will assume that µk

are increasing, and find the asymptotic waiting time for the first mutation of type k to occur
as the torus volume tends to infinity. This paper generalizes results on waiting for k ≥ 3
mutations from the paper “Mutation Timing in a Spatial Model of Evolution” by Foo, Leder,
and Schweinsberg.

1 Introduction

Cancer is caused by genetic mutations which disrupt regular cell division and apoptosis, in which
case cancerous cells divide too rapidly and healthy cells reproduce too slowly. This can happen,
for example, as soon as several distinct mutations occur and dramatically disrupt cell function.
Thus, it is reasonable to model cancer as occurring after k distinct mutations appear in a sequence
within a large body.

There have been mathematical models wherein cancer occurs once an individual first obtains
a type k ∈ N cancerous cell after having already obtained cancerous cells of types 1, 2, ..., k − 1.
Such models date back to the celebrated 1954 paper by Armitage and Doll [1], which proposes a
multi-stage model of carcinogenesis: an individual contacts mutations of types 1, 2, 3, ... in that
order, and once an individual has a mutation of type k−1 at time t, the probability of contacting
a mutation of type k in a small time interval (t, t+ dt) is

µ1µ2 · · ·µktk−1

(k − 1)!
dt.

That is, the incidence rate of kth mutation (at which point the individual becomes cancerous)
is proportional to µ1µ2 · · ·µktk−1. This means that cancer risk is positively correlated with both
the mutation rates and the (k − 1)th power of age.

In 1972, Williams and Bjerknes [8] introduced the biased voter model as a model of skin
cancer. To each site of epithelial tissue, there is an associated binary state representing if the site
is cancerous or healthy. The model is biased in the sense that a cancerous cell spreads κ > 1 times
as fast as a healthy cell; the constant κ is called the carcinogenic advantage. Cancer spread in
the basal layer (i.e. hexagonal lattice), with exponential rate of spread, was computer-simulated.
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More recently in 2016, Durrett, Foo, and Leder [4] worked on a spatial Moran model which
is a generalization of the biased voter model. Cells are modelled as points of the integer lattice
(Z mod L)d, and each cell is of type i ∈ N ∪ {0}. Higher cell types correspond to greater fitness.
More specificially, type i cells have fitness level (1 + s)i, where s > 0 measures the selective
advantage of one cell over its predecessors. In the same paper, to simplify the analysis on finding
the first time a second mutation occurs in (Z mod L)d, the authors also introduce a continuous
model where cells live inside the torus [0, L]d. The continuous stochastic model well-approximates
the biased voter model because of the Bramson-Griffeath shape theorem [2, 3], which implies
that the cluster of mutations in Zd grows to the shape of a convex subset of Rd. Whereas in
the discrete model mutations only spread to adjacent sites in integer lattice, in the continuous
model mutations spread uniformly in a ball, which simplifies the model. In Section 4 of [4], the
authors use the continuous model to compute σ2, the first time a type 2 mutation occurs, under
certain asymptotic assumptions on the mutation rates. We use σk to denote the first time a type
k mutation appears, after all mutations of types up to k − 1 have already appeared.

In 2020, Foo, Leder, and Schweinsberg [5] generalized the results in [4] by calculating the
asymptotic distribution of σk for k ≥ 2 assuming equal mutation rates µi = µ for all i. The
model used in [5] is essentially the model in [4]. Cancer spread is modeled on the d-dimensional
torus T := [0, L]d (continuous analog of (Z mod L)d in [4]). We write N := Ld to denote the
volume of T . Each point in T is assigned a mutation type. At initial time t = 0, all points in T
are type 0, i.e. have no mutations. A type 1 mutation then occurs at rate µ1 per unit volume.
Once each type 1 mutation appears, it spreads out in a ball at rate α per unit time. This means
that after the first type 1 mutation appears at time σ1 and location x ∈ T , all points in a ball of
radius αt centered at x will also acquire a type 1 mutation by time σ1 + t. Type 1 points then
acquire a type 2 mutation at rate µ2 per unit volume, and this process continues indefinitely. In
general, type k mutations overtake type k − 1 mutations at rate µk per unit volume, and each
type k mutation then grows out in a ball at rate α per unit time.

In this paper, we will further generalize the results in [5] in the case where the mutation rates
are increasing, and either µ1 � α/N (d+1)/d or µ1 � α/N (d+1)/d. In the first case, the mutations
appear slowly enough so that σk is a sum of independent exponential random variables. In the
second case, the mutations appear sufficiently quickly, and the waiting time σk depends only on
if the rest of the mutations other than the type 1 mutation happen even more quickly.

On the other hand when µ1 � α/N (d+1)/d, there will be many overlaps in between the type
1 regions, and we would have to compute the volume of regions consisting of many overlapping
balls. Hence we do not pursue this case in our paper. Note that if µ1 � α/N (d+1)/d and all
mutation rates are equal (i.e. µi = µ for all i), it is proven, as a special case of Theorem 12 in
[5], that Nµσk converges in distribution to a nondegenerate random variable for every k ≥ 1.

As in [5], we will continue to assume that the rate of mutation spread α is constant across
mutation types, so that successive mutations have equal selective advantage. One possible gen-
eralization of our model is by allowing each type i mutation to have a different rate of spread αi,
where (αi)

∞
i=1 is decreasing. We could also allow αi+1 > αi, but then regions of type i+ 1 could

quickly swallow the type i region. Subsequently, we have to study not only how the mutations of
types i+ 1 and i compete, but also how mutations of types i+ 1 and j ∈ {1, ..., i− 1} compete,
making finding σk a more complex problem. We do not pursue this generalization.

We mention two biological justifications to assuming increasing mutation rates. Loeb and
Loeb [6] suggest a general phenomenon in carcinogenesis where there is favorable selection for
certain mutations, namely those that promote tumor growth in genes responsible for repairing
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DNA damage. The increasing genetic instability disrupting DNA repair, in the context of this
paper, would correspond to the effect of increasing mutation rates. Also our model in this paper
would be of interest in the situation described in Prindle, Fox, and Loeb [7], where increasing
mutation rates could actually incapacitate or kill malignant cells, which could then be applied
toward improving chemotherapy methods.

In Section 2, we introduce basic notation, as well as a summary of results with heuristics
for why the results should hold true. In Section 3, we introduce the space-time structure of the
model and prove the limit theorems from Section 2.

2 Waiting for k mutations: results and heuristics

Given two sequences (aN )∞N=1 and (bN )∞N=1, we write:

1. aN ∼ bN if limN→∞ aN/bN = 1;

2. aN � bN if lim
N→∞

aN/bN = 0 and aN � bN if limN→∞ aN/bN =∞;

3. aN � bN if 0 < lim inf
N→∞

aN/bN ≤ lim sup
N→∞

aN/bN <∞;

4. aN . bN if lim sup
N→∞

aN/bN <∞.

We also define the following notation:

a. If Xn converges to X in distribution, we write Xn ⇒ X.

b. If Xn converges to X in probability, we write Xn →p X.

c. γd denotes the volume of the unit ball in Rd.

d. For each k ≥ 1, we define

βk :=
(
Nα(k−1)d

k∏
i=1

µi

)−1/((k−1)d+k)
. (1)

We will explain how βk arises in Section 2.3.

e. σk denotes the first time a mutation of type k appears; a more rigorous definition of σk is
given in Section 3.

The mutation rates (µi)
∞
i=1 and the rate of mutation spread α will depend on N , even though

this dependence is not recorded in the notation. Throughout this paper we will assume that the
mutation rates (µi)

∞
i=1 are asymptotically increasing, i.e.

µ1 . µ2 . µ3 . µ4 . µ5 . · · · (2)

In sections 2.1-2.4 we summarize results on the asymptotic distribution of σk, the first time a
mutation of type k appears, assuming (2).
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2.1 Theorem 1: low mutation rates

Assume
µ1 �

α

N (d+1)/d
and

µi
µ1
→ ci ∈ (0,∞] for all i ∈ {1, ..., k}.

The first time a mutation of type 1 appears is exponentially distributed with rate Nµ1. The
maximal distance between any two points on the torus T = [0, L]d is

√
dL/2. Also note that

L = N1/d where N is the volume of T . Subsequently, once the first type 1 mutation appears,
it will spread to the entire torus in time

√
dL/(2α) =

√
dN1/d/(2α). Hence the time required

for a type 1 mutation to fixate once it has first appeared is much shorter than σ1 precisely when
N1/d/α� 1/(Nµ1), which is equivalent to µ1 � α/N (d+1)/d.

Now because of the second assumption µi/µ1 → ci ∈ (0,∞], mutations of types i ∈ {2, ..., k}
appear at least as fast as the first mutation. If ci <∞, then the waiting times σ1 and σi−σi−1 are
on the same order of magnitude. Because we have σ1 ∼ Exponential(Nµ1c1), it follows σi− σi−1
is also exponentially distributed and that σi−σi−1 ∼ Exponential(Nµ1ci). Otherwise, if ci =∞,
then the first type i mutation appears so quickly that its waiting time σi − σi−1 is negligible as
N →∞. Putting everything together gives us the following theorem.

Theorem 1. Suppose µ1 �
α

N (d+1)/d
. Suppose that for all i ∈ {1, ..., k}, we have

µi
µ1
→ ci ∈ (0,∞].

Let W1, ...,Wk be independent random variables with Wi ∼ Exponential(ci) if ci <∞ and Wi = 0
if ci =∞. Then

Nµ1σk ⇒W1 + · · ·+Wk.

We note that in the setting of asymptotically increasing mutation rates (i.e. assumption (2)),
our result is slightly more general than Theorem 1 in [5]. Indeed, setting all mutation rates equal
(i.e. µi = µ for all i), we have ci = 1 for all i, and we get Nµ1σk = Nµσk ⇒ Gamma(k, 1), which
is Case 1, Section 3 in [5]. However, Theorem 1 above is only a very slight variant of Theorem 1
of [5].

Figure 1 below illustrates that once a type i mutation appears, it quickly fills up the whole
torus, and then a type i+ 1 mutation occurs.

Figure 1. The transition from type i mutations (in red) to type i+ 1 mutations (in blue).
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2.2 Theorem 2: type j ≥ 2 mutations occur rapidly after σ1

Assume

µ1 �
α

N (d+1)/d
and µ2 �

(Nµ1)
d+1

αd
.

In contrast to Theorem 1, we have µ1 � α/N (d+1)/d. This means that the time it takes for type
1 mutations to fixate in the torus is longer than σ1. As a result, there will be many balls of type
1 mutations before the entire torus is at least type 1.

We note that the k = 2 case was proven by Durrett, Foo, and Leder in Theorem 3 of [4]. We
will be using a similar proof strategy, where we find a lower bound on how fast type j ∈ {2, ..., k}
mutations spread, using a single ball grown by a type j − 1 mutation. We first explain the j = 2
case. Focusing on a single ball grown by a type 1 mutation, the probability that the first type 2
mutation appears in that ball before time t is

1− exp
(
−
∫ t

0
µ2γd(αr)

ddr
)

= 1− exp
(
− γd
d+ 1

µ2α
dtd+1

)
. (3)

It follows that the first time a type 2 mutation occurs in a single type 1 ball by time t is on
the order of (µ2α

d)−1/(d+1). Because there will be at least one ball of type 1, it follows that
σ2 − σ1 is at least as fast as (µ2α

d)−1/(d+1). Hence, whenever (µ2α
d)−1/(d+1) � 1/(Nµ1), which

is equivalent to the second assumption, it follows that σ2 − σ1 is much quicker than σ1. From
this heuristic, we show that Nµ1(σ2 − σ1)→p 0.

Note that in order to use equation (3) in the above argument, we need the volume of a single
type 1 ball to equal the the volume of an Euclidean ball with the same radius, i.e. we require the
type 1 ball to not start overlapping itself. This is true exactly when, for all times r ∈ [0, t] in (3),
the radius of a single type 1 ball at time r does not exceed sup{|x− y| : x, y ∈ T } =

√
dN1/d/2.

In other words, we need αr ≤
√
dN1/d/2. Rescaling time by a factor of 1/(Nµ1), we want

αr/(Nµ1)�
√
dN1/d/2, which is satisfied due to the first assumption.

Now consider j ∈ {3, ..., k}. Repeating the same reasoning with types j − 1, j in place of
types 1, 2, we see that σj − σj−1 is much quicker than σ1 when (µjα

d)−1/(d+1) � 1/(Nµ1), or
equivalently µj � (Nµ1)

d+1/αd. However, this follows from our second assumption, because of
(2). Hence we also have Nµ1(σj − σj−1)→p 0. Putting everything together, when N is large,

Nµ1σk = Nµ1σ1 +Nµ1(σ2 − σ1) + · · ·+Nµ1(σk − σk−1) ≈ Nµ1σ1.

This gives us the following theorem.

Theorem 2. Suppose that µ1 �
α

N (d+1)/d
and µ2 �

(Nµ1)
d+1

αd
. Then

Nµ1σk ⇒W

where W ∼ Exponential(1).

A pictorial representation is given in Figure 2, where the decreasing nested circles correspond
to mutations of types 1, ..., k for k = 4.
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Figure 2: Once the first type 1 mutation (red) appears, the type 2 (blue), type 3 (orange), and
type 4 (green) mutations all happen quickly.

2.3 Theorem 3: type j ∈ {1, ..., k − 1} mutations appear many times

Assume

µ1 �
α

N (d+1)/d
and µk �

1

αdβd+1
k−1

.

As in Theorem 2, the first assumption ensures that σ1 is shorter than the time it takes for type 1
mutations to fixate once they appear. The second assumption ensures that all mutations of types
up to k do not appear too quickly, so that we are not in the setting of Theorem 2 (note that when
k = 2, we have βk−1 = (Nµ1)

−1, and the second assumption reduces to µ2 � (Nµ1)
d+1/αd). In

this case, there will be many small balls of type j − 1 before the jth mutation, which allows us
to approximate the total volume of type j − 1 regions with its expectation.

The proof strategy in Theorem 3 will mostly follow Theorem 10 of [5], where we approximate
the expectation of regions of at least type j − 1 with a deterministic function.

To explain what happens in this case, we repeat a derivation from [5]. We want to define an
approximation vj(t) to the total volume of regions with at least j mutations at time t. We set
v0(t) ≡ N . Next, let t > 0. For times r ∈ [0, t], type j mutations occur at rate µjvj−1(r), and
these type j mutations each grow into a ball of size γd(α(t− r))d by time t. Then we write

vj(t) =

∫ t

0
(rate of type jth mutation at time r)(volume of ball from each type j mutation)dr

(4)

=

∫ t

0
µjvj−1(r)γd(α(t− r))ddr.

Note that the informal equation (4) defining the approximation vj(t) is valid because we have
many mostly non-overlapping balls of type j − 1. In [5] it is shown using induction that

vj(t) =
γjd(d!)j

(j(d+ 1))!

( j∏
i=1

µi

)
Nαjdtj(d+1)

which gives us the approximation

P(σk > t) ≈ exp
(
−
∫ t

0
µkvk−1(r)dr

)
= exp

(
−

γk−1d (d!)k−1

((k − 1)d+ k)!

( k∏
i=1

µi

)
Nα(k−1)dt(k−1)d+k

)
.

It follows that if we define βk as in (1), then we have the following result.

Theorem 3. Let k ≥ 2. Suppose that µ1 �
α

N (d+1)/d
and that µk �

1

αdβd+1
k−1

. Then

lim
N→∞

P(σk > βkt) = exp
(
−

γk−1d (d!)k−1

((k − 1)d+ k)!
t(k−1)d+k

)
.

When we have equal mutation rates (i.e. µi = µ for all i), the conclusion above is the same as
that of the third statement of Theorem 10 in [5]. Theorem 3 is illustrated in Figure 3, for k = 3.
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Figure 3: Mutations of types 1, 2, 3 colored in red, blue, and orange respectively.

2.4 Theorem 4: an intermediate case between Theorems 2 and 3

Assume
µ1 �

α

N (d+1)/d
.

We first define

l := max

{
j ≥ 2 : µj �

1

αdβd+1
j−1

}
. (5)

Using (2) and Lemma 2 in Section 3.3, we in fact have

l = max

{
j ≥ 2 : µ2 �

1

αdβd+1
1

, µ3 �
1

αdβd+1
2

, ..., µj �
1

αdβd+1
j−1

}
(6)

(Note that the definition of l in (5) omits the possibility l = 1, since β0 is undefined. However,
if in place of (5) we instead define l := 1, then Theorem 4 below is just Theorem 2.) If l = −∞,
then in particular µ2 6� 1/(αdβd+1

1 ), which is equivalent to µ2 6� (Nµ1)
d+1/αd. Then there are

various possible behaviors for the type 2 mutations, inducing many edge cases which we do not
pursue. On the other hand if l ∈ {k, k + 1, ...} ∪ {∞}, then by (6) we have µk � 1/(αdβd+1

k−1), in
which case Theorem 3 applies. Hence we assume l ∈ {2, ..., k − 1} and that

µl+1 �
1

αdβd+1
l

. (7)

The situation in Theorem 4 is a hybrid of Theorems 2 and 3. A mutation of type j ∈ {1, ..., l−1}
takes a longer time to fixate in the torus than interarrival time σj − σj−1. As a result, if
j ∈ {2, ..., l}, there will be many mostly nonoverlapping balls of type j − 1 before time σj .
Using this fact, we proceed as in Theorem 3 and find limN→∞ P(σl > βlt). Next, our assumption
in (7) places us in the regime of Theorem 2; all mutations of types l + 1, ..., k happen so quickly
that for all ε > 0 we have P(σk − σl > βlε) → 0. Then combining these two results yields the
following result.

Theorem 4. Suppose that µ1 �
α

N (d+1)/d
, l ∈ {2, ..., k − 1}, and µl+1 �

1

αdβd+1
l

. Then

P(σk > βlt)→ exp
(
−

γl−1d (d!)l−1

(d(l − 1) + l)!
td(l−1)+l

)
.

In pictures, Theorem 4 looks like Figure 3 for mutations up to type l. Then once the first type
l mutation appears and spreads in a circle, all the subsequent mutations become nested within
that circle, similar to Figure 2.
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3 Proofs of Limit Theorems

In this section, we will prove the results stated in Section 2. We begin by introducing the structure
of the torus T = [0, L]d, and will follow the notation of [5]. We define a pseudometric on the
closed interval [0, L] by

dL(x, y) := min{|x− y|, L− |x− y|}.

The d-dimensional torus of side length L will be denoted by T = [0, L]d. For x = (x1, ..., xd) ∈ T
and y = (y1, ..., yd) ∈ T we define a pseudometric by

|x− y| :=

√√√√ d∑
i=1

dL(xi, yi)2.

The torus should really be thought of as T modulo the equivalence relation x ∼ y iff |x− y| = 0,
or more simply T = (R mod L)d. However, we will continue to write T = [0, L]d, keeping in
mind that certain points are considered the same via the equivalence relation defined above. It
will be useful to observe the following:

1. We have dL(x, y) ≤ L/2 for all x, y ∈ [0, L]. As a result,

sup{|x− y| : x, y ∈ T } ≤

√√√√ d∑
i=1

(L
2

)2
=

√
dL

2
. (8)

2. Therefore, once a mutation of type j appears, the entire torus will become type j in time
less than

maximal distance between any x, y ∈ T
rate of mutation spread per unit time

=

√
dL

2α
. (9)

We use |A| to denote the Lebesgue measure of some subset A (of T or T × [0,∞)), so that
N = Ld = |T | is the torus volume. Each x ∈ T at time t has a mutation of type k ∈ {0, 1, 2, ...},
which we denote by T (x, t). The set of type i sites is defined by

χi(t) := {x ∈ T : T (x, t) = i}

The set of points whose type is at least i is defined by

ψi(t) := {x ∈ T : T (x, t) ≥ i} =
∞⋃
j=i

χj(t).

At time t, we denote the total volume of type i sites by Xi(t) := |χi(t)|, and the total volume of
sites with type at least i by Yi(t) := |ψi(t)|.

We now explicitly describe the construction of the process which gives rise to mutations in
the torus. We will model mutations as random space-time points (x, t) ∈ T × [0,∞). Let (Πk)

∞
k=1

be a sequence of independent Poisson point processes on T × [0,∞), where Πk has intensity µk.
That is, for any space-time region A ⊆ T × [0,∞), the probability that A contains j points of
type k is

e−µk|A|
(µk|A|)j

j!
.
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Each (x, t) ∈ Πk is a space-time point at which x ∈ T can acquire a kth mutation at t. We
say that x mutates to type k at time t precisely when x ∈ χk−1(t) and (x, t) ∈ Πk. Once an
individual obtains a type k mutation, it spreads the type k mutations outward in a ball at rate
α. Here α depends only on N , the volume of the torus.

In the following proofs, we will assume that the mutation rates are asymptotically increasing,
in the sense of assumption (2). With notation as defined above, the first time a type k mutation
appears in the torus can be expressed as σk = inf{t > 0 : Yk(t) > 0}.

3.1 Proof of Theorem 1

We prove Theorem 1, which gives a result on the asymptotic distribution of σk assuming only
that the first mutation fixates faster than σ1. That is, once the first mutation appears, it spreads
quickly to the entire torus. We note that the proof of Theorem 1 uses Theorem 1 of [5] by Foo,
Leder, and Schweinsberg to calculate Nµ1σr where r is the maximal integer (≤ k) with µr . µ1.
We restate Theorem 1 in [5] below as Theorem A.

In the setting of (2), Theorem 1 is very similar to Theorem A when j = 1. However, The-
orem 1 differs from Theorem A in that we only require the first mutation to have low rate (i.e.
µ1 � α/N (d+1)/d), instead of requiring all µ1, ..., µk−1 to be small relative to α/N (d+1)/d.

Theorem A. Suppose µi � α/N (d+1)/d for i ∈ {1, ..., k − 1}. Suppose there exists j ∈ {1, ..., k}
such that µj � α/N (d+1)/d and

µi
µj
→ ci ∈ (0,∞] for all i ∈ {1, ..., k}.

Let W1, ...,Wk be independent random variables such that Wi has an exponential distribution with
rate parameter ci if ci <∞ and Wi = 0 if ci =∞. Then

Nµjσk ⇒W1 + · · ·+Wk.

Proof of Theorem 1. Let r := max{j ∈ {1, ..., k} : µj . µ1}. Then for any j ∈ {1, ..., r},

0 ≤ lim
N→∞

µj

α/N (d+1)/d
≤
(

lim
N→∞

µr
µ1

)(
lim
N→∞

µ1

α/N (d+1)/d

)
= cr · 0 = 0

and µj � α/N (d+1)/d for all 1 ≤ j ≤ r. By Theorem A, we have

Nµ1σr ⇒W1 + · · ·+Wr.

If r = k, then the conclusion follows. Otherwise, r ≤ k− 1, and by maximality of r and equation
(2), we have for all l ∈ {r + 1, ..., k}

µl
µ1
→∞.

Then the result follows if we show

Nµ1(σk − σr)→p 0.

We have

0 ≤ Nµ1(σk − σr) = Nµ1

k−1∑
j=r

(σj+1 − σj). (10)
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We will find an upper bound for the right-hand side of (10). For i ≥ 1 let ti = inf{t > 0 : Yi(t) =
N} be the first time which every point in T is of at least type i. Define t̂i := ti − σi, which
is the time elapsed between σi and when mutations of type i fixate in the torus. Also define
σ̂i = inf{t > 0 : Πi ∩ (T × [ti−1, t]) 6= ∅}, which is the first time there is a potential type i
mutation after ti−1. Observe that because we always have σj ≤ σ̂j ,

σj+1 − σj ≤ σ̂j+1 − σj
= σ̂j+1 − σj + tj − tj
= t̂j + (σ̂j+1 − tj).

Also observe that by (9), we have t̂j ≤
√
dN1/d/(2α). Subsequently, the right-hand side of (10)

has upper bound

Nµ1

( k−1∑
j=r

t̂j +

k−1∑
j=r

(σ̂j+1 − tj)
)
≤ Nµ1(k − r)

√
dN1/d

2α
+Nµ1

k−1∑
j=r

(σ̂j+1 − tj).

The result follows if the right-hand side of the above converges to 0 in probability. The first term
tends to zero because µ1 � α/N (d+1)/d. The second term tends to zero because σ̂j+1 − tj ∼
Exponential(Nµj+1), so Nµ1(σ̂j+1 − tj) ∼ Exponential(µj+1/µ1)→p 0 as N →∞.

3.2 Proof of Theorem 2

Lemma 1. Let tN be a random time that is σ(Π1, ...,Πj−1)-measurable, depends on N , and
satisfies tN ≥ σj−1. Then we have

P(σj > tN ) = E

[
exp

(
−
∫ tN

σj−1

µjYj−1(s)ds
)]
.

Proof. Write G := σ(Π1, ...,Πj−1). Define the G-measurable set

A := {(x, r) ∈ ψj−1(r)× [σj−1, tN ]}.

Conditioned on the σ-field G, the event {σj > tN} occurs precisely when Πj ∩ A = ∅. It follows
that if X ∼ Poisson(µj |A|), then

P(σj > tN |G) = P(X = 0|G) = exp
(
−
∫ tN

σj−1

µjYj−1(s)ds
)
.

Taking expectations of both sides finishes the proof.

Proof of Theorem 2. Write Nµ1σk as a telescoping sum

Nµ1σk = Nµ1σ1 +
k∑
j=2

Nµ1(σj − σj−1).

We have Nµ1σ1 ∼ Exponential(1). Hence it suffices to show that for each j ≥ 2, the random
variable Nµ1(σj − σj−1) converges in probability to zero. Let t > 0. Then by Lemma 1,

P(Nµ1(σj − σj−1) > t) = P
(
σj >

t

Nµ1
+ σj−1

)
= E

[
exp

(
−
∫ t/(Nµ1)+σj−1

σj−1

µjYj−1(s)ds
)]
.

10



We want to show that the term on the right-hand side tends to zero. By the dominated conver-
gence theorem, it suffices to show that as N →∞∫ t/(Nµ1)+σj−1

σj−1

µjYj−1(s)ds→∞ a.s.

Notice that because µ1 � α/N (d+1)/d, for all sufficiently largeN we have t/(Nµ1) ≤
√
dN1/d/(2α).

By (9), we deduce that t/(Nµ1) does not exceed the time it takes for type j − 1 mutations to
fixate. Hence we have Yj−1(s) ≥ γdαd(s− σj−1)d for s ∈ [σj−1, σj−1 + t/(Nµ1)], and that∫ t/(Nµ1)+σj−1

σj−1

µjYj−1(s)ds ≥
∫ t/(Nµ1)+σj−1

σj−1

µjγdα
d(s− σj−1)dds

=

∫ t/(Nµ1)

0
µjγdα

duddu

=
µjγdα

d

d+ 1

( t

Nµ1

)d+1

It remains to show
µjγdα

d

d+ 1

( t

Nµ1

)d+1
→∞ as N →∞.

For the above to hold, it suffices to have µj � (Nµ1)
d+1/αd, which holds due to the second

assumption in the theorem and equation (2). This finishes the proof.

3.3 Proof of Theorem 3

We recall the definition of βk as in (1) of Section 2. In the setting of Theorem 3, βk is the order
of magnitude of the time it takes for the kth mutation to appear.

Much of the proof of Theorem 3 will rely on Lemma 9 of [5], which approximates a monotone
stochastic process by a deterministic function under a certain time-scaling. In order to apply
this lemma, it is important to ensure that Yk(t) is well-approximated by its expectation, which
is Lemma 8 of the same paper.

Before proving Theorem 3, we state several lemmas, some of which are from [5]. First, we
need to ensure that the last assumption µkα

dβd+1
k−1 → 0 in Theorem 3 implies µkα

dβd+1
k → 0, so

that we are able to use part 2 of Lemma 5 to approximate Yk−1(βkt) by its expectation.

Lemma 2. For k ≥ 2, µk �
1

αdβd+1
k

if and only if µk �
1

αdβd+1
k−1

.

Proof. By direct calculation

µk �
1

αdβd+1
k

⇐⇒ µk �
1

αd

(
Nα(k−1)d

k∏
i=1

µi

) d+1
(k−1)d+k

⇐⇒ µ
(k−1)d+k
k � 1

αd[(k−1)d+k]

(
Nα(k−1)d

k∏
i=1

µi

)d+1

⇐⇒ µ
(k−1)d+k
k � αd(d+1)(k−1)

αd[(k−1)d+k]
Nd+1

( k∏
i=1

µi

)d+1

11



⇐⇒ µ
(k−1)d+k
k � 1

αd
Nd+1

( k∏
i=1

µi

)d+1

⇐⇒ µ
(k−2)d+(k−1)
k � 1

αd
Nd+1

( k−1∏
i=1

µi

)d+1

⇐⇒ µ
(k−2)d+(k−1)
k � αd(d+1)(k−2)

αd[(k−2)d+(k−1)]N
d+1
( k−1∏
i=1

µi

)d+1

⇐⇒ µ
(k−2)d+(k−1)
k � 1

αd[(k−2)d+(k−1)]

(
Nα(k−2)d

k−1∏
i=1

µi

)d+1

⇐⇒ µk �
1

αdβd+1
k−1

.

Second, we also need Lemma 9 from [5], which gives necessary conditions under which a
monotone stochastic process is well-approximated by a deterministic function.

Lemma 3. Suppose, for all positive integers N , (YN (t), t ≥ 0) is a nondecreasing stochastic
process with finite mean for all t > 0. Assume there exist sequences of positive numbers (νN )∞N=1

and (sN )∞N=1 and a continuous nondecreasing function g > 0 such that for all t > 0 and ε > 0,
we have

lim
N→∞

P(|YN (sN t)− E[YN (sN t)]| > εE[YN (sN t)]) = 0 (11)

and

lim
N→∞

1

νN
E[YN (sN t)] = g(t). (12)

Then for all ε > 0 and δ > 0, we have

lim
N→∞

P(νNg(t)(1− ε) ≤ YN (sN t) ≤ νNg(t)(1 + ε) for all t ∈ [δ, δ−1]) = 1.

Third, we will state a criterion which guarantees that for fixed t > 0, the probability P(σk >
βkt) converges to a deterministic function as N →∞.

Lemma 4. For a continuous nonnegative function g, a positive sequence (νN )∞N=1 ⊆ R+, and
δ, ε > 0, define the event

Bk−1
N (δ, ε, g, νN ) = {g(u)(1− ε)νN ≤ Yk−1(βku) ≤ g(u)(1 + ε)νN , for all u ∈ [δ, δ−1]}.

If (νN )∞N=1 and g are chosen such that lim
N→∞

νNβkµk exists and lim
N→∞

P(Bk−1
N (δ, ε, g, νN )) = 1,

then we have

lim
N→∞

P(σk > βkt) = lim
N→∞

exp
(
− νNβkµk

∫ t

0
g(u)du

)
.

Proof. Reasoning as in the proof of Theorem 10 from [5], we have the upper and lower bounds

P(σk > βkt) ≤ exp
(
− µkβkνN (1− ε)

∫ t

δ
g(u)du

)
+ P(Bk−1

N (δ, ε, g, νN )c)

12



P(σk > βkt) ≥ P(Bk−1
N (δ, ε, g, νN )) exp

(
− νN (1 + ε)βkµk

∫ t

δ
g(u)du

)
−

γk−1d (d!)k−1

(d(k − 1) + k)!
δd(k−1)+k.

The above inequalities are equations (26) and (27) in [5], respectively. Taking N → ∞ then
ε, δ → 0, we get the desired result.

Lastly, we need to approximate the expected volume of type k or higher regions, E[Yk(t)],
with a deterministic function, as well as making sure that Yk(t) is well-approximated by its
expectation.

We remark that in Lemma 5 below, time t may depend on N . This is because in the proof of
Theorem 3, we will rescale time by a factor of βk, i.e. replace t with βkt.

Lemma 5. Fix a positive integer k. Suppose µjα
dtd+1 → 0 for all j ∈ {1, ..., k}. Also suppose

t� N1/d/(2α). Then

1. Setting vk(t) :=
γkd (d!)k

(k(d+ 1))!

( k∏
i=1

µi

)
Nαkdtk(d+1), we have E[Yk(t)] ∼ vk(t).

2. If in addition we assume
( k∏
i=1

µi

)
Nα(k−1)dt(k−1)d+k →∞, then for all ε > 0,

lim
N→∞

P((1− ε)E[Yk(t)] ≤ Yk(t) ≤ (1 + ε)E[Yk(t)]) = 1.

Proof. The first and second statements are Lemmas 5 and 8 in [5], respectively.

Remark. Lemma 5 in [5] omits the necessary hypothesis t � N1/d/(2α). This is needed in
order for

E[Λk−1(t)] = µkγdα
d

∫ t

0
P(0 ∈ ψk−1(s))(t− s)dds

in equation (15) of [5] to hold, so that the inequality in the proof of Lemma 5 of [5]

P(0 ∈ ψj(s)) ≥ (1− ε)E[Λj−1(s)] ≥ (1− ε)µjγdαd
∫ s

0
P(0 ∈ ψj−1(u))(s− u)ddu

is valid. Note that the hypothesis t � N1/d/(2α) is also necessary for Lemma 8 in [5], because
its proof uses Lemma 5 in [5].

Lemma 6. If µ1 �
α

N (d+1)/d
, then βl �

N1/d

α
for any l ∈ N.

Proof. By (2), we have µ1, ..., µl � α/N (d+1)/d. Thus

l∏
i=1

µi �
αl

N l(1+1/d)
.

On the other hand by simplifying,

βl �
N1/d

α
⇐⇒ Nα(l−1)d

l∏
i=1

µi �
( α

N1/d

)(l−1)d+l
⇐⇒

l∏
i=1

µi �
αl

N l(1+1/d)
.

This proves the lemma.
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Proof of Theorem 3. In view of Lemma 4, we will choose (νN )∞N=1 and a continuous nonnegative
function g such that lim

N→∞
νNβkµk exists and P(Bk−1

N (δ, ε, g, νN )) → 1 as N → ∞. We set

νN = 1/(βkµk), and as in the proof of Theorem 10 in [5], set

g = gk(t) :=
γk−1d (d!)k−1t(k−1)(d+1)

((k − 1)(d+ 1))!
.

A lengthy calculation shows that βkµkvk−1(βkt) = gk(t). On the other hand, by the last assump-
tion in the theorem, we have µkα

dβd+1
k−1 → 0. By Lemma 2, this is equivalent to µkα

dβd+1
k → 0.

Because of (2), this implies that as N →∞

µjα
d(βkt)

d+1 → 0

for all j ∈ {1, ..., k}. Also, because of Lemma 6, we have βk � N1/d/(2α). Hence the hypotheses
of Lemma 5 are satisfied, and by the first result in Lemma 5 applied to k − 1, it follows that
vk−1(βkt) ∼ E[Yk−1(βkt)], which implies

lim
N→∞

βkµkE[Yk−1(βkt)] = lim
N→∞

βkµkvk−1(βkt) = gk(t).

Hence, (12) of Lemma 3 is satisfied, and it remains to check (11). To this end, by the second
result of Lemma 5, it suffices to show that

( k−1∏
i=1

µi

)
Nα(k−2)dβ

(k−2)d+k−1
k →∞.

A direct calculation gives

( k−1∏
i=1

µi

)
Nα(k−2)dβ

(k−2)d+k−1
k =

1

µkαdβ
d+1
k

→∞.

Therefore, Lemma 3 guarantees that P(Bk−1
N (δ, ε, g, νN ))→ 1 as N →∞. Then, Lemma 4 gives

us

lim
N→∞

P(σk > βkt) = lim
N→∞

exp
(
− νNβkµk

∫ t

0
gk(u)du

)
= exp

(
−
∫ t

0

γk−1d (d!)k−1u(k−1)(d+1)

((k − 1)(d+ 1))!
du
)

= exp
(
−

γk−1d (d)!k−1

(d(k − 1) + k)!
td(k−1)+k

)
finishing the proof.

3.4 Proof of Theorem 4.

Now we turn to proving Theorem 4, which is a hybrid of Theorems 2 and 3. In particular, we
assume that there is some l ∈ N such that the mutation rates µ1, µ2, ..., µl fall under the regime of
Theorem 3, and all subsequent mutation rates µl+1, ..., µk are large enough so that all mutations
after the lth one occur quickly, as in Theorem 2.
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Proof of Theorem 4. For ease of notation, set, for j ∈ N and t ≥ 0,

fj(t) := exp
(
−
γj−1d (d)!j−1td(j−1)+j

(d(j − 1) + j)!

)
For ε > 0, we have the inequalities

P(σl > βlt) ≤ P(σk > βlt) ≤ P(σl > βl(t− ε)) + P(σk − σl > βlε).

Taking N →∞ and using Theorem 3 (noting that l ≥ 2), we have

fl(t) ≤ lim
N→∞

P(σk > βlt) ≤ fl(t− ε) + lim
N→∞

P(σk − σl > βlε).

Since fl is continuous, the result follows (by taking ε→ 0) once we show that for each fixed ε > 0

lim
N→∞

P(σk − σl > βlε) = 0.

Notice that we have

{σk − σl > βlε} ⊆
k−1⋃
j=l

{
σj+1 − σj >

βlε

k − l

}
from which we deduce

P(σk − σl > βlε) ≤
k−1∑
j=l

P
(
σj+1 − σj >

βlε

k − l

)
.

Replacing ε/(k − l) > 0 with ε > 0 without loss of generality, to finish the proof it is enough to
show that for all j ∈ {l, ..., k − 1} we have

P(σj+1 − σj > βlε)→ 0.

By Lemma 1, we have

P(σj+1 − σj > βlε) = E
[

exp
(
−
∫ βlε+σj

σj

µj+1Yj(s)ds
)]
.

Hence, by the dominated convergence theorem, to show that P(σj+1 − σj > βlε)→ 0, it suffices
to show that ∫ βlε+σj

σj

µj+1Yj(s)ds→∞ a.s. as N →∞.

By Lemma 6 we have βl � N1/d/α, so βlε ≤
√
dN1/d/(2α) for all large enough N . That is, βlε

does not exceed the time it takes for the jth mutation to fixate. Hence we have the lower bound
Yj(s) ≥ γdαd(s− σj)d for s ∈ [σj , σj + βlε], and∫ βlε+σj

σj

µj+1Yj(s)ds ≥
∫ βlε+σj

σj

µj+1γdα
d(s− σj)d =

µj+1γdα
d

d+ 1
(βlε)

d+1.
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It remains to show that the right-hand side of the above term tends to infinity. By the second
assumption in the theorem, we have µl+1 � 1/(αdβd+1

l ). Because of (2), we have µj+1 � µl+1.
Hence it follows that as N →∞

µj+1γdα
d

d+ 1
(βlε)

d+1 →∞.

The proof is complete.
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