
University of California, San Diego

Department of Mathematics

Numerical Methods for Convex Optimization
and Their Applications

Author: Jiyue Zeng
Advisors: Mareike Dressler, Martin Licht

June 2021

Preface

Convex optimization studies the optimization problem of minimizing or maximizing convex func-
tions over convex sets. When talking about optimization, the simplest and most well-known example
is the linear programming problem. If a problem can be formulated as linear functions with linear
inequality and equality constraints, then there exist various tools to solve it efficiently. However,
the scope of linear programming is limited and restricted because most real life problems do not
follow a linear function and also have non-linear boundaries. Therefore, we would like to expand
our toolkit and study a special kind of function, convex function. Many real life problems can
be formulated as convex optimization problems. Convex optimization is widely applied in various
fields, for example, machine learning, signal processing, computer vision, automatic control system,
etc. Since convex functions have nice properties, many reliable and useful numerical methods have
been developed to quickly find the minimizer of the function. This thesis is an introduction to some
fundamentally important numerical methods for solving convex optimization problems.

We will cover gradient descent method, conjugate gradient method, Newton’s method, interior-
point method, and finite element method. The interior-point method has been successfully used to
solve convex optimization problems in the past 40 years. This thesis explains the intuition of these
methods and includes some examples and graphs to illustrate the functionality of each method. For
some of the methods, we also analyze their convergence analysis. We state the algorithms of many
numerical methods in this thesis and illustrate them by examples programmed in MATLAB.

The aim of the thesis is to provide a general idea about various numerical methods that suc-
cessfully solve convex optimization problems.

Acknowledgement

My sincere gratitude to my supervisors, Mareike Dressler and Martin Licht. They helped me a lot
throughout this project.

1

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Notation . 3
2.2 Affine Sets . 3
2.3 Convex Set . 4
2.4 Cones . 5
2.5 The Gradient and Hessian Matrix . 5
2.6 Convex function . 6
2.7 Affine function . 9

3 Convex optimization 10
3.1 Introduction . 10
3.2 Gradient Descent Method . 11
3.3 Convergence Analysis of Gradient Descent Method 14
3.4 Conjugate Gradient Method . 17

3.4.1 Some Properties . 20
3.4.2 Simplification of the Algorithm . 22

4 Newton’s Method 26
4.1 The descent direction . 26
4.2 The Newton Decrement . 27
4.3 Convergence Analysis of Newton’s Method . 28

4.3.1 Damped Newton Phase . 29
4.3.2 Quadratically Convergent Phase . 30

4.4 Algorithm . 32
4.5 Examples . 33

4.5.1 Quadratic function . 33
4.5.2 Exponential Function in R2 . 33

4.6 Newton’s Method for Self-concordant Functions . 34
4.6.1 Affine Invariant Property . 34
4.6.2 Bound on f(x)− f(x∗) . 37
4.6.3 Convergence Analysis of Newton’s Method for Self-concordant Functions . . 39
4.6.4 Damped Newton Phase . 39
4.6.5 Quadratically Convergent Phase . 40

5 Interior-point Method 42
5.1 Primal and Dual Problem . 42
5.2 Newton’s Method with Equality constraints . 44

5.2.1 Newton Decrement . 46
5.2.2 Algorithm for Equality Constrained Newton’s Method 47

5.3 Barrier Method and Logarithmic Barrier Function 47

2

5.3.1 Algorithm for Barrier Method . 50

6 Finite Element Method 51

References 55

3

1 Introduction

Why convex functions? Why do we want to study convex optimization? Why is it such an
important and interesting topic to explore? Let us first take a look at an example of a convex
function and a non-convex function: 1

The picture on the left-hand side is a typical convex function which has a bell shape and obviously
one unique global minimum. The picture on the right-hand side is a more complicated function.
It has some peaks and valleys, which makes it non-convex. It has several local minimum and local
maximum, which does not look as nice and simple as the first one. Because convex functions have
these nice properties, it is always helpful to use convex functions.

Why studying convex optimization? Numerical methods for convex optimization are useful
and powerful tools that help people solve problems in various fields. For example, the following
pictures show us how the convex optimization methods can be used to design the network archi-
tecture. Pictures on the second row depict two skip connection architectures which cause dramatic
“convexification” of loss landscape. 2

1Pictures come from https://www.oreilly.com/radar/the-hard-thing-about-deep-learning/?twitter=@bigdata
2Pictures come from https://www.cs.umd.edu/ tomg/projects/landscapes/

1

It is widely acknowledged that convex optimization are useful in many other fields such as computer
engineering, mathematical modeling, statistics etc. Nowadays, there is much active research on this
topic.

Brief Summary
We provide a brief summary of the main content of the thesis.

• In the second chapter, we provide a list of background knowledge about vector calculus and
convex functions, including essential properties of convex functions, gradient, Hessian matrix,
and affine functions.

• In the third chapter, we explain what a convex optimization problem is. We also introduce
gradient descent method and conjugate gradient method for symmetric positive definite sys-
tems. Several examples and images are presented to describe the main idea.

• The fourth chapter covers Newton’s method, including Newton’s descent direction, Newton
decrement, two phase convergence analysis and some related examples. We also discuss the
application of Newton’s method to a specific kind of functions, namely the self-concordant
functions. The second, third, and fourth chapters finish our discussion about numerical meth-
ods for unconstrained convex optimization problems.

• In the fifth chapter, we start from the discussion of equality constrained Newton’s method.
Then we move on to show the idea of one typical interior-point method, the barrier method,
which solves inequality constrained convex optimization problems. Equality constrained New-
ton’s method will play an important role in the development of the barrier method.

• The very last chapter is an outlook. We will briefly talk about the finite element method.
This method solves partial differential equations with boundary constraints. We will present
one example, the Poisson problem.

For this thesis, we use the book [1] and the paper [3] as major references.

2

2 Preliminaries

In this section, we introduce all mathematical notations that will be frequently use in this thesis
and review background knowledge about vector calculus and convex functions.

2.1 Notation

Here is a list of notations and their meanings:

• dom(f): the domain of the function f .

• ‖x‖: the norm of a vector x. The default is 2-norm.

• span(B): the linear span of a set B of vectors. Usually, B is a set of basis vectors.

• C1: the set of continuously differentiable functions.

• C2: the set of twice continuously differentiable functions.

• ∇f(x): the gradient vector of f evaluated at x.

• ∇2f(x): the Hessian matrix of f evaluated at x.

• ∆x: the notation for a descent direction.

• x∗: the optimal solution such that f(x∗) is the minimum value of f(x) over all x in the domain.

• xi: the point in the domain at the i-th iteration step.

• X � Y : X,Y are symmetric matrices of the same dimension and X − Y is a positive semi-
definite matrix.

• 1S(x): the indicator function of the set S where the function gives 1 if x ∈ S, 0 otherwise.

• N (A): the null space of the matrix A.

• I: the identity matrix.

• u � 0: ui ≥ 0 entry-wise.

2.2 Affine Sets

Definition 2.2.1. We say that a set C ⊆ Rn is affine if for every x, y ∈ C and λ ∈ R, λx +
(1− λ) y ∈ C, i.e., for all x, y ∈ C, α, β ∈ R, αx+ βy ∈ C if α + β = 1.

Lemma 2.2.2. More elements can be added as long as the sum of all coefficients is one. Then
we can generalize this definition as follows: if C is an affine set, then for all x1, x2, . . . , xn ∈ C,
λ1x1 + λ2x2 + · · ·+ λnxn ∈ C if λ1 + λ2 + · · ·+ λn = 1.

Definition 2.2.3. The linear combination λ1x1 + λ2x2 + · · · + λnxn where λ1 + λ2 + · · · + λn = 1
is called an affine combination.

3

With this definition, we know that an affine set contains all affine combinations of its elements.

Definition 2.2.4. A set S ⊆ Rn is defined to be an affine subspace of Rn if there exist a point
p ∈ Rn and a subspace U ⊆ Rn such that

S = p+ U = {p+ u |u ∈ U}.

Note that since a vector space is closed under addition and scalar multiplication, it is also an
affine set. Intuitively speaking, an affine set is developed by shifting the vector space along the
direction of a vector away from the origin.

Example 2.2.5. If A ∈ Rm×n and b ∈ Rm, then C = {x ∈ Rn|Ax = b} is an affine subset of Rn.
To see this, choose x1, x2 ∈ C. Then we know that Ax1 = b and Ax2 = b. For an arbitrary α ∈ R,

A (αx1 + (1− α)x2) = αAx1 + (1− α)Ax2 = b.

Hence, for all α ∈ R, αx1 + (1− α)x2 ∈ C, which means that C is an affine set.

Theorem 2.2.6. Every proper affine subspace V of Rn has the form {x ∈ Rn|Ax = b} for some
A ∈ Rm×n with linearly independent rows and b ∈ Rm.

Proof. Since V is an affine subspace, we know that there exists p ∈ R and a subspace U of Rn

such that V = p + U . Suppose U has a basis {u1, u2, . . . , uk}, k < n. We want to find an A such
that Ap = b and AU = 0. Now, we define a matrix W = [u1 u2 · · · uk]. Then we find a basis
{a1, a2, . . . , am} with m = n−k of the set {ai ∈ Rn|W Tai = 0}. This is verified by the Rank-nullity
theorem. We define A = [a1 a2 · · · am]T and b = Ap. Finally, we get AV = A(p + U) = b, which
gives the result.

Definition 2.2.7. For an arbitrary set S ⊆ Rn, the affine hull, denoted aff(S), is a set containing
all affine combinations of elements in S:

aff(S) =

{
k∑
i=1

λixi

∣∣∣∣x1, x2, . . . , xk ∈ S, λ1, λ2, . . . , λk ∈ R,
k∑
i=1

λi = 1

}
.

The affine hull aff(S) is the smallest affine set that contains S.

2.3 Convex Set

Definition 2.3.1. A set S is a convex set if for every two points in S the line connecting these two
points is contained in S. Mathematically, S is a convex set if for every x1, x2 ∈ S, λx1+(1−λ)x2 ∈ S
for every 0 ≤ λ ≤ 1. To generalize this definition, if S is convex, then for every x1, x2, . . . , xn ∈ S,
λ1x1 + λ2x2 + · · ·+ λnxn ∈ S with λ1 + λ2 + · · ·+ λn = 1 and λ1, λ2, . . . , λn ≥ 0.

From the definition, an affine set is automatically a convex set.

Definition 2.3.2. The linear combination λ1x1 + λ2x2 + · · · + λnxn with λ1 + λ2 + · · · + λn = 1
and λi ≥ 0 for 1 ≤ i ≤ n is called a convex combination.

4

Definition 2.3.3. The convex hull of a set S, denoted conv(S), is the set of all convex combina-
tions of elements in S. In other words,

conv(S) =

{
n∑
i=1

λixi |
n∑
i=1

λi = 1, λ1, . . . , λn ≥ 0, x1, . . . , xn ∈ S

}
.

The convex hull conv(S) is the smallest convex set that contains S, i.e., if S ⊆ U and U is a
convex set, then we must have conv(S) ⊆ U .

2.4 Cones

Definition 2.4.1. A set S is a cone if for every x ∈ S and every λ ≥ 0, λx ∈ S. We say a set
S is a convex cone if it is convex and is a cone, i.e., for every x1, x2 ∈ S, λ1, λ2 ≥ 0, we have
λ1x1 + λ2x2 ∈ S.

Proposition 2.4.2. The intersection of two convex cones in the same vector space is a convex cone,
but the union may not be.

Proof. Suppose we have two convex cones, S and U . Assume x, y ∈ S ∩ U and α, β ≥ 0. Since
S and U are two convex cones, αx + βy ∈ S as well as ∈ U , which means that αx + βy ∈ S ∩ U.
Hence, S ∩ U is a convex cone. However, the union may not be. For example, the union of two
different lines passing through the origin in R2.

2.5 The Gradient and Hessian Matrix

Definition 2.5.1. The gradient of a scalar-valued C1 function f : Rn → R is defined as ∇f :
Rn → Rn,

∇f(x) =

∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

 .
To write the gradient as a linear combination of standard basis ei, we get

∇f(x) =
∂f

∂x1

(x)e1 +
∂f

∂x2

(x)e2 + · · ·+ ∂f

∂xn
(x)en.

It measures how fast the function changes with respect to each standard basis vector ei.

Theorem 2.5.2. A differentiable function f increases the fastest along the direction of its gradient.

Proof. Let u be a unit vector. The dot product ∇f(x) · u is the directional derivative of f at x
along u, which measures the rate of change of f along u. Since ∇f(x) · u = ||∇f(x)||||u||cos(θ),
we choose u to be the unit vector along the direction of the gradient, that is u = ∇f(x)

||∇f(x)|| . Then

∇f(x) · ∇f(x)
||∇f(x)|| reaches its maximum ||∇f(x)|| since cos(θ) = 1. Hence, ∇f(x) is the direction that

makes the function increase the most.

5

Definition 2.5.3. Suppose we have a C2 function f : Rn → R. The Hessian matrix Hf of f is
defined to be

Hf =

∂2f

∂x1∂x1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

. . . ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂xn∂xn

 .
The Hessian matrix is symmetric because all second order partial derivatives are continuous.

Hf can also be denoted as ∇2f .

Definition 2.5.4. Suppose we have a function f : Rn → Rm whose first-order partial derivatives
all exist. The Jacobian matrix of f is a m×n matrix defined as

J =

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 .
The gradient is the Jacobian matrix of a scalar-valued function. The Hessian matrix is the

Jacobian matrix of the gradient of f , i.e., Hf = J(∇f).

2.6 Convex function

Definition 2.6.1. Suppose we have a convex set S ⊆ Rn and a function f : S → R. The function f
is convex if for all λ ∈ [0, 1] and for all x, y ∈ S, we have f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Note that a function is concave if it satisfies the opposite, i.e., if f(λx + (1 − λ)y) ≥ λf(x) +
(1− λ)f(y), then f is concave.

Definition 2.6.2. Suppose we have a convex set S ⊆ Rn and a function f : S → R. The function
f is strictly convex if for all λ ∈ (0, 1) and for all x, y ∈ S, x 6= y, we have f(λx + (1 − λ)y) <
λf(x) + (1− λ)f(y).

Theorem 2.6.3. A local minimum of a convex function f : Rn → R is also a global minimum.

Proof. Suppose we have a convex function f : Rn → R and its local minimum x∗. Then there exists
an open ball Br(x

∗) centered at x∗ with radius r and for all x ∈ Br(x
∗), f(x∗) ≤ f(x). We choose

an arbitrary point y 6= x from the domain of f . Then we choose a constant α ∈ (0, 1) such that
αx∗ + (1− α)y ∈ Br(x

∗), which means the following:

‖αx∗ + (1− α)y − x∗‖ ≤ r

=⇒ (1− α) ‖y − x∗‖ ≤ r

=⇒ α ≥ 1− r

‖y − x∗‖
.

6

Hence, α ∈ (0, 1)
⋂[

1− r

‖y − x∗‖
,+∞

]
. It is easy to see that there exists a possible α. Since f is

convex, we know that
f(x∗) ≤ f(αx∗ + (1− α)y)

=⇒ f(x∗) ≤ αf(x∗) + (1− α)f(y)

=⇒ (1− α)f(x∗) ≤ (1− α)f(y)

=⇒ f(x∗) ≤ f(y).

Hence, for any y ∈ dom (f), f(x∗) ≤ f(y), which tells us that f(x∗) is a global minimum.

If the function is strictly convex, then it has a unique global minimum. Now we give another
way to determine the convexity of a function.

Theorem 2.6.4. A function f : Rn → R is convex if and only if f is convex along every line, i.e.,
g : R→ R, defined by g(t) = f(x+ tv), is convex for all x ∈ dom (f), v ∈ Rn.

Proof. (⇒) Since f is convex over Rn, f is also convex on a line x+tv. Hence, g is a convex function.
(⇐) For any two points x, y ∈ Rn, we can find a vector v ∈ Rn and t ∈ R such that y = x + tv.
Since g is convex, f is also convex.

Theorem 2.6.5. Suppose f : Rn → R is differentiable. The function f is convex if and only if for
all x, y ∈ Rn, f(x) ≥ f(y) +∇f(y)(x− y).

Proof. (⇒) We choose arbitrary x, y ∈ Rn. Let z = λx + (1 − λ)y for some λ ∈ [0, 1]. Since f is
convex, we know that

f(z) = f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Subtracting f(y) on both sides and then simplifying the equation yield

f(y + λ(x− y))− f(y) ≤ λf(x) + (1− λ)f(y)− f(y),

f(y + λ(x− y))− f(y) ≤ λ(f(x)− f(y)),

f(y + λ(x− y))− f(y)

λ
≤ f(x)− f(y), forλ ∈ (0, 1].

Taking the limit as λ goes to 0, we get

lim
λ→0

f(y + λ(x− y))− f(y)

λ
= ∇f(y)(x− y).

This computes the directional derivative of f at y in the direction of vector x − y. Since the
inequality holds for all λ ∈ (0, 1], we get for all x, y ∈ Rn, f(x) ≥ f(y) +∇f(y)(x− y).
(⇐) We choose arbitrary x, y ∈ Rn and λ ∈ [0, 1]. Let z = λx + (1 − λ)y. We know that
f(x) ≥ f(z) +∇f(z)(x− z) and f(y) ≥ f(z) +∇f(z)(y− z). We multiply λ to the first inequality
and 1− λ to the second inequality,

λf(x) ≥ λf(z) + λ(1− λ)(x− y),

(1− λ)f(y) ≥ (1− λ)f(z) + λ(1− λ)(y − x).

7

Adding up these two inequalities, we get

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

Hence, f is convex.

Theorem 2.6.6. Suppose f : Rn → R is C2. The function f is convex if and only if the Hessian
matrix of f is positive semi-definite.

Proof. (⇒) Since f is convex, from Theorem 2.6.5 we know that

∀x, y ∈ Rn, f(x) ≥ f(y) +∇f(y)(x− y).

Therefore,
f(y) +∇f(y)(x− y) ≤ f(x) ≤ f(y) +∇f(x)(x− y),

∇f(y)(x− y) ≤ f(x)− f(y) ≤ ∇f(x)(x− y),

(∇f(x)−∇f(y))(x− y) ≥ 0.

Since this inequality holds for all x, y ∈ Rn, we choose x, x+ h ∈ Rn for an arbitrary h ∈ Rn and we
have,

(∇f(x+ h)−∇f(x))h ≥ 0.

Since f is twice continuously differentiable, we have for all t > 0,

∇f(x+ th)−∇f(x) = ∇2f(x)th+ r(th), and lim
t→0

|r(th)|
|th|

= 0.

Then,
hT (∇f(x+ th)−∇f(x)) = hT∇2f(x)th+ hT r(th) ≥ 0,

for all h ∈ Rn and t > 0. Taking the limit as t goes to 0, we have

lim
t→0

hT (∇f(x+ th)−∇f(x))

t
= lim

t→0
hT∇2f(x)h+

hT r(th)

t

= hT∇2f(x)h+ lim
t→0

hT r(th)

t
= hT∇2f(x)h ≥ 0.

This tells us that ∇2f(x) � 0, which is the notation for a matrix to be positive semi-definite.
(⇐) According to the second order Taylor polynomial for f , we have that ∀x, y ∈ Rn,

f(x) = f(y) +∇f(x)(y − x) +
1

2
(y − x)T∇2f(z)(y − x),

for some z between x and y. Since ∇2f is positive semi-definite, we know that

1

2
(y − x)T∇2f(z)(y − x) ≥ 0,

which implies that
f(x) ≥ f(y) +∇f(x)(y − x).

Theorem 2.6.5 tells us that f is a convex function.

8

2.7 Affine function

Definition 2.7.1. A function f : Rn → Rm is affine if there exist a linear function h : Rn → Rm

and a constant vector b ∈ Rm such that f(x) = h(x) + b.

From the definition, an affine function is a linear function plus a constant vector. An affine
function is both concave and convex:

f(λx+ (1− λ)y) = h(λx+ (1− λ)y) + b

= λh(x) + (1− λ)h(y) + λb+ (1− λ)b

= λf(x) + (1− λ)f(y).

9

3 Convex optimization

In this chapter, we explain the formal statement of a convex optimization problem and present two
methods, gradient descent method and conjugate gradient method.

3.1 Introduction

Definition 3.1.1. Suppose we have a convex function f0 : S0 → R, several other convex functions
fi : Si → R for 1 ≤ i ≤ m, and an affine function h : Sn → Rm, where S0, S1, . . . , Sn are convex
subsets of a real vector space.

A convex optimization problem has the following form,

min f0(x)

subject to fi(x) ≤ 0, for 1 ≤ i ≤ m,

h(x) = 0.

We define the feasible set of this convex optimization problem, denoted by X, to be

X =

{
x ∈

(
p⋂
i=0

dom (fi)

)⋂
dom (h)

∣∣∣ fi(x) ≤ 0, for 1 ≤ i ≤ p, and h(x) = 0

}
,

where dom (f) is the notation for the domain of the function f . The optimal point of this standard
convex optimization problem is

x∗ = inf {f0(x) |x ∈ X}.
The problem becomes an unconstrained convex optimization problem if there are no constraints
fi ≤ 0 and h = 0.

Note that h(x) = 0 can usually be written in the form of Ax = b, or ai · x = bi, where ai is the
i-th row of A and bi denotes the i-th entry of b.

Since h is affine and f0, fi are convex, we know that the whole system is convex, which imme-
diately tells us that local minimum is the optimal solution to this convex problem.

On top of that, we know that the feasible set X must also be convex since it is an intersection
of convex domains.

Theorem 3.1.2. Suppose f0 is differentiable and convex. The point x is optimal if and only if for
all y in the feasible set X, we have ∇f0(x)(y − x) ≥ 0.

Proof. (⇐) Since ∇f0(x)(y − x) ≥ 0 and f0 is convex, we know that for all y ∈ X, f0(y) ≥
f0(x) +∇f0(x)(y − x) ≥ f0(x). Hence, x is optimal.

(⇒) We prove by contradiction. Suppose x is optimal and there exists y ∈ X such that
∇f0(x)(y − x) < 0. Let z = (1− t)x+ ty. Then

lim
t→0

f0(z)− f0(x)

t
= lim

t→0

f0(x+ t(y − x))− f0(x)

t
= ∇f0(x)(y − x) < 0.

Hence, for a very small t, we can find z very close to x such that f0(z) < f0(x), which contradicts
with the fact that x is optimal.

10

Corollary 3.1.3. If there is no inequality or equality constraint, i.e., the problem is an uncon-
strained convex optimization problem, then x is optimal if ∇f0(x) = 0.

Proof. If x is optimal, from Theorem 3.1.2, we know that for all y ∈ X, which denotes the feasible
set, ∇f0(x)(y − x) ≥ 0. Choose λ > 0 small enough such that y = x − λ∇f0(x) ∈ X. Then we
know that

∇f0(x)(x− λ∇f0(x)− x) = −λ||∇f0(x)||2 ≥ 0.

Hence, ∇f0(x) = 0.

This corollary gives a stopping criterion for finding the optimal point, i.e., ‖∇f(x)‖ ≤ ε. Next
we consider the unconstrained convex optimization problem.

3.2 Gradient Descent Method

Suppose we have a compact domain S and a convex function f : S → R that is C2. We know that
f must attain its minimum in the domain. Then how do we find this optimal point x∗?

We start from an arbitrary point on the graph and want to find a path that leads us to min f .
We can denote this searching path by a sequence of xi in the domain. We define the path by the
following equation,

xi+1 = xi + ti∆xi for i ≥ 1,

where xi is the current step, xi+1 is the next step, and ti∆xi is the step size. The step size consists
of a vector ∆xi that indicates the descent direction and a constant ti that decides the step size.
The following graph is an example of such a searching path.

Figure 1: Gradient Descent Method with Exact Line Search

The Gradient Descent Method uses the negative gradient, −∇f(xi), as the descent direction,
i.e., ∆xi = −∇f(xi). This choice makes sense because Theorem 2.5.2 says that f increases the

11

fastest along ∇f , which implies that f decreases the fastest along −∇f . The fact that f is convex
tells us that

∇f(xi)(xi+1 − xi) ≥ 0⇒ f(xi+1) ≥ f(xi).

Therefore, the precondition for obtaining a decreasing sequence is that

∇f(xi)(xi+1 − xi) ≤ 0. (1)

After replacing (xi+1 − xi) by the step size, we have

∇f(xi)(−t∇f(xi)) ≤ 0,

−t ‖∇f(xi)‖2 ≤ 0,

which is always true if t ≥ 0. Hence, the precondition for obtaining a decreasing sequence is
guaranteed when we use the negative gradient. Notice that −∇f(xi) changes at each step depending
on which xi we use.

Since the direction is already defined, we only need to find the step size ti. There are two ways
to find the constant ti.

First Way 3.2.1. Exact Line Search
Define t = {t ≥ 0 | t minimizes f(xi − t∇f(xi))}. This guarantees that f(xi − t∇f(xi)) ≤ f(xi)

because t minimizes the function value. To find t, we take the derivative of f(xi − t∇f(xi)) with
respect to t,

d

dt
f(xi − t∇f(xi)) = −∇f(xi+1)T∇f(xi)

= 0.
(2)

Since ∇f(xi) is the i-th direction and ∇f(xi+1) is the i+1-th direction, the fact that their dot product
is 0 implies that these two directions are orthogonal. Therefore, by using exact line search, we get
a zigzag searching path.

Exact line search works well when the function has a nice formula for its gradient so that we can
solve for t explicitly. When the cost of computation is expensive, we should switch to the backtracking
line search. Here is the algorithm for the gradient descent method with exact line search.

Algorithm 1: Gradient Descent Method with Exact Line Search

GradientDescentExact (f, x0, ε, max iter);
Input : x0, ε, max iter
Output: x∗

xi = x0;
t = 0;
count = 0;
while ‖∇f(xi)‖ > ε & count ≤ max iter do

count = count+ 1;

update t by solving d
dt
f(xi − t∇f(xi)) = 0;

xi = xi − t∇f(xi);

return xi;

12

Second Way 3.2.2. Backtracking Line Search

Figure 2: Visualization of Backtracking Line Search

From the graph, we see two lines, g1(t) = f(x) + t∇fT∆x and g2(t) = f(x) + αt∇fT∆x.3 g1

is the linear approximation of the function f(x + t∆x) at t = 0. g2 has an extra coefficient α. The
idea in this graph is that we try to start from a large t and decrease it until t ≤ t0. Even though
we cannot reach the lowest point, we will get a good amount of decrease in f. We need a variable
γ that decreases t at each step and αt ‖∇f(xi)‖2 is the desired amount of decrease in the function
value. t0 is the initial value for t. Here is the algorithm for only the backtracking line search.

Algorithm 2: Backtracking Line Search

initialization: xi, xi+1 = xi − t∇f(xi), t = t0 > 0, γ ∈ (0, 1), α ∈ (0, 1
2
);

while f(xi)− f(xi+1) < αt ‖∇f(xi)‖2 , do
t = γt, xi+1 = xi − t∇f(xi);

end

The while loop will quit after finite iterations because of the following.
By the second order Taylor expansion of the function, we have

f(xi+1) = f(xi)− t ‖∇f(xi)‖2 +
1

2
t2∇f(xi)

T∇2f(y)∇f(xi),

for some y between xi and xi+1. When t is very small, we know that the last term is of O(t2) and
can be ignored. Then we know for α < 1

2
,

f(xi)− f(xi+1) = t ‖∇f(xi)‖2 > αt ‖∇f(xi)‖2 .

We know that t can be arbitrarily small within finite iterations because γ < 1.
To precisely compute the possible range of t, we assume one more condition. Suppose the largest

eigenvalue of ∇2f is bounded by M , i.e., ∇2f �MI. The stopping criterion for the while loop can
be rewritten as

t ‖∇f(xi)‖2 − 1

2
t2∇f(xi)

T∇2f(y)∇f(xi) ≥ αt ‖∇f(xi)‖2 .

After simplifying the inequality, we get

(1− α)t ‖∇f(xi)‖2 ≥ 1

2
t2∇f(xi)

T∇2f(y)∇f(xi). (3)

3The picture comes from [1].

13

With the upper bound on ∇2f , we know that

1

2
t2∇f(xi)

T∇2f(y)∇f(xi) ≤
1

2
t2 ‖∇f(xi)‖2M.

If there exists t such that (1− α)t ‖∇f(xi)‖2 ≥ 1
2
t2 ‖∇f(xi)‖2M, then (3) is satisfied. So

t ≤ 2(1− α)

M
. (4)

Therefore, the while loop must end when t ∈ (0,min{2(1−α)
M

, t0}), which implies that t ≥ 2(1−α)γ
M

.
The algorithm guarantees that there is a decent amount of decrease in f and the step size is not too
big or too small Below is the full algorithm for the gradient descent method with backtracking line
search. Here we give exact values to α and γ.

Algorithm 3: Gradient Descent Method with Backtracking Line Search

GradientDescentBacktracking (f, x0, ε, max iter);
Input : x0, ε, max iter
Output: x∗

xi = x0;
xi+1 = xi − t∇f(xi);
t = 1;
count = 0;
α = 0.25;
γ = 0.5;
while ‖∇f(xi)‖ > ε & count ≤ max iter do

count = count+ 1;

while f(xi)− f(xi+1) < αt ‖∇f(xi)‖2 , do
t = γt;
xi+1 = xi − t∇f(xi);

xi = xi − t∇f(xi);

return xi;

3.3 Convergence Analysis of Gradient Descent Method

Assume the function f : Rn → R is strongly convex, which means that we can bound its Hessian
matrix, mI � ∇2f � MI. As before, we let f(x∗) denote the minimum value of f . By the second
order Taylor’s expansion, we have for all x, y ∈ dom(f),

f(y) = f(x) +∇f(x)(y − x) +
1

2
(y − x)T∇2f(z)(y − x)

≥ f(x) +∇f(x)(y − x) +
1

2
m ‖y − x‖2 .

14

Consider the right-hand side as a quadratic function with variable y − x. It reaches the minimum
when y − x = − 1

m
∇f(x). After taking the minimum on both sides, we get

f(x∗) ≥ f(x) +∇f(x)(− 1

m
∇f(x)) +

m

2

∥∥∥∥ 1

m
∇f(x)

∥∥∥∥2

= f(x)− 1

2m
‖∇f(x)‖2.

Therefore,
‖∇f(x)‖2 ≥ 2m(f(x)− f(x∗)). (5)

From the second order Taylor expansion, we get

f(xi − t∇f(xi)) = f(xi)− t ‖∇f(xi)‖2 +
1

2
t2∇f(xi)

T∇2f(xi)∇f(xi). (6)

Applying the upper bound MI on (6),

f(xi − t∇f(xi)) ≤ f(xi)− t ‖∇f(xi)‖2 +
1

2
t2M ‖∇f(xi)‖2 . (7)

Consider both sides as functions of t. Then the right-hand side is simply a real-valued single variable
quadratic function whose minimum is obtained at t = 1

M
. The minimum of the left-hand side via

exact line search is just f(xi+1). Hence, after minimizing both sizes over the variable t and applying
(5), we have

f(xi + 1) ≤ f(xi)−
1

2M
‖∇f(xi)‖2

≤ f(xi)−
m

M
(f(xi)− f(x∗)).

Then subtract f(x∗) on both sides,

f(xi + 1)− f(x∗) ≤
(

1− m

M

)
(f(xi)− f(x∗)). (8)

Since 0 < m/M < 1, we know that the sequence {f(xi)− f(x∗)}∞i=1 converges to 0. By recursively
applying (8), we get

f(xi)− f(x∗) ≤
(

1− m

M

)i
(f(x0)− f(x∗)).

Things are sightly different when the backtracking line search is used. Based on the while
condition from the algorithm of backtracking line search, we know that

f(xi)− f(xi+1) ≥ αt ‖∇f(xi)‖2 .

We can replace t by 2(1−α)γ
M

from (4) and use (5) again,

f(xi)− f(xi+1) ≥ 2α(1− α)γ

M
‖∇f(xi)‖2

≥ 4mα(1− α)γ

M
(f(xi)− f(x∗)).

15

Subtracting f(x∗) on both sides,

f(xi)− f(x∗) ≥ f(xi+1)− f(x∗) +
4mα(1− α)γ

M
(f(xi)− f(x∗)),(

1− 4mα(1− α)γ

M

)
(f(xi)− f(x∗)) ≥ f(xi+1)− f(x∗). (9)

We know that 0 < 4mα(1−α)γ
M

< 1 because α(1 − α) ≤ 1
4

and m
M
, γ < 1. Hence, after applying (9)

recursively, we get

f(xi)− f(x∗) ≤
(

1− 4mα(1− α)γ

M

)i
(f(x0)− f(x∗)),

which finishes our convergence analysis. Next, we apply the gradient descent method to a quadratic
function with exact line search and backtracking line search respectively.

Example 3.3.1. Suppose we have a convex quadratic function f(x) = xTAx + bx + c where A =[
2 1
5 7

]
, b =

[
4
6

]
, c = 5. The optimal point x∗ that gives the minimum value of f is x∗ =

[
−1
0

]
. We

fix a starting point x0 =

[
1
1

]
. Figure 3 and 4 are graphs of gradient descent method with exact line

search and backtracking line search respectively. The blue lines on the graph represent the path of
xi starting from [1, 1], ending at [0,−1]. Figure 5 and 6 are the projections of Figure 3 and 4 onto
the x, y plane.

Figure 3: Gradient Descent with Exact
Line Search

Figure 4: Gradient Descent with Back-
tracking Line Search

16

Figure 5: The Searching Path with Exact
Line Search

Figure 6: The Searching Path with Back-
tracking Line Search

From Figure 3 and 5, we see that the searching path of the exact line search has a zigzag shape.
Comparing Figure 4 and 6, we also see that exact line search takes much fewer steps than backtrack-
ing line search. This is because on each step, exact line search finds the best xi+1 that minimize the
function value while backtracking line search takes a small range of t that provides some decrease
in f .

3.4 Conjugate Gradient Method

We narrow down the problem from minimizing a convex function f ∈ C2 to minimizing a quadratic
function, f(x) = 1

2
xTAx + bx + c. Before presenting the conjugate gradient method, we introduce

the concept of A-conjugacy.

Definition 3.4.1. Suppose we have a positive definite square matrix A ∈ Rn×n. Two nonzero
vectors u, v ∈ Rn are A-conjugate if uTAv = 0.

Figure 8 shows two A-conjugate vectors geometrically.

Theorem 3.4.2. Suppose A is a positive definite n× n square matrix. If u, v are nonzero vectors
that are mutually A-conjugate, then u, v are linearly independent.

Proof. It suffices to show that c1u + c2v = 0 implies c1 = 0, c2 = 0. Multiplying Av on both sides,
we get c1u

TAv + c2v
TAv = 0. Since A is positive definite, v is not a zero vector, we get vTAv > 0.

Since u, v are A-conjugate, uTAv = 0. Hence, c2 = 0 and then c1 = 0 since u is nonzero.

If A is the identity matrix, then A-conjugacy is the same as orthogonality. If the matrix A
is instead a symmetric positive definite n × n square matrix and if we have a set of n mutually
A-conjugate vectors {ui}ni=1 ∈ Rn with respect to A, then {ui}ni=1 form a basis of Rn. Any vector
x ∈ Rn can be written as x =

∑n
i=1 αiui, αi ∈ R.

17

Theorem 3.4.3. Gram-Schmidt Algorithm
Suppose A is a symmetric positive definite n × n square matrix. If we start with a sequence

of linearly independent vectors {vi}ni=1 ∈ Rn, we can generate a sequence of mutually A-conjugate
vectors {uk}nk=1 ∈ Rn from that sequence.

Proof. Set u1 = v1. Let u2 = v2 + γ2u1, for some γ ∈ R. Since we want u2, u1 to be mutually
A-conjugate, we multiply Au1 on both sides:

uT2Au1 = v2
TAu1 + γ2u1

TAu1,

0 = vT2 Au1 + γ2u
T
1Au1,

γ = − vT2 Au1

u1
TAu1

.

To finish the induction process, let uk = vk+
∑k−1

j=1 γjuj. We multiply Aum, for m ∈ {1, 2, . . . , k−1},
on both sides of the equation:

uTkAum = vTkAum +
k−1∑
j=1

γju
T
j Aum.

We want uk to be A-conjugate to all previous ui for i ∈ {1, 2, . . . , k − 1}. Notice that ui, uj are
already mutually A-conjugate for i, j ∈ {1, 2, . . . , k − 1}, i 6= j. Therefore, we obtain

0 = vTkAum + γmu
T
mAum.

γm = − v
T
kAum
uTmAum

. (10)

We can get all coefficients γm for m ∈ {1, 2, · · · , k− 1} by doing the same computation. Hence, we
have created a sequence of mutually A-conjugate vectors {uk}nk=1.

Figure 7: Visualization of Gram-Schmidt Algorithm

Here is a visualization of the Gram-Schmidt Algorithm.4 We want to remove the component of
u1 that is not A-conjugate to u0. From this graph, u+ is removed and u∗ is left so that u∗ and u0

are A-conjugate.
Next, we explain the main idea of the conjugate gradient descent method. Suppose we want to

minimize a quadratic function f(x) = 1
2
xTAx + bx + c, where A is a symmetric positive definite

n× n square matrix. Here we use the same notations x∗, xi, x0 as in the last section. We generate

4This picture comes from [3].

18

a set of n mutually A-conjugate vectors {uk}nk=1 ∈ Rn via Gram-Schmidt Algorithm. We define the
error ei = xi − x0. We can write ei as a linear combination of {uk}nk=1, i.e., ei =

∑n
k=1 αkuk.

The conjugate gradient method says that we just need to remove the error in one direction uk
at each step, that is

x0 = x∗ + e0 = x∗ +
n∑
k=1

αkuk,

x1 = x∗ + e1 = x∗ +
n∑
k=2

αkuk,

...

xn−1 = x∗ + en−1 = x∗ + αnun,

xn = x∗.

After n steps, we get all errors removed since we have traversed through all directions uk. One
question left to be discussed is: why is orthogonal basis not a good choice? The reason is that we
need A-conjugacy to compute coefficients αk.

Suppose instead we have a set of orthogonal basis {b1, b2, . . . , bn}, such that bi · bj = 0, for any
i 6= j. Now, e0 can be written as a linear combination of this set, i.e., e0 =

∑n
i=1 βibi. To compute

one coefficient βi, we multiply bTi on both sides:

bTi e0 =
n∑
i=1

βib
T
i bi,

βi = −b
T
i e0

bTi bi
.

Here, the problem is that we have no idea what e0 is. If we know it, x0 − e0 already gives the
optimal solution x∗. However, using A-conjugacy solves this problem.

Now, a new problem arises. From which set of linear independent vectors should we generate
{uk}nk=1? The conjugate gradient method suggests using gradients:

Bn−1 = {∇f(x0),∇f(x1), · · · ,∇f(xn−1)}.

The gradient can be written in several forms: for some 1 ≤ i ≤ n− 1,

∇f(xi) = Axi + b = Axi − Ax∗ = A(xi − x∗) = Aei. (11)

We will explain how to generate the A-conjugate basis from Bn−1 via (15). We first explain the
mechanism of this method.

19

At each step, we choose one direction and minimize f along that direction. The iteration formula
for xi is xi+1 = xi + βi+1ui+1. To minimize, we set

d

dβi+1

f(xi+1) = ∇f(xi+1)Tui+1

= ui+1
T∇f(xi + βi+1ui+1)

= ui+1
T (A(xi + βi+1ui+1 − x∗))

= ui+1
T∇f(xi) + βi+1ui+1

TAui+1

= 0.

βi+1 = −ui+1
T∇f(xi)

ui+1
TAui+1

. (12)

Since ei =
∑n

k=1 αkuk, we multiply ui+1
TA on both side,

ui+1
TAei =

n∑
k=1

αkui+1
TAuk

=⇒ ui+1
TAei = αi+1ui+1

TAui+1

=⇒ ui+1
TAei = αi+1ui+1

TAui+1

=⇒ αi+1 =
ui+1

TAei
ui+1

TAui+1

=
ui+1

T∇f(xi)

ui+1
TAui+1

. (13)

From (12) and (13), we see that αi+1 = −βi+1. This guarantees that once we minimize the function
along one direction, we remove the error in that direction completely. Hence, if we set the step size

to be ui
T∇f(xi−1)
uiTAui

, we can finish the minimization process in at most n steps.

3.4.1 Some Properties

Claim 3.4.4. ∇f(xi) is orthogonal to uj for all j ≤ i, i ∈ {0, 1, . . . , n− 1}, j ∈ {1, . . . , i}.

Proof. We know that ei =
∑n

k=i+1 αkuk, for i ∈ {0, 1, . . . , n−1}. We multiply uj
TA, for some j ≤ i,

on both sides:

uj
T∇f(xi) = uj

TAei =
n∑

k=i+1

αkuj
TAuk = 0.

Claim 3.4.5. Let Bi−1 = {∇f(x0),∇f(x1), . . . ,∇f(xi−1)}, Di = {u1, u2, . . . , ui}, for any i ∈
{1, 2, . . . , n}. Then, span{Bi−1} = span{Di}

Proof. First, we prove that {u1, u2, . . . , ui} ⊆ span {∇f(x0),∇f(x1), . . . ,∇f(xi−1)}.

u1 = ∇f(x0) ∈ span{B0},

u2 = ∇f(x1) + γ1u1 = ∇f(x1) + γ1∇f(x0) ∈ span{B1},

20

...

ui = ∇f(xi−1) +
i−1∑
k=1

γkuk ∈ span{Bi−1}.

By definition, ui is a linear combination of ∇f(xi) and u1, u2, . . . , ui−1. By recursion, each ui ∈
span{Bi−1}. Hence, the forward direction is proved.

Next, we prove that {∇f(x0),∇f(x1), . . . ,∇f(xi−1)} ⊆ span{u1, u2, . . . , ui}. This direction is
obvious if we move some terms and express ∇f(xi) as a linear combination of ui:

∇f(x0) = u1 ∈ span{u1},

∇f(x1) = u2 − γ1u1 ∈ span{u1, u2},
...

∇f(xi−1) = ui −
i−1∑
k=1

γkuk ∈ span{u1, . . . , ui}.

From claim 3.4.4 and claim 3.4.5, we know that ∇f(xi) is orthogonal to Bi−1.

Claim 3.4.6. Let Ei−1 = {∇f(x0), A∇f(x0), . . . , Ai−1∇f(x0)}. Then span{Ei−1} = span{Bi−1},
for any i ∈ {1, 2, . . . , n}.

Proof. From (11), we get that

∇f(xi) = A(xi − x∗)
= A(xi−1 + βiui − x∗)
= ∇f(xi−1) + βiAui.

(14)

From Claim (3.4.5) and (14), we know that

∇f(xi) = ∇f(xi−1) + βiA

i−1∑
k=0

ak∇f(xk),

for some coefficients ak since ui can be expressed as a linear combination of ∇f(xk). We just need
to prove the base cases:

∇f(x0) = u1 ∈ span{E0},

∇f(x1) = ∇f(x0) + β1Au1 = ∇f(x0) + β1A∇f(x0) ∈ span{E1}.

Using recursion finishes the proof.

21

From claim 3.4.5 and claim 3.4.6, we get the result that span{Ei−1} = span{Di} and span{ADi} ⊆
span{Ei} = span{Bi}. Therefore, ∇f(xi+1) is orthogonal to span{ADi} for i ∈ {1, 2, . . . , n− 2}.

Next, we have proved a key fact that will be very helpful when we generate {uk}nk=1. By using
claim 3.4.6, we know that∇f(xk)

TAum = 0 for allm ∈ {1, 2, . . . , k−1}. Therefore, we can determine
all coefficients by Gram-Schmidt Algorithm:

γ1 = γ2 = · · · = γk−1 = 0,

γk = −∇f(xk)
TAuk

uTkAuk
,

uk+1 = ∇f(xk) + γkuk. (15)

Now we present the algorithm of conjugate gradient method. The following algorithm is written
with respect to the function f(x) = 1

2
xTAx+ bx+ c.

Algorithm 4: Conjugate Gradient Method

ConjugateGradient (A, b, x0, max iter);
Input : A, b, x0, max iter
Output: x∗

β = 0;
γ = 0;
count = 0;
n = size(A);
x = x0;
∇f(x) = Ax+ b;
u = Ax+ b;
while count ≤ n− 1 and count ≤ max iter do

count = count+ 1;

β = −uT∇f(x)
uTAu

;
x = x+ βu;
∇f(x) = Ax+ b;

γ = −∇f(x)TAu
uTAu

;
u = ∇f(x) + γu;

return x;

3.4.2 Simplification of the Algorithm

We can simplify the coefficients β and γ by modifying the following equations:

xi+1 = xi + βi+1ui+1,

Axi+1 + b = Axi + b+ βi+1Aui+1,

∇f(xi+1) = ∇f(xi) + βi+1Aui+1.

Multiplying ∇f(xi+1) and ∇f(xi) to the equation yields

‖∇f(xi+1)‖2 = βi+1∇f(xi+1)TAui+1,

‖∇f(xi)‖2 = −βi+1∇f(xi)
TAui+1,

(16)

22

since∇f(xi+1)·∇f(xi) = 0. From (15), we know that∇f(xi) = ui+1+γiui. Since ui+1 is A-conjugate
to ui, we combine (15) and (16):

‖∇f(xi)‖2 = −βi+1ui+1
TAui+1.

The variable γ used in the algorithm can be computed by:

γ =
‖∇f(xi)‖2

‖∇f(xi−1)‖2 .

From claim 3.4.4 we know that∇f(xi−1) is orthogonal to ui−1 and from (15), we get ui = ∇f(xi−1)−
γiui−1. Then the variable β used in the algorithm can be computed in the following way:

β = −∇f(xi−1)T (∇f(xi−1)− γiui−1)

uTi Aui
= −‖∇f(xi−1)‖2

uiTAui
.

Notice that we can not change the denominator into ‖∇f(xi)‖2 because by the time we compute
β, xi has not been updated yet. i.e., we still do not know the value of ‖∇f(xi)‖2.

Hence, we can simplify the above algorithm by replacing β, γ by what we just computed. Since
all the setup of function and variables remain the same, we only present the new version of the
while loop:

Algorithm 5: Conjugate Gradient Method’s While Loop

while count ≤ n− 1 and count ≤ max iter do
count = count+ 1;

β = −‖∇f(x)‖2
uTAu

;
x = x+ βu;
∇f(x)pre = ∇f(x);
∇f(x) = Ax+ b;

γ = ‖∇f(x)‖2

‖∇f(x)pre‖2
;

u = ∇f(x) + γu;

return x;

Next, we give two applications of the conjugate gradient method.

Example 3.4.7. In the first example, we use conjugate gradient method to find the optimal point
of a quadratic function with a symmetric positive definite matrix. Suppose f(x) = 1

2
xTAx+ bx+ c,

where A =

[
3 2
2 6

]
, b =

[
−2
5

]
, c = 3. ∇f(x) = Ax+b. The optimal point x∗ that gives the minimum

value of f is x∗ =

[
11
7
−19
14

]
. We choose an initial starting point x =

[
−3
5

]
.

23

Figure 8: Searching Path Figure 9: Conjugate Gradient Method

Figure 8 is the projection of Figure 9 onto the xy plane. The graph shows that conjugate gradient
method only takes 2 steps because the matrix A has dimension two. Figure 8 shows a searching
path with two directions. If we imagine two unit vectors in these two directions, the Figure 8 shows
the geometric explanation of A-conjugacy. Notice these two directions would be orthogonal to each
other if A = I.

Example 3.4.8. In the second example, we use a higher dimensional matrix A. The following graph
shows an example of using conjugate gradient method to solve the minimum value of the function
f(x) = 1

2
xTAx+ bx+ c.

Figure 10: The Conjugate Gradient Method in a Higher Dimension

Suppose we have an arbitrary 100×100 symmetric positive definite matrix A. We can construct
a random vector b with 100 entries and an arbitrary starting point x0 as a vector of 100 entries.

24

Figure 10 is the graph of the change of error ei with respect to each iteration step xi. It shows that
if we have a matrix with clustered eigenvalues, then conjugate gradient method takes much fewer
steps than the maximum number of iterations, i.e, the number of dimension of the matrix.

Here is a brief explanation of how the above matrix is designed. We first create a random
matrix A with size 100 × 100. Create a new symmetric matrix B by adding A with AT . Do
eigendecomposition on B to get its eigenvalue matrix D and eigenvector matrix V . Apply absolute
value to the eigenvalue matrix and add one, which guarantees that all eigenvalues are positive. We
denote the new eigenvalue matrix as D

′
. Finally, we can get a random symmetric positive definite

matrix by multiplying ATD
′
A.

Algorithm 6: Create a Random Symmetric Positive Definite Matrix

while count ≤ n− 1 and count ≤ max iter do
A = rand(100, 100);
B = A+ AT ;
[V,D] = eig(B);

D
′
= abs(D) + 1;

B
′
= ATD

′
A;

In summary, we conclude several advantages of the conjugate gradient method:

• The update formula of the conjugate gradient method is simple.

• For quadratic functions, the conjugate gradient method always converges in a finite number
of iterations.

• When the matrix has a very high dimension n but its eigenvalues are clustered, then the
method converges much faster than n steps.

• The algorithm need no storage of the matrix A, hence, memory efficient.

25

4 Newton’s Method

4.1 The descent direction

Suppose the objective function f(x) : Rn → R is C2 and its Hessian matrix is positive definite. Notice
that the second order differentiability guarantees the symmetry of its Hessian matrix and positive
definiteness guarantees the invertibility of the matrix. The second order Taylor approximation of
this function at x is

f(x+ ε) = f(x) +∇f(x)T ε+
1

2
εT∇2f(x)ε+O(‖ε‖3), ε > 0.

We assume the approximation is local and ε is not too big. Therefore, we can ignore the last term
that contains a third power of ε. Since ∇2f(x) is positive definite, we can view the approximate
function as a convex and quadratic function of the variable ε. To achieve its minimum, we choose
ε = −∇2f(x)−1∇f(x). The intuitive idea is that we try to minimize the approximate function that
satisfies the first and second order derivatives of the objective function and the minimizer is good
enough to serve as the descent direction for the objective function. For future notation, we denote
this quadratic approximation function as f̂(a+x) := f(a)+∇f(a)Tx+ 1

2
xT∇2f(a)x, for some fixed

point a.
Here is a picture illustrating the second order Taylor approximation of the objective function

f(x, y) = x2 + y2 + ex
2+y2 at the origin. In this case, the minimum of the quadratic approximation

function is the same as the minimum of the objective function.

Figure 11: Second Order Taylor Approximation

Another intuition for Newton’s method is the linear approximation of the gradient. The function
reaches its minimum specifically when ∇f(x) = 0. By linear approximation, ∇f(x+ ε) ≈ ∇f(x) +
∇2f(x)ε = 0. This suggests the same idea: ε = −∇2f(x)−1∇f(x).

26

The above explanations imply the idea of Newton’s method. The descent direction for New-
ton’s method is ∆x = −∇2f(x)−1∇f(x). The iteration step is xi+1 = xi + t∆xi, where ∆xi =
−∇2f(x)−1∇f(x). As before, t is a variable that determines the step size.

Theorem 4.1.1. Suppose we have a twice continuously differentiable function f whose Hessian
matrix is positive definite. Assume we have xi. By using Newton’s descent direction, we can find
xi+1 = xi − t∇2f(x)−1∇f(x) with an appropriate t such that f(xi+1) < f(xi).

Proof. Denote y = −∇2f(x)−1∇f(x). Define a function g(t) = f(xi + ty). The derivative of this
function is g′(t) = ∇f(xi + ty) · y. Plug in t = 0:

g′(0) = ∇f(xi) · y = −∇f(xi)
T∇2f(x)−1∇f(x).

Since ∇2f(x) is positive definite, we know that its inverse is also positive definite, which means that
g′(0) < 0. Then in a small neighborhood (−ε, ε), we know the function g is decreasing. There exists
t ∈ (−ε, ε) such that g(t) < g(0), which is the same as saying f(xi−t∇2f(x)−1∇f(x)) < f(xi). This
guarantees that with a proper choice of t, the Newton’s iteration step gives a sequence of points
with decreasing function value.

4.2 The Newton Decrement

The Newton decrement of f at x is defined to be

λ(x) = (∇f(x)T∇2f(x)−1∇f(x))
1
2 = (−∇f(x)T∆x)

1
2 .

The λ(xi) is obtained by computing the difference between f(xi) and its quadratic approximation:

f(xi)− inf
ε
f̂(xi + ε) = f(xi)− f̂(xi + ∆xi)

= f(xi)− (f(xi) +∇f(xi)
T∆xi +

1

2
∆xTi ∇2f(xi)∆xi)

= −∇f(xi)
T∆xi −

1

2
∆xTi ∇2f(xi)∆xi

= λ(xi)
2 − 1

2
λ(xi)

2

=
1

2
λ(xi)

2.

(17)

Therefore, λ(x) measures the difference between the objective function and the minimum of the
quadratic approximation at each x. Even though the minimum of the quadratic approximation is
not exactly the minimum of f , it is a good approximation. When x is close enough to the optimal
point x∗, the difference between inf f and inf f̂ should be fairly small, which means that λ(x∗) is
very small. Hence, λ(x) is a good stopping criterion for Newton’s method. As λ(x) gets small
enough, we can say that x is very close to x∗.

On top of that, the Newton decrement is also used in the backtracking line search. Recall that
the while condition for the backtracking line search is

f(x+ t∆x) ≤ f(x) + αt∇f(x)T∆x, (18)

27

where ∇f(x)T∆x = −λ(x)2.
However, why is the exact line search not a good approach? Remember that for the exact line

search we have to compute t such that d
dt
f(xi + t∆xi) = 0. Therefore, we need

d

dt
f(xi + t∆xi) = ∇f(xi + t∆xi)

T∆xi

= −∇f(xi + t∆xi)
T∇2f(x)−1∇f(x) = 0.

Since both ∇2f(x)−1 and ∇f(x) cannot be zero, we have ∇f(xi + t∆xi) = 0. Solving this equation
exactly is difficult unless there is a nice formula for ∇f.

Next, we talk about the affine invariant property of the Newton’s descent direction.
Suppose A ∈ Rn×n is a nonsingular matrix. Suppose we have a function f(x) : Rn → R. Define

a new function f1(y) = f(Ay), such that x = Ay. Then

∇f1(y) = AT∇f(x),∇2f1(y) = AT∇2f(x)A. (19)

Then Newton’s step for this new function f1 is

∆y = −∇2f1(y)
−1∇f1(y)

= −(AT∇2f(x)A)−1AT∇f(x)

= −A−1∇2f(x)
−1∇f(x)

= A−1∆x.

(20)

Hence, A∆y = ∆x. The descent directions of f1 and f follow the same affine transformation. For
Newton steps,

x+ t∆x = A(y + t∆y).

4.3 Convergence Analysis of Newton’s Method

To analyze the convergence of Newton’s method, we assume the following conditions about the
objective function f :

• f is C2.

• ∇2f(x) � mI,m > 0, meaning that the smallest eigenvalue of ∇2f(x) is at least m.

• ∇2f(x) �MI,M > 0, meaning that the largest eigenvalue of ∇2f(x) is at most M .

• ∇2f(x) is a Lipschitz function with constant L, i.e., ‖∇2f(x)−∇2f(y)‖2 ≤ L ‖x− y‖2 for
any x, y ∈ dom(f).

The Lipschitz condition provides a bound on the third derivative of f . When the function is
quadratic, we have ‖∇2f(x)−∇2f(y)‖2 = 0 and L can be chosen to be 0. So when L is small or
close to zero, the function can be well approximated by a quadratic function. As we will show in
the next section, if f is a quadratic function, Newton’s method takes only one step to reach the
optimal point x∗. Therefore, Newton’s method works well for functions that have small Lipschitz
constants.

28

Choose a number η ∈ (0, 3(1 − 2α)m
2

L
) where α is the coefficient used in the backtracking line

search, and m,L are defined above. Since α is an arbitrary number less than 1
2
, we assume α is not

too small, α ∈ (1
3
, 1

2
).We know that 3(1 − 2α)m

2

L
is greater than 0 because α is chosen to be less

than 1
2

and m,L are both positive.
There are two phases for the convergence of Newton’s method. The first phase is called the

Damped Newton Phase where ‖∇f(x)‖2 ≥ η. The second phase is called the Quadratically
Convergent Phase where ‖∇f(x)‖2 < η.

4.3.1 Damped Newton Phase

In this phase, Newton’s method uses the backtracking line search to determine the step size t. We
are going to show that there exists a number γ such that each iteration step results in a decrease
of at least γ in the objective function. We assume that ‖∇2f(x)‖ ≥ η. By the Taylor’s expansion
theorem,

f(x+ t∆x) = f(x) + t∇f(x)T∆x+
1

2
t2∆xT∇2f(y)∆x,

for some y between x and x+ t∆x. Since ∇2f(x) �MI, we get

f(x+ t∆x) ≤ f(x) + t∇f(x)T∆x+
1

2
t2M‖∆x‖2

2. (21)

By definition, ∇f(x)T∆x = −λ(x)2 and

λ(x)2 = ∆xT∇2f(x)∆x ≥ m‖∆x‖2
2. (22)

Therefore, (21) can be simplified into:

f(x+ t∆x) ≤ f(x)− tλ(x)2 +
t2M

2

λ(x)2

m
. (23)

Since (23) holds for all t, we choose t̃ = m
M

which is the minimizer of the right hand side.

f(x+
m

M
∆x) ≤ f(x)− m

M
λ(x)2 +

m

2M
λ(x)2

= f(x)− m

2M
λ(x)2

= f(x)− αm
M
λ(x).

(24)

Thus, t̃ = m
M

satisfies the exit condition of the while loop in the backtracking line search. We know
that it returns a step size t ≥ γ m

M
. Recall that γ is a variable used to shrink t at each iteration.

Notice that by definition,

λ(x)2 = ∇f(x)T∇2f(x)−1∇f(x) ≥ 1

M
‖∇f(x)‖2

2 .

Hence, plugging in t ≥ γ m
M

and reorganizing (24) yield:

f(xi)− f(xi+1) ≥ αγ
m

M
λ(x)2

≥ αγ
m

M2
‖∇f(x)‖2

2

≥ αγ
m

M2
η2.

(25)

29

Therefore, at each iteration step, the amount of decrease is at least αγ m
M2η

2. The total number of
iterations will be bounded by

f(x0)− f(x∗)

αγ m
M2η2

,

where x0 is the starting point and x∗ is the optimal point.

4.3.2 Quadratically Convergent Phase

In the Quadratically Convergent Phase, Newton’s method needs no backtracking line search because
we are going to prove that t = 1 satisfies the quit condition for the while loop. More importantly,
in this phase, f decreases quadratically at each step.

Remember we have two assumptions: η ≤ 3(1 − 2α)m
2

L
and ‖∇f(x)‖2 < η. We have not used

the Lipschitz condition in the Damped Newton Phase and we will use it here.
By the Lipschitz condition,∥∥∇2f(x+ t∆x)−∇2f(x)

∥∥
2
≤ L ‖t∆x‖2 . (26)

Define a new function f̃(t) = f(x + t∆x). Then f̃ ′′(t) = ∆xT∇2f(x + t∆x)∆x. This suggests
that we can multiply ∆x on both sides of (26) and get an inequality involving the second derivative
of f̃ :

|∆xT [∇2f(x+ t∆x)−∇2f(x)]∆x| ≤ tL ‖∆x‖3
2 ,

|∆xT∇2f(x+ t∆x)∆x−∆xT∇2f(x)∆x| ≤ tL ‖∆x‖3
2 ,

|f̃ ′′(t)− f̃ ′′(0)| ≤ tL ‖∆x‖3
2 ,

|f̃ ′′(t)− f̃ ′′(0)| ≤ tL
λ(x)3

m
3
2

,

(27)

where the last inequality follows by (22).
We can get an upper bound on f̃ by computing the integral twice. We know that

f̃ ′′(0) = ∆xT∇2f(x)∆x = λ(x)2,

and
f̃ ′(0) = ∇f(x)T∆x = −λ(x)2, f̃(0) = f(x),

which are conditions for determining constants in the indefinite integral. Then with the help of
(22) and above conditions, we integrate (27) one time and get:

f̃ ′′(t) ≤ f̃ ′′(0) + tL ‖∆x‖3
2 ,

f̃ ′(t) ≤ tf̃ ′′(0) +
t2L

2m
3
2

λ(x)3 − λ(x)2,
(28)

where f̃ ′(0) = −λ(x)2 and m
3
2 comes from (22). Integrating again gives

f̃(t) ≤ t2

2
λ(x)2 +

t3L

6m
3
2

λ(x)3 − λ(x)2t+ f(x)

= −t
2

2
λ(x)2 +

t3L

6m
3
2

λ(x)3 + f(x)

= −(
t2

2
− t3Lλ(x)

6m
3
2

)λ(x)2 + f(x).

(29)

30

Notice the above inequality looks similar to the while condition in the backtracking line search
except that the coefficient is more complicated than α. Now, we need to use our two assumptions:

λ(x) ≤ 1√
m
‖∇f(x)‖2 ≤ 3(1− 2α)

m
3
2

L
,

α ≤ 1

2
− Lλ(x)

6m
3
2

.

Therefore, when t = 1,

f(x+ ∆x) ≤ −(
1

2
− Lλ(x)

6m
3
2

)λ(x)2 + f(x)

≤ −αλ(x)2 + f(x).

This means that the step size t = 1 satisfies the backtracking line search exit condition. Next, we
prove that the rate of convergence is quadratic. Assume t = 1.

Theorem 4.3.1. If g is C1 and∇g is a Lipschitz function with constant L, i.e., ‖∇f(x)−∇f(y)‖2 ≤
L ‖x− y‖2 , then ∥∥g(x+ y)− g(x)−∇g(x)Ty

∥∥
2
≤ L

2
‖y‖2

2 .

Proof. Change the left hand side into an integral,

g(x+ y)− g(x)−∇g(x)Ty =

∫ 1

0

(∇g(x+ ty)−∇g(x))y dt

≤
∫ 1

0

L ‖y‖2
2 t dt =

L

2
‖y‖2

2 .

By using the above theorem with g = ∇f , y = ∆x, we get

‖∇f(x+ ∆x)‖2 =
∥∥∇f(x+ ∆x)−∇f(x)−∇2f(x)T∆x

∥∥
2

≤ L

2
‖∆x‖2

2

≤ L

2m2
‖∇f(x)‖2

2 .

(30)

Therefore, we get the desired result, ‖∇f(xi+1)‖2 ≤
L

2m2 ‖∇f(xi)‖2
2.

When ‖∇f(xi)‖2 < η,

‖∇f(xi+1)‖2 ≤
L

2m2
η2 ≤ 3(1− 2α)

m2

L

L

2m2
η ≤ 1

2
η,

where the last inequality comes from the fact that α ∈ (1
3
, 1

2
) implies 3(1− 2α) < 1.

Therefore, once the condition ‖∇f(xi)‖2 < η holds for some xi, it is going to be true for all
steps afterwards. This means that after xi the method moves into Quadratically convergent phase
and t = 1 is always satisfied.

31

Recall from the Gradient Descent Method, we get an inequality (5):

‖∇f(x)‖2 ≥ 2m(f(x)− f(x∗)).

Here, we can reuse this inequality because the objective function f satisfies all the conditions that
we used to derive this inequality. Readers can refer to the previous section to see the proof.

Suppose that starting from xi the method gets into the Quadratically convergent phase. Then
by applying (30) recursively, we get

f(xk)− f(x∗) ≤ 1

2m
‖∇f(xk)‖2

2

‖∇f(xk)‖2 ≤
L

2m2
‖∇f(xk−1)‖2

2 ≤ (
L

2m2
‖∇f(xi)‖)2k−i

2

(31)

We can simplify this even further:

L

2m2
‖∇f(xi)‖ ≤

L

2m2
3(1− 2α)

m2

L
≤ 1

2
,

‖∇f(xk)‖2
2 ≤

(
1

2

)2k−i

.

Therefore, we finally get

f(xk)− f(x∗) ≤ 1

2m

(
1

2

)2k−i

.

Suppose we want to obtain xk such that f(xk)− f(x∗) ≤ ε. We just need to make the upper bound
less than ε :

1

2m

(
1

2

)2k−i

≤ ε

2k−i ≥ log2 (2mε)−1

k ≥ i+ log2 log2 (2mε)−1.

In practice, we only need 5 or 6 steps because
(

1
2

)26
is already 5.42 ∗ 10−20. Therefore, combining

two phases, the total number of iterations are bounded by

f(x0)− f(x∗)

αγ m
M2η2

+ 6.

4.4 Algorithm

The following algorithm uses the backtracking line search to determine each iteration step size.

32

Algorithm 7: Newton’s Method

Newton’sMethod (f, x0, ε, α, γ);
Compute the initial λ2 and ∆x for x0;

while λ2

2
≥ ε do

xi+1 = xi + ∆x;
while f(xi)− f(xi+1) < −αt∇f(xi)

T∆x, do
t = γt;
xi+1 = xi + t∆x;

xi = xi+1;
∆x = −∇2f(xi)

−1∇f(xi);
λ2 = ∇f(xi)

T∇2f(xi)
−1∇f(xi);

return xi;

4.5 Examples

In what follows, we illustrate the method with two examples.

4.5.1 Quadratic function

Consider a quadratic function f(x) = 1
2
xTAx + bx + c where A is symmetric and invertible. We

know that ∆x = −A−1(Ax+ b) = −x− A−1b and ∇f(x) = Ax+ b. Thus,

x1 = x0 + ∆x0

= x0 − x0 − A−1b

= −A−1b,

which gives the minimum value for f . Hence, for any quadratic function, Newton’s method converges
in one step.

4.5.2 Exponential Function in R2

Consider a convex function

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1.

We can compute its gradient and Hessian matrix directly:

∇f(x1, x2) = ex1+3x2−0.1

[
1
3

]
+ ex1−3x2−0.1

[
1
−3

]
+ e−x1−0.1

[
−1
0

]
and

∇2f(x1, x2) = ex1+3x2−0.1

[
1 3
3 9

]
+ ex1−3x2−0.1

[
1 −3
−3 9

]
+ e−x1−0.1

[
1 0
0 0

]
.

Therefore, we know ∆x and λ. By using Newton’s method with a starting point x0 =

[
−5
−5

]
, we

get the following two graphs:

33

Figure 12: Error f(xi)− f(x∗) Figure 13: Damped Phase and Quadrati-
cally Convergent Phase: Plot of ζi

Figure 12 shows how the error f(xi)− f(x∗) decreases at each step. Here we see that Newton’s
method gives a convergent sequence of points which leads to x∗. In Figure 13, the vertical axis
represents ζi = f(xi)−f(x∗)

f(xi+1)−f(x∗)
, the old error divide by the new error. Once the algorithm gets into

the quadratically convergent phase(starting from index 9), ζi decreases quadratically, from approx-
imately 3 to 7 to 49. This means that (f(xi)−f(x∗))2 ≈ f(xi+1)−f(x∗) and ζ(i)2 ≈ ζ(i+1). From
the graph, we see that at step i = 10 and i = 11, ζ(10)2 ≈ ζ(11). This matches our convergence
analysis.

In summary, once the iteration step moves into the Quadratically Convergent Phase, Newton’s
method converges rapidly within 5 or 6 steps with high precision. However, storing the Hessian
matrix for each iteration is memory inefficient and the cost of matrix and vector multiplication is
expensive if the function has large dimensions.

In practice, we usually do not have precise estimates for constants, m,M,L, which are used to
set up a range for η and separate two convergence phases. This is a theoretically correct analysis.
Next, we are going to introduce a new type of function, called self-concordant function, whose
convergence analysis does not depend on these constants.

4.6 Newton’s Method for Self-concordant Functions

Definition 4.6.1. A function f(x) : R → R that has a third derivative and satisfies for all x ∈
dom(f),

|f ′′′(x)| ≤ 2f ′′(x)
3
2

is called a self-concordant function.

From the definition, a self-concordant function f is convex because f ′′(x) ≥ 0 and is also C2.

4.6.1 Affine Invariant Property

Theorem 4.6.2. Suppose we have a self-concordant function f(x) : R→ R. Define a new function
f̃(x) = f(ax+ b) for some constant a 6= 0 and b. Then f̃(x) is also self-concordant.

34

Proof. Since f̃ is an affine transformation of f , f̃ is also convex and has its third derivative. f̃ ′′′ =
a3f ′′′(ax+ b) and f̃ ′′ = a2f ′′(ax+ b). Since f is self-concordant and ax+ b ∈ dom(f), we get

|a3f ′′′(ax+ b)| ≤ 2(a2f ′′(x))
3
2 ,

|f̃ ′′′(x)| ≤ 2f̃ ′′(x)
3
2 .

Therefore, f̃ is also self-concordant.

Theorem 4.6.3. Self-concordance is preserved under scalar multiplication if the constant c ≥ 1
and addition.

Proof. The first part is straightforward. If c ≥ 1, then c
3
2 ≥ c. So c|f ′′′(x)| ≤ 2(cf ′′(x))

3
2 . Next,

suppose we have two self-concordant functions f1, f2 : R→ R. By definition and triangle inequality,
we have

|f ′′′1 (x) + f ′′′2 (x)| ≤ |f ′′′1 (x)|+ |f ′′′2 (x)|
≤ 2(f1

′′(x)
3
2 + f2

′′(x)
3
2)

≤ 2(f1
′′(x) + f2

′′(x))
3
2 .

The last inequality comes from the fact that u
3
2 + v

3
2 ≤ (u+ v)

3
2 .

Definition 4.6.4. A function f(x) : Rn → R is self-concordant if it is self-concordant along every
line in the domain, i.e., f̂(t) = f(x + tv) is a self-concordant function of t for all directions v and
for all x ∈ dom(f). In other words, f(x) : Rn → R satisfies

d

dt
∇2f(x+ tv)

∣∣∣∣∣
t=0

� 2
√
vT∇2f(x)v∇2f(x).

In higher dimensional cases, the affine invariant property becomes the following:
Suppose we have a self-concordant function f(x) : Rn → R. Let A ∈ Rn×m, b ∈ Rn. Then

f(Ax+ b) is also self-concordant.

Example 4.6.5. Consider the negative logarithm.
Let f(x) = − log(x), dom(f) = {x > 0}. Second derivative f ′′(x) = 1

x2
. Third derivative f ′′′(x) =

− 2
x3
. Obviously, |f ′′′(x)| = 2f ′′(x)

3
2 . From here, we know that functions f(x) =

∑n
k=1− log(bk −

akx) are all self-concordant because self-concordance is preserved under affine transformation and
addition. We can then generalize to functions of higher dimensions f(x) =

∑n
k=1− log(bk − akTx).

Example 4.6.6. Consider another function f(x) = x log(x)− log(x).
The domain of the function is dom(f) = {x > 0}. Second derivative f ′′(x) = x+1

x2
> 0. Third

derivative f ′′′(x) = −x+2
x3
. Then∣∣∣∣∣ f ′′′(x)

2f ′′(x)
3
2

∣∣∣∣∣ =
x+ 2

x3
· x3

2(x+ 1)
3
2

=
x+ 2

2(x+ 1)
3
2

=
1

2

(
1

(x+ 1)
1
2

+
1

(x+ 1)
3
2

)
,

which reaches it maximum 1 at x = 0. Therefore,∣∣∣∣∣ f ′′′(x)

2f ′′(x)
3
2

∣∣∣∣∣ = 1

and f is self-concordant.

35

We know that if the Hessian matrix of a function f is positive definite, then the function is
strictly convex. However, the converse is not true. For example, f(x) = x4 is strictly convex. The
second derivative at 0 is f ′′(0) = 0, which is not positive definite. It can be proved that the Hessian
matrix of a strictly convex self-concordant function is positive definite everywhere. Readers who
are interested can refer to [1].

Recall from the previous section that the Newton decrement is

λ(x) = (∇f(x)T∇2f(x)
−1∇f(x))

1
2 .

We are going to prove another way to express the Newton decrement.

Theorem 4.6.7. Let v be a descent direction. From (1), we know that v satisfies vT∇f ≤ 0. The
Newton decrement can be written as

λ(x) = sup
v 6=0

−vT∇f(x)

(vT∇2f(x)v)
1
2

.

Proof. We know that ∇2f(x) is positive definite. Define w = (∇2f(x))
1
2v, then v = (∇2f(x))−

1
2w

and (‖w‖2)2 = vT∇2f(x)v. Then

sup
vT∇2f(x)v=1

−vT∇f(x) = sup
‖w‖2=1

−wT (∇2f(x))−
1
2∇f(x)

=
∥∥∥(∇2f(x))−

1
2∇f(x)

∥∥∥
2

= (∇f(x)T∇2f(x)
−1∇f(x))

1
2

= λ(x).

The second line comes from

w =
−(∇2f(x))−

1
2∇f(x)∥∥∥(∇2f(x))−

1
2∇f(x)

∥∥∥
2

.

Since w can be any unit vector, to get the supremum of the right hand side, we let w point in the
direction of ∇2f(x))−

1
2∇f(x). Therefore,

λ(x) = sup
vT∇2f(x)v=1

−vT∇f(x) = sup
v 6=0

−vT∇f(x)

(vT∇2f(x)v)
1
2

.

The last equality is obvious because vT∇2f(x)v = 1.

From the previous theorem, we immediately get an inequality

λ(x) ≥ −vT∇f(x)

(vT∇2f(x)v)
1
2

, (32)

since λ(x) is the supremum. The equality is obtained when v = −∆x = ∇2f(x)−1∇f(x).

36

Theorem 4.6.8. Suppose f is a strictly convex self-concordant function. Then the self-concordance
inequality can be rewritten as ∣∣∣∣∣ ddt (f ′′(t))

− 1
2

∣∣∣∣∣ ≤ 1,

for all t ∈ dom(f).

Proof. The proof is very easy. The main point of this proof is to develop the upper and lower
bounds on f ′′(t). ∣∣∣∣∣ ddt (f ′′(t))

− 1
2

∣∣∣∣∣ =

∣∣∣∣∣− 1

2
(f ′′(t))

− 3
2 f ′′′(t)

∣∣∣∣∣ ≤ 1,

which is just another way of saying |f ′′′(x)| ≤ 2f ′′(x)
3
2 .

Assume t ≥ 0 and the interval [0, t] is contained in dom(f). Then we can integrate the derivative
between 0 and t: ∫ t

0

d

dx
(f ′′(x))

− 1
2 dx = f ′′(t)−

1
2 − f ′′(0)−

1
2 ∈ [−t, t].

Hence, we get
−t ≤ f ′′(t)−

1
2 − f ′′(0)−

1
2 ≤ t.

We can isolate f ′′(t):

f ′′(0)−
1
2 − t ≤ f ′′(t)−

1
2 ≤ t+ f ′′(0)−

1
2 ,

f ′′(0)

(1 + t
√
f ′′(0))2

≤ f ′′(t) ≤ f ′′(0)

(1− t
√
f ′′(0))2

.
(33)

The right hand side inequality is valid when f ′′(0)−
1
2 − t ≥ 0, that is 0 ≤ t ≤ f ′′(0)−

1
2 .

4.6.2 Bound on f(x)− f(x∗)

Assume the function f(x) : Rn → R is a strictly convex self-concordant function and v is a descent
direction but does not need to be the Newton direction. Let f̃(t) : R → R be f̃(t) = f(x + tv),
which is also strictly convex and self-concordant.

By using the lower bound of (33), we can integrate to get that

f̃ ′(t)− f̃ ′(0) =

∫ t

0

f̃ ′′(x)dx ≥
∫ t

0

f̃ ′′(0)

(1 + x
√
f̃ ′′(0))2

dx

= −

√
f̃ ′′(0)

1 + x
√
f̃ ′′(0)

∣∣∣∣∣
t

0

=

√
f̃ ′′(0)−

√
f̃ ′′(0)

1 + t
√
f̃ ′′(0)

.

f̃ ′(t) ≥ f̃ ′(0) +

√
f̃ ′′(0)−

√
f̃ ′′(0)

1 + t
√
f̃ ′′(0)

. (34)

37

We integrate (34) again and get

f̃(t) ≥ f̃(0) + tf̃ ′(0) + t

√
f̃ ′′(0)− log

(
1 + t

√
f̃ ′′(0)

)
. (35)

Notice that the right hand side is a convex function of t. Then we can find t∗ that reaches its
minimum, i.e., to solve for t when the derivative of the right-hand side is 0. We get

t∗ =
−f̃ ′(0)

f̃ ′′(0) +
√
f̃ ′′(0)f̃ ′(0)

.

Since (34) is always true for t ≥ 0, we can plug in t∗ and get:

inf
t≥0

f̃(t) ≥ f̃(0) + t∗f̃ ′(0) + t∗
√
f̃ ′′(0)− log

(
1 + t∗

√
f̃ ′′(0)

)
= f̃(0) +

(
f̃ ′(0) +

√
f̃ ′′(0)

)
−f̃ ′(0)

f̃ ′′(0) +
√
f̃ ′′(0)f̃ ′(0)

− log

1− f̃ ′(0)

f̃ ′′(0) +
√
f̃ ′′(0)f̃ ′(0)

√
f̃ ′′(0)

= f̃(0) +

−f̃ ′(0)√
f̃ ′′(0)

− log

 f̃ ′′(0)

f̃ ′′(0) +
√
f̃ ′′(0)f̃ ′(0)

= f̃(0)− f̃ ′(0)√

f̃ ′′(0)
+ log

1 +
f̃ ′(0)√
f̃ ′′(0)

 .

(36)

We did all these calculations because now we can treat f̃ ′(0)√
f̃ ′′(0)

as a variable. Notice that f̃ ′(0) =

vT∇f(x) and f̃ ′′(0) = vT∇2f(x)v. Recall the inequality we got for the Newton decrement. Here,
(32) can be rewritten as

λ(x) ≥ f̃ ′(0)√
f̃ ′′(0)

.

Consider the function g(x) = x + log(1 − x), (log is of base e). We know that g(0) = 0 and
g′(x) = −x

1−x , which is negative on (0, 1). So the function g is decreasing on (0, 1). Then the following
inequality is true for any descent direction v provided that λ(x) < 1,

− f̃ ′(0)√
f̃ ′′(0)

+ log

1 +
−f̃ ′(0)√
f̃ ′′(0)

 ≥ λ(x) + log(1− λ(x)). (37)

Combining (36),
f(x∗) = inf

t≥0
f̃(t) ≥ f̃(0) + λ(x) + log(1− λ(x)). (38)

38

On the last line, we have f(x∗) = inf
t≥0

f̃(t) because we can choose v to be any descent direction.

Notice that λ(x) + log(1 − λ(x)) ≥ −λ(x)2 on the interval λ(x) ∈ (0, 0.68). Then (38) can be
simplified into

f(x∗) ≥ f(x)− λ(x)2, λ(x)2 ≥ f(x)− f(x∗), (39)

provided that λ(x) < 0.68. Here we get the desired result.

Remember the termination condition for the general Newton’s method is λ(x)2

2
≤ ε. If the

objective function is self-concordant, then double the value still gives us a valid upper bound. In
conclusion, the termination condition of Newton’s method for self-concordant functions become
λ(x)2 < ε where ε < 0.682.

4.6.3 Convergence Analysis of Newton’s Method for Self-concordant Functions

Assume the objective function is strictly convex and self-concordant. Now we do not need upper,
lower bound on ∇2f(x) or the Lipschitz condition. Instead, we only use the assumption: self-
concordance and the Newton decrement will replace ‖∇f(x)‖2. Similar to the classic convergence
analysis of the Newton method, there are two phases: Damped Newton Phase where λ(xk) > η
and Quadratically Convergent Phase where λ(xk) ≤ η, η ∈ (0, 1/4).

4.6.4 Damped Newton Phase

Define f̃(t) = f(x+ t∆x). So far, we have not used the upper bound (33) for the second derivative
of self-concordant functions. We are going to use it now. Similar idea as before, we integrating the
upper bound of (33):

f̃ ′(t)− f̃ ′(0) =

∫ t

0

f̃ ′′(x)dx ≤
∫ t

0

f̃ ′′(0)

(1− x
√
f̃ ′′(0))2

dx

=

√
f̃ ′′(0)

1− x
√
f̃ ′′(0)

∣∣∣∣∣
t

0

=

√
f̃ ′′(0)

1− t
√
f̃ ′′(0)

−
√
f̃ ′′(0).

f̃ ′(t) ≤ f̃ ′(0) +

√
f̃ ′′(0)

1− t
√
f̃ ′′(0)

−
√
f̃ ′′(0). (40)

We integrate (40) again:

f̃(t) ≤ f̃(0) + tf̃ ′(0)− t
√
f̃ ′′(0)− log

(
1− t

√
f̃ ′′(0)

)
.

Plugging in f̃ ′(0) = −λ(x)2 and f̃ ′′(0) = λ(x)2, we get

f̃(t) ≤ f̃(0)− tλ(x)2 − tλ(x)− log (1− tλ(x)) . (41)

Remember the above inequality is valid when 0 ≤ t ≤ f ′′(0)−
1
2 = 1

λ(x)
.

39

Claim 4.6.9. The backtracking line search always ends up with a step size

t ≥ γ

1 + λ(x)
.

Proof. First of all,
γ

1 + λ(x)
<

1

λ(x)
because γ < 1, which is within the possible range for t. Let

t̃ = 1
1+λ(x)

. Plugging in t̃ to (41), we get

f̃(t̃) ≤ f̃(0)− t̃λ(x)2 − t̃λ(x)− log
(
1− t̃λ(x)

)
= f̃(0)− λ(x) + log(1 + λ(x)).

Now consider the function h(x) = −x+ log(1 + x) + x2

2(x+1)
. We know that for x > −1,

h(0) = 0, h′(x) =
−x2

2(1 + x)2
≤ 0.

Since the derivative is always less than 0, we know h is a monotonically decreasing function. Since
h(0) = 0, we know that

h(x) = −x+ log(1 + x) +
x2

2(x+ 1)
≤ 0.

Replacing x by λ(x), we get that

h(λ(x)) = −λ(x) + log(1 + λ(x)) +
λ(x)2

2(λ(x) + 1)
≤ 0,

− λ(x) + log(1 + λ(x)) ≤ −λ(x)2

2(λ(x) + 1)
≤ −αλ(x)2

(λ(x) + 1)
=
−αλ(x)2

t̃
.

(42)

Therefore, f(x)− f(x+) = f̃(0)− f̃(t̃) ≥ −αλ(x)2

t̃
, where f(x+) denotes the next step.

In conclusion, at the end of the backtracking line search, we have t ≥ γ
1+λ(x)

. At each iteration
step of the Damped Newton Phase, the function value decreases at least

αγ
λ(x)2

1 + λ(x)
≥ αγ

η2

1 + η
,

since x2

1+x
is an increasing function for x ≥ 0 and λ(x) > η.

4.6.5 Quadratically Convergent Phase

In order to show that the unit step size is always valid for the backtracking line search, we need to
restrict η to a smaller range. Take η = 1−2α

4
≤ 1

4
. Then λ(x) ≤ 1−2α

4
. Plugging in t = 1 to (41), we

get
f̃(1) ≤ f̃(0)− λ(x)2 − λ(x)− log (1− λ(x))

≤ f̃(0)− 1

2
λ(x)2 + λ(x)3.

(43)

40

The above inequality comes from the fact that −x − log(1 − x) ≤ 1
2
x2 + x3 for x ∈ [0, 0.816] and

λ(x) ≤ 1−2α
4

< 0.816. We can simplify the inequality even further:

λ(x) ≤ 1− 2α

4
,

1

2
− α ≥ λ(x),

λ(x)2(
1

2
− α− λ(x) ≥ 0) ≥ 0,

1

2
λ(x)2 − λ(x)3 ≥ αλ(x)2,

−1

2
λ(x)2 + λ(x)3 ≤ −αλ(x)2.

(44)

Therefore, (43) can be simplified into

f̃(1) ≤ f̃(0)− αλ(x)2,

or
f(x)− f(x+) = f̃(0)− f̃(1) ≥ αλ(x)2.

From this, we know that the unit step size t = 1 satisfies the exit condition of the backtracking line
search. To prove that the convergent rate is quadratic, we need the following inequality:

λ(x+) ≤
(

λ(x)

1− λ(x)

)2

,

which is true for λ(x) < 1. The proof will not be presented here but can be found in ***. Since we
have an even smaller upper bound λ(x) ≤ 1/4, we get that

1

(1− λ(x))2
≤ 2,

λ(x+) ≤ 2λ(x)2.

(45)

Hence, by (39), f(x+)− f(x∗) ≤ λ(x+)2 ≤ (2λ(x))2. Applying (45) recursively, we get that

f(xk)− f(x∗) ≤ λ(xk)
2 ≤

(
1

2

)1−2k

(λ(x0))2k

≤
(

1

2

)1−2k (
1

4

)2k

=

(
1

2

)2k+1

.

(46)

Lastly, similar to the classic Newton’s method, we can find an upper bound for the total number
of iterations:

(f(x0)− f(x∗))
1 + η

αγη2
+ 6.

From this convergence analysis, we see that self-concordance can replace strong convexity and
Lipschitz condition. The result is simpler and involves fewer variables.

41

5 Interior-point Method

In this section, we introduce the interior-point method, an algorithm that solves inequality con-
strained convex optimization problems. Recall the general form of such a problem from Definition
3.1.1:

minimize f0(x)

subject to fi(x) ≤ 0, for 1 ≤ i ≤ m,

hj(x) = 0, for 1 ≤ j ≤ n,

(47)

where f0, f1, . . . , fm : Rn → R are convex and C2 functions and h1, . . . , hn : Rn → R are affine
functions. Let D be the domain of this optimization problem and let X ⊆ D be the set of feasible
points, i.e., for all x ∈ X , fi(x) ≤ 0 and hi(x) = 0. Let f ∗ be the optimal value and x be the optimal
point that gives f0(x) = f ∗. Before we go into the details, we first introduce some basic definitions
about primal and dual problems.

5.1 Primal and Dual Problem

We refer to the above constrained convex optimization problem as the primal problem. Define the
Lagrangian equation L : Rn × Rm × Rn → R as

L(x, u, v) = f0(x) +
m∑
i=1

uifi(x) +
n∑
j=1

vihi(x),

where u ∈ Rm and v ∈ Rn are called Lagrange multipliers. We restrict the domain of u to be
Rm+ , i.e., ui ≥ 0 for all 1 ≤ i ≤ m, such that inequality constraints fi make sense.

For every x ∈ X , u � 0, we have L(x, u, v) ≤ f0(x). If we pick ui = 0 whenever fi(x) < 0, then

inf
x

sup
u�0, v

L(x, u, v) = inf
x
f0(x).

There u � 0 means ui ≥ 0 entry-wise.
Now we define the Lagrange Dual Function to be

g(u, v) = inf
x
L(x, u, v)

= inf
x

(
f0(x) +

m∑
i=1

uifi(x) +
n∑
j=1

vihi(x)

)
.

(48)

Given (47) and (48), we define the Lagrange Dual Problem as:

maximize
u�0,v

g(u, v)

subject to ui ≥ 0, for 1 ≤ i ≤ m. (49)

Let g∗ denote the optimal value of the Lagrange Dual Problem. The pair (u∗, v∗) with which g∗

is obtained is called dual optimal. For any fixed x ∈ X , L(x, u, v) is an affine function of u and

42

v. Then g can be viewed as the point-wise infimum of the affine function of u and v, and thus is
concave. The constraint u � 0 is an affine constraint. So system (49) is a concave maximization
problem, which is also a convex optimization problem.

In general, we do not have f ∗ = g∗, but f ∗ gives an upper bound for g∗, which leads to the
following result.

Theorem 5.1.1. The optimal value for the Primal problem is always greater than or equal to the
optimal value for the Dual problem (49), i.e., f ∗ ≥ g∗. This inequality is called the Weak Duality.

Proof. We know that
f ∗ = inf

x
sup
u�0, v

L(x, u, v),

g∗ = sup
u�0, v

inf
x
L(x, u, v).

Notice that the following inequality is necessary:

inf
x
L(x, u, v) ≤ sup

u�0, v
L(x, u, v).

Then we first take the infimum over x on both sides to get

inf
x
L(x, u, v) ≤ inf

x
sup
u�0, v

L(x, u, v),

and then take the supremum over u � 0, v on both sides,

sup
u�0, v

inf
x
L(x, u, v) ≤ inf

x
sup
u�0, v

L(x, u, v)⇒ f ∗ ≥ g∗.

The difference f ∗ − g∗ is called the Duality Gap and Strong Duality states that there are
x∗, u∗, v∗ such that f ∗ = g∗. The following result presents a sufficient condition under which strong
duality holds.

Theorem 5.1.2. Slater’s Condition
Suppose we have a convex optimization problem. If there exists at least one strictly feasible x in

the domain, then the strong duality holds.

Geometrically speaking, Slater’s Condition holds if the feasible region has an interior point.
Finally, we discuss the Karush-Kuhn-Tucker conditions or KKT conditions. These give us

additional necessary conditions. Given (47), the KKT conditions are

• ∇f(x) +
∑m

i=1 ui∇fi(x) +
∑n

j=1 vi∇hi(x) = 0 (Stationarity)

• uifi(x) = 0 for 1 ≤ i ≤ m (Complementary slackness)

• fi(x) ≤ 0, hj(x) = 0 for 1 ≤ i ≤ m (Primal feasibility)

• ui ≥ 0 for 1 ≤ i ≤ m (Dual feasibility)

43

Theorem 5.1.3. (x∗, u∗, v∗) are primal and dual solutions such that the strong duality holds if and
only if (x∗, u∗, v∗) satisfies the KKT conditions.

Proof. (⇒) Since the strong duality holds with (x∗, u∗, v∗), we know that

f(x∗) = g(u∗, v∗)

= inf
x

(
f0(x) +

m∑
i=1

u∗i fi(x) +
n∑
j=1

v∗i hi(x)

)

≤ f0(x∗) +
m∑
i=1

u∗i fi(x
∗) +

n∑
j=1

v∗i hi(x
∗)

≤ f(x∗).

We have the first inequality because plugging in any value for x would give a value greater than
the infimum over all x. The second inequality comes from the fact that fi(x) ≤ 0, u∗i ≥ 0, and
hi(x) = 0. Since we cannot have f(x∗) < f(x∗), all inequalities should be equality. Therefore,
we get x∗ gives the infimum of L(x, u, v) = f0(x) +

∑m
i=1 u

∗
i fi(x) +

∑n
j=1 v

∗
i hi(x), which shows the

stationarity condition. On top of that, the last equality tells us that
∑m

i=1 u
∗
i fi(x

∗) = 0, which is
the complementary slackness condition. Primal feasibility and dual feasibility are obviously true.
(⇐) By integrating the stationarity condition, we get the following:

g(u∗, v∗) = f0(x∗) +
m∑
i=1

u∗i fi(x
∗) +

n∑
j=1

v∗i hi(x
∗)

= f(x∗).

We get the last equality from complementary slackness and primal feasibility conditions. Hence,
we get that (x, u∗, v∗) satisfy that f(x∗) = g(u∗, v∗), which gives the strong duality.

5.2 Newton’s Method with Equality constraints

In this section, we talk about the extension of Newton’s method to optimization problems with
equality constraints. This method will play an important role for our later discussion about the
interior-point Method. Consider the following convex quadratic function with equality constraints:

minimize
1

2
xTAx+ bTx+ c

subject to Qx = q, (50)

where A is a Rn×n symmetric positive semi-definite matrix and Q ∈ Rp×n, rank(Q) = p < n. The
assumption on the dimension of Q says that there are fewer equality constraints than variables.

Since there is no inequality constraints, the KKT conditions can be simplified into the following:

• Ax+ b+QTv∗ = 0,

• Qx = q.

44

From the previous section, we know that x is the primal solution and v∗ is the dual solution if and
only if they satisfy the KKT conditions. The KKT conditions can be rewritten in the matrix form:[

A QT

Q 0

] [
x
v∗

]
=

[
−b
q

]
, (51)

which is a set of (n + p) linear equations. The coefficient matrix is called the KKT matrix. We
can solve for x, v∗ if the KKT matrix is non-singular. To answer this question, we introduce the
following theorem:

Theorem 5.2.1. Suppose A is a Rn×n symmetric positive semi-definite matrix and Q ∈ Rp×n such
that rank(Q) = p < n. Then the following are equivalent to KKT matrix being non-singular:

• N (A) ∩N (Q) = {0}, i.e., the only vector that satisfies Ax = Qx = 0 is the zero vector.

• Qx = 0, x 6= 0 implies xTAx > 0.

• F TAF � 0, where F ∈ Rn×(n−p) is a matrix such that R(F) = N (Q).

Proof. (1⇒ 2) Choose x 6= 0 ∈ N (Q). Since N (A) ∩N (Q) = {0}, we know that x /∈ N (A), which
means that xTAx > 0. Proved 2.

(2 ⇒ 3) Choose any x ∈ Rn−p. Then Fx = z for some z ∈ N (Q). xTF TAFx = zTAz. By the
Rank-Nullity Theorem, rank(A)+dim(N (A)) = n, i.e., dim(R(F)) = n − p. So dim(N (F)) = 0,
which means that N (F) = {0}. If z 6= 0, then we have x 6= 0 and xTF TAFx = zTAz > 0.
Therefore, for all x 6= 0, xTF TAFx > 0, which means that F TAF � 0.

(3 ⇒ 1) Choose any x 6= 0. dim(N (F)) = 0 implies that z = Fx 6= 0. R(F) = N (Q) implies
that z ∈ N (Q). Since F TAF � 0, we get that zTAz > 0 for all z 6= 0 ∈ N (Q). This means that
N (A) ∩N (Q) = {0}.

In conclusion, if A is instead a symmetric positive definite matrix, then the KKT matrix is
always non-singular.

Next, we discuss how Newton’s method can be applied. The previous discussion about convex
quadratic function is useful because we need to use the second order Taylor approximation. Suppose
we are interested in finding the minimum of a C2 function f : Rn → R whose Hessian matrix is
positive definite. Let Q be the same matrix that denotes the equality constraints. Assume that we
start at a feasible point x0 such that Qx0 = q. We approximate f(x0) by its second order Taylor
expansion f̂(x0 + v) and get the following minimization problem:

minimize
1

2
vT∇2f(x0)v +∇f(x0)Tv + f(x0)

subject to Q(x0 + v) = q, equivalently Qv = 0.
(52)

Here, the variable is v which is a descent direction that decreases the function value. Define the
Newton step ∆x to be the previous optimal solution x and v∗ as before to be the dual solution.
Similar to (51), the KKT conditions for this minimization problem become:

• ∇2f(x0)∆x+∇f(x0) +QTv∗ = 0,

• Q∆x = 0.

45

To write this in the matrix form, we get[
∇2f(x0) QT

Q 0

] [
∆x
v∗

]
=

[
−∇f(x0)

0

]
. (53)

Since ∇2f(x0) is positive definite, we know that the KKT matrix must be non-singular. So we
can always invert the matrix and solve for ∆x and v∗. Hence, we have computed the Newton step
∆x which is the optimal solution that satisfies the equality constraints and minimize the second
order approximation function. However, we still get some confusions that have not been verified
yet. How do we know that ∆x is a descent direction for f(x), i.e., f(x + t∆x) < f(x)? Similar to
the classic Newton’s method, how is Newton decrement λ(x) defined? Is λ(x) still a good estimate
of the distance between f(x) and inf

v
f̂(x+ v)?

5.2.1 Newton Decrement

We define the Newton decrement for the equality constrained optimization problem to be:

λ(x) = (∆xT∇2f(x)∆x)
1
2 .

This is actually the same definition as in chapter 4. Previously, we defined ∆x = −∇2f(x)−1∇f(x),

and λ(x) = (∆xT∇2f(x)∆x)
1
2 , which is our definition for the classic Newton’s method. Now, we

discover the relation between λ(x) and f(x)− inf
v
f(x+ v)

Theorem 5.2.2. The difference between f and its second order Taylor approximation satisfies

f(x)− inf{f̂(x+ v) |Qv = 0} = λ(x)2

2
.

Proof. Note that f̂ denotes the second order Taylor approximation of f . f̂(x + ∆x) = inf{f̂(x +
v) |Qv = 0}. The Newton step is defined by the KKT conditions:[

∇2f(x) QT

Q 0

] [
∆x
v∗

]
=

[
−∇f(x)

0

]
. (54)

From the first row of the KKT matrix, we get that

∇2f(x)∆x+QTv∗ = −∇f(x).

We multiply ∆xT to both sides of the equation:

∆xT∇2f(x)∆x = −∆xT∇f(x), (55)

because (Q∆x)Tv∗ = 0. Then

f̂(x+ ∆x) =
1

2
∆xT∇2f(x)∆x+∇f(x)T∆x+ f(x)

=
1

2
∆xT∇2f(x)∆x−∆xT∇2f(x)∆x+ f(x)

= −1

2
λ(x)2 + f(x).

(56)

So f(x)− f̂(x+ ∆x) = 1
2
λ(x)2 finishes the proof.

46

This theorem means that similar to the classic Newton’s method, 1
2
λ(x)2 is a good indicator of

the precision and serves as the stopping criterion. Now, we explain why ∆x is a descent direction
for f(x). We just need to check that the directional derivative of f in the direction ∆x is negative:

d

dt
f(x+ t∆x)

∣∣∣∣∣
t=0

= ∇f(x)T∆x = −λ(x)2 < 0.

So the Newton step is a descent direction for f(x).

5.2.2 Algorithm for Equality Constrained Newton’s Method

The following algorithm uses the backtracking line search to determine each iteration step size.

Algorithm 8: Newton’s Method with Equality Constraints

NewtonMethod (f, Q, x0, ε, α, γ);
Compute the initial λ2 and ∆x for x0;

while λ2

2
≥ ε do

xi+1 = xi + ∆x;
while f(xi)− f(xi+1) < −αt∇f(xi)

T∆x, do
t = γt;
xi+1 = xi + t∆x;

xi = xi+1;[
∆x
v∗

]
=

[
∇2f(x) QT

Q 0

]−1 [−∇f(x)
0

]
;

λ2 = ∆xT∇2f(x)∆x;

return xi;

5.3 Barrier Method and Logarithmic Barrier Function

Our goal now is to use equality constrained Newton’s method to solve the minimization problem
with both inequality and equality constraints. Recall the statement of the problem:

minimize f0(x)

subject to fi(x) ≤ 0, for 1 ≤ i ≤ m,

Ax = b,

(57)

where f0, f1, . . . , fm : Rn → R are convex and twice continuously differentiable functions and A ∈
Rp×n, rank(A) = p < n. Let D be the domain of this optimization problem. How can we transform
the problem to be a minimization problem with only equality constraints? The clever idea is that
we use a differentiable function to approximate the inequality constraint.

One immediate answer would be to use an indicator function to denote the inequality constraint,
that is

1{fi(x)>0} =

{
0 if f(x) 6= 0

1 if f(x) > 0
.

47

Then the original minimization problem can be changed into the following:

minimize f0(x) +
m∑
i=1

1{fi(x)>0} · ∞

subject to Ax = b.

We get rid of the inequality constraints but the objective function is no longer differentiable. So
using the indicator function is not a good choice. Our next step is to approximate this indicator
function.

We use the following log function to approximate the indicator function:

It(x) = −1

t
log(−x), dom(It) = −R+,

where t > 0 is a variable that determines the accuracy of the approximation. The following Figure
14 shows the approximation. The red curve has a much bigger value of t compared to the blue
curve. As a result, the red curve is a better approximation to the indicator function than the blue
curve. From the picture, we know that as t gets larger, It(x) approximates the indicator function
better. Unlike the indicator function, It(x) is convex, differentiable and it increases to positive
infinity as x goes to 0.

Figure 14: The Log Function Approximates the Indicator Function

We can update our minimization problem by replacing the indicator function with this log
function:

minimize f0(x) +
m∑
i=1

It(fi(x)) = f0(x) +
m∑
i=1

−1

t
log(−fi(x))

subject to Ax = b.

We define φ(x) = −
∑m

i=1 log(−fi(x)) with dom(φ(x)) = {x ∈ D|fi(x) < 0, i = 1, 2, . . . ,m} to
be the logarithmic barrier function. The above new objective function is convex and twice

48

continuously differentiable. To simplify the problem, we multiply t to the objective function and
get the following equivalent problem:

minimize tf0(x) + φ(x)

subject to Ax = b.
(58)

This new problem has a different minimum function value but the minimizer x∗ is the same as in
the previous problem. For now, we assume that the above minimization problem can be solved by
the equality constrained Newton’s method. Here we compute the gradient and Hessian matrix of
the objective function that will be useful when using Newton’s method:

∇(tf0(x) + φ(x)) = t∇f0(x) +∇φ(x) = t∇f0(x)−
m∑
i=1

∇fi(x)

fi(x)
,

∇2(tf0(x) + φ(x)) = t∇2f0(x) +∇2φ(x)

= t∇2f0(x) +
m∑
i=1

1

fi(x)2∇fi(x)T∇fi(x) +
m∑
i=1

1

−fi(x)
∇2fi(x).

For each t > 0, we have a corresponding minimization problem (58), from which we get a unique
solution x∗(t). We define the central path to be the set of points x∗(t), t > 0. Notice that x∗, u∗, v∗

all depend on t. Different t gives different value for these three variables. For future reference, we
use x∗, u∗, v∗ to mean x∗(t), u∗(t), v∗(t). By the KKT conditions, we know that points on the central
path x∗ that is strictly feasible satisfies

• t∇f0(x∗) +∇φ(x∗) + AT v̂ = 0, for some v̂ ∈ Rp,

• fi(x∗) < 0, for i = 1, 2, . . . ,m,Ax∗ = b.

From the above conditions, we can derive a dual solution (u∗, v∗) that satisfy

∇f(x∗) +
m∑
i=1

ui
∗∇fi(x∗) + ATv∗ = 0. (59)

Define u∗ and v∗ by the following formula:

ui
∗ =

−1

tfi(x∗)
for i = 1, 2, . . . ,m, and v∗ =

v̂

t
. (60)

We see that ui
∗ > 0 because fi(x

∗) < 0 and t > 0. In addition,

0 = t∇f0(x∗) +∇φ(x∗) + AT v̂

= t

(
∇f0(x∗)−

m∑
i=1

∇fi(x)

tfi(x)
+ ATv∗

)

= t

(
∇f0(x∗)−

m∑
i=1

ui
∗∇fi(x) + ATv∗

)
.

49

Therefore, we find the dual solution such that (59) is true. This means that x∗ minimizes the
Lagrangian equation L(x, u∗, v∗) = f0(x) +

∑m
i=1 ui

∗fi(x) + (Ax − b)Tv∗. Since the dual function
g(u∗, v∗) is defined to be the infimum of L(x, u∗, v∗) over all x, we get that

g(u∗, v∗) = f0(x∗) +
m∑
i=1

ui
∗fi(x

∗) + (Ax∗ − b)Tv∗

= f0(x∗) +
m∑
i=1

−1

tfi(x∗)
fi(x

∗) + (Ax∗ − b)Tv∗

= f0(x∗)− m

t
.

(61)

The last term (Ax∗ − b)Tv∗ disappears because Ax∗ = b. By Weak Duality, we know that

m

t
= f0(x∗)− g(u∗, v∗) ≥ f0(x∗)− f0

∗,

where we proved the important fact that f0(x∗(t)) approaches to the infimum of f0 as t → ∞. As
said before, x∗ is a variable that depends on t. In order to see this clearly, we write x∗ for x∗(t).

5.3.1 Algorithm for Barrier Method

Here, we present the algorithm. The following algorithm uses nested while loop. The outer while
loop generates a new objective function tf0 + φ and updates t and x∗. The inner while loop uses
Newton’s method to compute the minimizer x∗ given the objective function.

Algorithm 9: Newton’s Method With Equality Constraints

BarrierMethod (f0, fi, A, x0, ε, α, γ, t0 > 0, β > 1);
Compute the φ(x), KKT matrix and ∆x for x0;
t = t0;
while m/t ≥ ε do

1. Use equality constrained Newton’s method to minimize tf0 + φ with x0 as the
starting point and solve for x∗;

2. x0 = x∗;
3. t = βt;

return x0;

The iteration step for Newton’s method is the following:

Algorithm 10: Newton’s Method Iteration Step

while λ2

2
≥ ε do

xi+1 = xi + ∆x;
while f(xi)− f(xi+1) < −αt∇f(xi)

T∆x, do
t = γt;
xi+1 = xi + t∆x;

xi = xi+1;[
t∇2f0(x) +∇2φ(x) AT

A 0

] [
∆x
v∗

]
=

[
−t∇f(x)−∇φ(x)

0

]
;

λ2 = ∆xT∇2f(x)∆x;

50

6 Finite Element Method

In this section, we use one simple example to explain the essential idea of the Finite Element Method
without diving to much into the technical details. The example we will use is the Poisson Problem.
We also discuss the correction to convex optimization. Consider the following problem

−∆u = f in Ω,

u = 0 on ∂Ω,

where Ω ∈ Rd is a bounded domain and ∂Ω is the boundary of the domain Ω. Here, ∆u =
∑d

i=1 ∂
2
i u

is the Laplacian, which involves second order derivatives. To simplify the problem, we want to lower
the degree of the derivative by using integration by parts.

We letH(Ω) be the Hilbert space of functions v such that v ∈ L2(Ω), derivatives ∂1v, ∂2v, . . . , ∂nv
are in L2(Ω), and v = 0 on ∂Ω.

The Weak Formulation of the Poisson problem is derived from the following. We multiply the
equation ∆u = f by a function v that vanishes along ∂Ω, that is, v = 0 on ∂Ω. Then we integrate:∫

Ω

− (∆u) v dx =

∫
Ω

fv dx.

By using integration by parts, we get∫
Ω

− (∆u) v dx =

∫
Ω

−div(∇u · v) dx+

∫
Ω

∇u · ∇v dx

=

∫
Ω

∇u · ∇v dx
(62)

Here, we have used Gauss’s Theorem in vector analysis. Therefore, we have got∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx.

We redefine the integrals in the following way:

a(u, v) =

∫
Ω

∇u · ∇v dx, b(v) =

∫
Ω

fv dx.

So we have got a(u, v) = b(v) for all v ∈ H (Ω), u ∈ H (Ω). This is the weak formulation of the
original Poisson problem.

Instead of computing the exact solution for u, we want to obtain a good approximation. What
we will do is to try to solve the same problem in a finite-dimensional subspace of H (Ω) .

Let S ⊆ H (Ω) be a finite dimensional subspace. We know that a : H×H → R is a continuous
and bilinear function because

a(αu+ w, v) =

∫
Ω

α∇u · ∇v dx+

∫
Ω

∇w · ∇v dx = αa(u, v) + a(w, v).

51

Since a are symmetric, it follows that a(u, v) is bilinear. Similarly, b is also a continuous and linear
function because integration is a continuous linear function. The discrete version of the Poisson
problem becomes

finding U ∈ S such that a(U, V) = b(V) for all V ∈ S,
and U is called the discrete solution.

Now, we have got a modified version of the Poisson problem that is defined on a finite-dimensional
space. Then the next thing we want to do is to construct a basis for the subspace S and express
functions a(U, V) and b(V) in terms of that basis.

Suppose we have a basis (η1, η2, . . . , ηN) of S. Consider the matrix A ∈ RN×N formed by the
function a(U, V) evaluated at these basis functions. So we get

A(i, j) = a(ηi, ηj), 1 ≤ i, j ≤ N.

The matrix A is called the stiffness matrix of the discrete Poisson problem. Notice that A is a
symmetric matrix. Evaluating the function b by using the same basis functions, we get a vector in
RN , that is

bj = b(ηj), 1 ≤ j ≤ N.

This vector b is called the load vector of the discrete problem. With what we defined just now,
we present the following theorem.

Theorem 6.0.1. Suppose we are still using the same set of basis functions. The discrete solution
can be written as a linear combination of the basis, i.e.,

U =
N∑
j=1

xjηj.

Then the coefficient vector x = (x1, x2, . . . , xn) is the unique solution of the linear system of equa-
tions

Ax = b

where A is the stiffness matrix and b is the load vector.

Proof. Choose any V ∈ S such that V =
∑N

i=1 yiηi. By the definition of A and b, we know that
a(U, V) = b(V). Replacing U and V by their linear combinations and using the bilinearity of a(U, V)
yield

a(U, V) = a(U,
N∑
i=1

yiηi) =
N∑
i=1

yia(U, ηi) =
N∑
i=1

yia(
N∑
j=1

xjηj, ηi)

=
N∑
i=1

N∑
j=1

yixja(ηj, ηi) =
N∑
i=1

N∑
j=1

yixjAji = yTATx

= yTAx.

(63)

A similar computation for b(V) yields

b(V) = b(
N∑
i=1

yiηi) =
N∑
i=1

yib(ηi) =
N∑
i=1

yibi = yT b. (64)

52

So yTAx = yT b for all y ∈ RN . This means that Ax = b. In addition, a(V, V) = yTAy > 0 whenever
y 6= 0. This means that A is positive definite.

Example 6.0.2. We consider a specific one-dimensional Poisson problem:

−u′′ = 1 in (0, 1) = Ω and u(0) = u(1) = 0.

The Weak Formulation of this problem is the following:

for all v ∈ H((0, 1)), v(0) = v(1) = 0, a(u, v) =

∫
(0,1)

u′v′ dx, and b(v) =

∫
(0,1)

v dx.

Next, we try to generate a discrete version of the problem. We start from constructing the basis
functions. For simplicity, we choose the following set of trigonometric functions as the basis:

B = {sin(kπx) | k = 1, 2, . . . , N}.

Then the subspace spanned by this set of basis is

S =

{
N∑
k=1

ck sin(kπx) : ck ∈ R

}
.

The entry (i, j) of the stiffness matrix becomes

A(i, j) = a(ηi, ηj) =

∫
(0,1)

sin′(iπx)sin′(jπx) dx

= iπjπ

∫
(0,1)

cos(iπx)cos(jπx) dx

=
ijπ2

2

∫
(0,1)

cos((i+ j)πx) + cos((i− j)πx) dx

=

(iπ)2

2

∫
(0,1)

cos(2iπx) + 1 dx if i = j

ijπ2

2

∫
(0,1)

cos((i+ j)πx) + cos((i− j)πx) dx if i 6= j

=

(iπ)2

2
if i = j

0 if i 6= j
.

(65)

Notice that the stiffness matrix A has positive value on the diagonal and zero everywhere else.
The ith entry of the load vector b becomes

bi = b(ηi) =

∫
(0,1)

sin(iπx) dx

=
−1

iπ
cos(iπx)

∣∣∣∣∣
1

0

=
−1

iπ
cos(iπ) +

1

iπ

=

{
2
iπ

if i is odd

0 if i is even
.

(66)

To find the discrete solution U =
∑N

j=i xjηj, we just need to find the solution for Ax = b.

53

In this example, we have used a subspace spanned by trigonometric functions. The finite element
method uses a space S that is spanned by continuous functions that are piecewise linear with respect
to a partition of the interval into non-overlapping sub-intervals. The basis B are the so-called hat
functions.

Here is a picture of the discrete solution U and the real solution u = 1
2
(x−x2).5 The blue crosses

show the approximation U and the read smooth curve denotes the real solution u. We see that the
approximation is very precise.

Figure 15: Finite Element Method of the Poisson Problem

We now outline the relation to convex optimization. For the finite element method, we need to
solve the system Ax = b. This is equivalent to finding the minimum of the convex function

f0(x) =
1

2
xTAx− bTx.

We have seen such quadratic functions before. This shows how convex optimization is related to
the finite element method.

We can also use equality and inequality constraints. We can give the equality constraint xi = 0
or the inequality constraint xi ≥ 0. For example, that way we can fix the values of the function u
or require that u is non-negative.

5The picture is obtained from MATLAB. The code is provided in [2].

54

References

[1] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimization. Cambridge
university press, 2004.

[2] Andreas Byfut. Lecture notes in computational partial differential equations I, May 4 2007.

[3] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. NSERC, 1994.

[4] Wikipedia. Finite element method — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Finite\%20element\%20method&oldid=1014865140, 2021. [Online;
accessed 18-May-2021].

[5] Wikipedia. Interior-point method — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Interior-point\%20method&oldid=1008695689, 2021. [Online; ac-
cessed 06-May-2021].

55

