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Abstract. A spectrahedron is a convex set defined to be the solution set of a

linear matrix inequality, which is to say the set of all 𝑥 ∈ R𝑔 such that

𝐿𝐴(𝑥) = 𝐼 +𝐴1𝑥1 +𝐴2𝑥2 + · · ·+𝐴𝑔𝑥𝑔 ⪰ 0.

This notion can be extended by instead taking 𝑋 to be a tuple of real symmetric

matrices of any size 𝑛× 𝑛 using the Kronecker product

𝐿𝐴(𝑋) = 𝐼𝑛 ⊗ 𝐼𝑑 +𝐴1 ⊗𝑋1 +𝐴2 ⊗𝑋2 + · · ·+𝐴𝑔 ⊗𝑋𝑔

The solution set of 𝐿𝐴(𝑋) ⪰ 0 is called a free spectrahedron. Free spectrahedra

play an important roll in systems engineering, operator algebra, and the theory of

matrix convex sets. Matrix extreme points of free spectrahedra are of particular

interest.

The results of this paper fall into three main categories: theoretical, algorithmic,

and experimental. Firstly, we prove the existence of matrix extreme points of free

spectrahedra that are not free extreme. This is done by producing exact arithmetic

examples of matrix extreme points that are not free extreme. Secondly, we detail

a number of methods for constructing matrix extreme points of free spectrahedra

that are not free extreme, both exactly and approximately (numerically). We also

show how a recent result due to Kriel, found in [K19], can be used to efficiently test

whether a point is matrix extreme. Thirdly, we provide evidence, through a series

of numerical experiments, that there are a substantial number of matrix extreme

points of free spectrahedra that are not free extreme.
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1. Introduction

1.1. Matrix convex sets and free spectrahedra. A matrix 𝐵 ∈ 𝑀𝑛(R) is said to

be positive semidefinite if it is symmetric, i.e. 𝐵 = 𝐵𝑇 , and all of its eigenvalues

are nonnegative. Let

𝐵 ⪰ 0

denote that the matrix 𝐵 is positive semidefinite. Similarly, given two symmetric

matrices 𝐵1, 𝐵2 ∈ 𝑀𝑛×𝑛(R), let

𝐵1 ⪰ 𝐵2

denote that 𝐵1 −𝐵2 is positive semidefinite.

1.1.1. Matrix Convex Sets. Let 𝑆𝑀𝑛(R)𝑔 denote the set of all 𝑔-tuples of real sym-

metric 𝑛×𝑛 matrices 𝑋𝑖 and set 𝑆𝑀(R)𝑔 = ∪𝑛𝑆𝑀𝑛(R)𝑔. Similarly, we let 𝑀𝑚×𝑛(R)𝑔

denote the set of 𝑔-tuples of 𝑚× 𝑛 matrices with real entries.

Given some finite collection {𝑋 𝑖}ℓ𝑖=1 with 𝑋 𝑖 ∈ 𝑆𝑀𝑛𝑖
(R)𝑔 for each 𝑖 = 1, 2, . . . , ℓ,

a matrix convex combination of {𝑋 𝑖}ℓ𝑖=1 is a sum of the form

ℓ∑︁
𝑖=1

𝑉 𝑇
𝑖 𝑋 𝑖𝑉𝑖 with

ℓ∑︁
𝑖=1

𝑉 𝑇
𝑖 𝑉𝑖 = 𝐼𝑛

where 𝑉𝑖 ∈ 𝑀𝑛𝑖×𝑛(R) and

𝑉 𝑇
𝑖 𝑋 𝑖𝑉𝑖 =

(︀
𝑉 𝑇
𝑖 𝑋 𝑖

1𝑉𝑖, 𝑉
𝑇
𝑖 𝑋 𝑖

2𝑉𝑖, . . . , 𝑉
𝑇
𝑖 𝑋 𝑖

𝑔𝑉𝑖

)︀
∈ 𝑆𝑀𝑛(R)𝑔

for all 𝑖 = 1, 2, . . . , ℓ. We emphasize that the tuples 𝑋 𝑖 need not be the same size. A

matrix convex combination is called proper if 𝑉𝑖 is surjective for all 𝑖 = 1, 2, . . . , ℓ.

A set Γ ⊆ 𝑆𝑀(R)𝑔 is matrix convex if it is closed under matrix convex com-

binations. The matrix convex hull of a set Γ ⊆ 𝑆𝑀(R)𝑔 is the set of all matrix

convex combinations of the elements of Γ. Equivalently, the matrix convex hull of

Γ ⊆ 𝑆𝑀(R)𝑔 is the smallest matrix convex set containing Γ. That is, Γ is the inter-

section of all matrix convex sets containing Γ.

A set Γ ⊆ 𝑆𝑀(R)𝑔 is a matrix cone if given some finite collection {𝑋 𝑖}ℓ𝑖=1 with

𝑋 𝑖 ∈ 𝑆𝑀𝑛𝑖
(R)𝑔 for each 𝑖 = 1, 2, . . . , ℓ and 𝑉𝑛𝑖

∈ 𝑀𝑛𝑖×𝑛(R), then

ℓ∑︁
𝑖=1

𝑉 𝑇
𝑖 𝑋 𝑖𝑉𝑖 ∈ Γ.
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1.2. Free spectrahedra and linear matrix inequalities. In this paper, we pri-

marily concern ourselves with a specific class of matrix convex sets called free spec-

trahedra. A free spectrahedron is a matrix convex set which can be defined by a

linear matrix inequality. Fix a tuple 𝐴 ∈ 𝑆𝑀𝑑(R)𝑔 of 𝑑 × 𝑑 symmetric matrices. A

monic linear pencil 𝐿𝐴(𝑥) is a sum of the form

𝐿𝐴(𝑥) = 𝐼𝑑 + 𝐴1𝑥1 + 𝐴2𝑥2 + · · ·+ 𝐴𝑔𝑥𝑔.

Given a tuple 𝑋 ∈ 𝑆𝑀𝑛(R)𝑔, the evaluation of 𝐿𝐴 at 𝑋 is

𝐿𝐴(𝑋) = 𝐼𝑑 ⊗ 𝐼𝑛 + 𝐴1 ⊗𝑋1 + 𝐴2 ⊗𝑋2 + · · ·+ 𝐴𝑔 ⊗𝑋𝑔

where ⊗ denotes the Kronecker Product. A linear matrix inequality is an inequal-

ity of the form

𝐿𝐴(𝑋) ⪰ 0.

Let Λ𝐴(𝑋) denote the linear part of 𝐿𝐴(𝑋), i.e.

Λ𝐴(𝑋) = 𝐴1 ⊗𝑋1 + 𝐴2 ⊗𝑋2 + · · ·+ 𝐴𝑔 ⊗𝑋𝑔

so that 𝐿𝐴(𝑋) = 𝐼𝑑𝑛 + Λ𝐴(𝑋).

Given a 𝑔-tuple 𝐴 ∈ 𝑆𝑀𝑛(R)𝑔 and a positive integer 𝑛, we define the free

spectrahedron 𝒟𝐴 at level 𝑛, denoted 𝒟𝐴(𝑛), by

𝒟𝐴(𝑛) := {𝑋 ∈ 𝑆𝑀𝑛(R)𝑔 : 𝐿𝐴(𝑋) ⪰ 0}.

That is, 𝒟𝐴(𝑛) is the set of all 𝑔-tuples of 𝑛×𝑛 real symmetric matrices 𝑋 such that

the evaluation 𝐿𝐴(𝑋) is positive semidefinite. Defined the free spectrahedron 𝒟𝐴

to be the union over all 𝑛 of the free spectrahedron 𝒟𝐴 at level 𝑛, i.e.

𝒟𝐴 := ∪∞
𝑛=1𝒟𝐴(𝑛) ⊆ 𝑆𝑀(R)𝑔.

Lemma 1.1. Let 𝐴 ∈ 𝑆𝑀𝑑(R)𝑔 and let 𝒟𝐴 the the associated free spectrahedron.

Then 𝒟𝐴 is matrix convex.

Proof. The matrix convexity of free spectrahedra follows quickly from the fact that

𝐼𝑑𝑛 + Λ𝐴(𝑋) ⪰ 0 implies that 𝐼𝑑𝑛 ⊗ 𝑉 𝑇𝑉 + Λ𝐴(𝑉
𝑇𝑋𝑉 ) ⪰ 0. ■

We say a free spectrahedron is bounded if there is some fixed real number 𝐶 so

that

𝐶𝐼𝑛 −
𝑔∑︁

𝑖=1

𝑋2
𝑖 ⪰ 0

for all 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑔) ∈ 𝒟𝐴 and all positive integers 𝑛. It is routine to show

that a free spectrahedron is bounded if and only if 𝒟𝐴(1) is bounded [HKM13]. In our

definition of a free spectrahedron, we use a non-strict inequality. All free spectrahedra
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defined in this way are closed in the sense that each 𝒟𝐴(𝑛) is closed. Some authors

do not use such a definition and thus consider free spectrahedra that are not closed.

1.2.1. Homogeneous free spectrahedra. It is occasionally useful to consider the homo-

geneous free spectrahedron. Given a tuple 𝐴 ∈ 𝑆𝑀𝑑(R)𝑔 the homogeneous free

spectrahedron ℋ𝐴 at level 𝑛, denoted ℋ𝐴(𝑛), by

ℋ𝐴(𝑛) :=
{︀
𝑋 ∈ 𝑆𝑀𝑛(R)𝑔+1 : Λ𝐴(𝑋) ⪰ 0

}︀
and the homogeneous free spectrahedron ℋ𝐴 is defined as the union over all

positive integers 𝑛 of ℋ𝐴(𝑛), i.e.

ℋ𝐴 = ∪∞
𝑛=1ℋ𝐴(𝑛) ⊆ 𝑆𝑀(R)𝑔

1.3. Extreme points of free spectrahedra. The extreme points of matrix convex

sets and free spectrahedra are of particular interest, since they have Krein-Milman

type spanning properties. The paper will primarily consider three types of extreme

points: Euclidean extreme points, matrix extreme points, and free extreme points.

Given a matrix convex set Γ, we say 𝑋 ∈ Γ(𝑛) is a Euclidean extreme point

of Γ if 𝑋 cannot be written as a nontrivial classical convex combination of points in

Γ(𝑛). We note that this is the same as being a classical extreme point of Γ(𝑛). We

let 𝜕EucΓ denote the set of all the Euclidean extreme points of Γ.

Two tuples 𝑋,𝑍 ∈ Γ(𝑛) are said to be unitarily equivalent if there exists some

unitary matrix 𝑈𝑗 such that 𝑋𝑗 = 𝑈𝑇
𝑗 𝑍𝑗𝑈𝑗. We say a point 𝑋 ∈ Γ(𝑛) is a matrix

extreme point of Γ if whenever 𝑋 is written as a proper matrix convex combination

𝑋 =
ℓ∑︁

𝑖=1

𝑉 𝑇
𝑖 𝑋 𝑖𝑉𝑖 with

ℓ∑︁
𝑖=1

𝑉 𝑇
𝑖 𝑉𝑖 = 𝐼𝑛

of points 𝑋 𝑖 ∈ Γ for 𝑖 = 1, 2, . . . , ℓ, then for every 𝑖 = 1, 2, . . . , ℓ, we have 𝑉𝑖 ∈
𝑀𝑛×𝑛(R) and 𝑋 is unitarily equivalent to 𝑋 𝑖. We let 𝜕matΓ denote the set of all the

matrix extreme points of Γ.

Finally, we say a point 𝑋 ∈ Γ(𝑛) is a free extreme point of Γ if whenever 𝑋

is written as a matrix convex combination

𝑋 =
ℓ∑︁

𝑖=1

𝑉 𝑇
𝑖 𝑋 𝑖𝑉𝑖 with

ℓ∑︁
𝑖=1

𝑉 𝑇
𝑖 𝑉𝑖 = 𝐼𝑛

of points 𝑋 𝑖 ∈ Γ with 𝑉𝑖 ̸= 0 for each 𝑖, then for all 𝑖 = 1, 2, . . . , ℓ either 𝑉𝑖 ∈ 𝑀𝑛×𝑛(R)
and 𝑋 is unitarily equivalent to 𝑋 𝑖 or 𝑉𝑖 ∈ 𝑀𝑛𝑖×𝑛(R) where 𝑛𝑖 > 𝑛 and there exists

𝑍𝑖 ∈ Γ such that 𝑋 ⊕ 𝑍𝑖 is unitarily equivalent to 𝑋 𝑖. In words, a point 𝑋 is a free
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extreme point of Γ if it cannot be written as a nontrivial matrix convex combination

of points in Γ. We let 𝜕freeΓ denote the set of all the free extreme points of Γ.

1.3.1. Irreducible matrix tuples. Given a matrix 𝑀 ∈ 𝑀𝑛×𝑛(R), a subspace 𝑁 ⊆ R𝑛

is a reducing subspace if both 𝑁 and 𝑁⊥ are invariant subspaces of 𝑀 , which is

to say that 𝑁 is a reducing subspace of 𝑀 if 𝑀𝑁 ⊆ 𝑁 and 𝑀𝑁⊥ ⊆ 𝑁⊥. A tuple

𝑋 ∈ 𝑆𝑀𝑛(R)𝑔 is irreducible (over R) if the matrices 𝑋1, . . . , 𝑋𝑔 have no common

reducing subspaces in R𝑛; a tuple is reducible (over R) if it is not irreducible. Since
we will always be working over R in this paper, we will drop the use of “over R” and

simply refer to tuples as reducible or irreducible.

Remark 1.2. Given a matrix convex set Γ, if 𝑋 ∈ Γ is matrix extreme, then 𝑋 is

irreducible. This is proved over the complexes in [EHKM18, Theorem 1.1 (2)]. The

proof over the reals is similar.

1.4. Significance of free and matrix extreme points. The concept of matrix

extreme points was introduced by Webster and Winkler in [WW99]. It is known that

the matrix convex hull of the matrix extreme points of a matrix convex set Γ is equal

to Γ [WW99, K19]. In particular, this means that every point in a free spectrahedron

can be written as a matrix convex combination of matrix extreme points. It was

later shown in [EH19] that a free spectrahedron 𝒟𝐴 is the matrix convex hull of it’s

free extreme points. Moreover, the free extreme points are the smallest set with this

property.

Theorem 1.3 ([EH19, Theorem 1.1]). Let 𝐴 ∈ 𝑆𝑀𝑑(R)𝑔 such that 𝒟𝐴 is a bounded

free spectrahedron. Then 𝒟𝐴 is the matrix convex hull of its free extreme points.

Furthermore, if 𝐸 ⊆ 𝒟𝐴 is a set of irreducible tuples which is closed under unitary

equivalence and whose matrix convex hull is equal to 𝒟𝐴, then 𝐸 must contain the

free extreme points of 𝒟𝐴.

Thus, the free extreme points are, in some sense, the correct notion of extreme

points for free spectrahedra. Moreover, the set of all free extreme points of a free

spectrahedron must be contained in the set of all matrix extreme points.

1.5. Main Results. The results of this paper fall into three main categories: the-

oretical, algorithmic, and experimental. Firstly, we show the existence of matrix

extreme points of free spectrahedra that are not free extreme, thus proving that the

containment of free extreme points within matrix extreme points is, in some cases,

strict. This is done by producing exact arithmetic examples of matrix extreme points

that are not free extreme. Secondly, we detail a number of methods for constructing
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matrix extreme points of free spectrahedra that are not free extreme, both exactly

and numerically. We also show how a recent result due to Kriel, found in [K19], can

be used to efficiently test whether a point is matrix extreme. Thirdly, we provide evi-

dence, through a series of numerical experiments, that there are a substantial number

of matrix extreme points of free spectrahedra that are not free extreme.

The paper is organized as follows. Section 2 focuses on the background theory

underpinning our results. Of note is Theorem 2.2, a result of Kriel [K19], which allows

us to characterize matrix extreme points. In Section 3 we exhibit examples of tuples

that are matrix extreme points but not free extreme. Section 4 and Section 5 describe

algorithms for generating numerical and exact extreme points respectively. Section 4

focuses heavily on empirical observations resulting from a number of numerical exper-

iments; that leads us to believe that MnotA extreme points are not rare. Section 5

shows how a similar approach to that used in Section 4 can be modified to produce

matrix extreme points using exact arithmetic.

2. Background Theory

2.1. Minimal Defining Tuples. Throughout this paper, the size of the defining

tuple of a free spectrahedron will play an important role in our analysis. However,

we must note that the defining tuple of a free spectrahedron is not unique. For

instance, 𝐴 ∈ 𝑆𝑀𝑑(R)𝑔 and 𝐴 ⊕ 𝐴 both define the same free spectrahedron despite

𝐴 ⊕ 𝐴 being in 𝑆𝑀2𝑑(R)𝑔. Thus, we would not necessarily expect the size of the

defining tuple of a spectrahedron to be an inherent property of the free spectrahedron.

We can, however, overcome this with the concept of a minimal defining tuple.

Using [HKM13, Theorem 3.12 and Corollary 3.18], we can define a minimal defining

tuple ̃︀𝐴 ∈ 𝑆𝑀𝑑(R)𝑔 of a free spectrahedron 𝒟𝐴 as a tuple of minimal size such that

𝒟 ̃︀𝐴 = 𝒟𝐴. That is to say if ̃︀𝐴 ∈ 𝑆𝑀𝑑(R)𝑔 is a minimal defining tuple of 𝒟𝐴 then if

𝐴 ∈ 𝑆𝑀𝑛(R)𝑔 for 𝑛 < 𝑑, 𝒟𝐴 ̸= 𝒟 ̃︀𝐴. Throughout the rest of the paper, we will always
assume that the defining tuple of a free spectrahedron is minimal.

2.2. Characterizing Extreme Points. An important class of extreme points that

has yet to be discussed is the Arveson extreme points which arise from dilation

theory. A point 𝑋 ∈ Γ is an Arveson extreme point of Γ if

𝑌 =

(︃
𝑋 𝛽

𝛽𝑇 𝛾

)︃
∈ Γ
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implies 𝛽 = 0 for 𝛽 ∈ 𝑀𝑛×1(R)𝑔. We can also provide a similar definition of a

Euclidean extreme point in the language of dilation theory using the following propo-

sition.

Proposition 2.1 ([EHKM18, Corollary 2.3]). A point 𝑋 in a free spectrahedron 𝒟𝐴

is a Euclidean extreme point of 𝒟𝐴 if and only if

𝑌 =

(︃
𝑋 𝛽

𝛽 𝛾

)︃
∈ 𝒟𝐴

implies 𝛽 = 0 for 𝛽 ∈ 𝑆𝑀𝑛(R)𝑔.

A theorem of Kriel gives a similarly nice result regarding matrix extreme points.

Theorem 2.2 ([K19, Theorem 6.5.c]). A point 𝑋 in a bounded free spectrahedron

𝒟𝐴 is a matrix extreme point of 𝒟𝐴 if and only if (𝐼,𝑋) is on a classical extreme ray

of ℋ(𝐼,𝐴).

Proof. For the forward direction, suppose 𝑋 ∈ 𝒟𝐴(𝑛) is a matrix extreme point of

the bounded free spectrahedron 𝒟𝐴. By [E21, Lemma 2.2] and [K19, Theorem 6.5.b]

every element of ℋ(𝐼,𝐴)(𝑘) can be written in the form (𝑉 𝑇𝑉, 𝑉 𝑇𝑌 𝑉 ) for 𝑌 ∈ 𝒟𝐴(𝑘0)

and 𝑉 ∈ 𝑀𝑘0×𝑘(R) surjective. For 𝑖 = 1, 2, . . . ,𝑚, fix 𝑌 𝑖 ∈ 𝒟𝐴(𝑛𝑖), 𝑉𝑖 ∈ 𝑀𝑛𝑖×𝑛(R)
surjective, 𝛼𝑖 > 0 such that

(𝐼,𝑋) =
𝑚∑︁
𝑖=1

𝛼𝑖(𝑉
𝑇
𝑖 𝑉𝑖, 𝑉

𝑇
𝑖 𝑌 𝑖𝑉𝑖)

and (𝑉 𝑇
𝑖 𝑉𝑖, 𝑉

𝑇
𝑖 𝑌 𝑖𝑉𝑖) ∈ ℋ(𝐼,𝐴). Letting 𝑈𝑖 =

√
𝛼𝑖𝑉𝑖, we get

(𝐼,𝑋) =
𝑚∑︁
𝑖=1

(𝑈𝑇
𝑖 𝑈𝑖, 𝑈

𝑇
𝑖 𝑌

𝑖𝑈𝑖) = (
𝑚∑︁
𝑖=1

𝑈𝑇
𝑖 𝑈𝑖,

𝑚∑︁
𝑖=1

𝑈𝑇
𝑖 𝑌

𝑖𝑈𝑖),

and thus 𝑋 =
∑︀𝑚

𝑖=1 𝑈
𝑇
𝑖 𝑌

𝑖𝑈𝑖 is a proper convex combination. Since 𝑋 is assumed

to be matrix extreme, 𝑛𝑖 = 𝑛 and there is 𝑊𝑖 ∈ 𝑀𝑛×𝑛(R) unitary and 𝜆𝑖 > 0 such

that 𝑋 = 𝑊 𝑇
𝑖 𝑌

𝑖𝑊𝑖 and 𝑈𝑖 = 𝜆𝑖𝑊𝑖 for 𝑖 = 1, 2, . . . ,𝑚. So (𝑉 𝑇
𝑖 𝑉𝑖, 𝑉

𝑇
𝑖 𝑌 𝑖𝑉𝑖) is a scalar

multiple of (𝐼,𝑋).

For the reverse direction, suppose 𝑋 ∈ 𝒟𝐴(𝑛) such that (𝐼,𝑋) is on a classical

extreme ray of ℋ(𝐼,𝐴) and there are 𝑌 𝑖 ∈ 𝒟𝐴(𝑛𝑖) and 𝑉𝑖 ∈ 𝑀𝑛𝑖×𝑛 surjective for

𝑖 = 1, 2, . . . ,𝑚 with 𝐼 =
∑︀𝑚

𝑖=1 𝑉
𝑇
𝑖 𝑉𝑖 and𝑋 =

∑︀𝑚
𝑖=1 𝑉

𝑇
𝑖 𝑌 𝑖𝑉𝑖.Without loss of generality

we may assume 𝑛𝑖 = 𝑛 by replacing 𝑌 𝑖 with 𝑌 𝑖 ⊕ 0. Thus

(𝐼,𝑋) = (
𝑚∑︁
𝑖=1

𝑉 𝑇
𝑖 𝑉𝑖,

𝑚∑︁
𝑖=1

𝑉 𝑇
𝑖 𝑌 𝑖𝑉𝑖) =

𝑚∑︁
𝑖=1

(𝑉 𝑇
𝑖 𝑉𝑖, 𝑉

𝑇
𝑖 𝑌 𝑖𝑉𝑖).
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As (𝐼,𝑋) is on a classical extreme ray, (𝑉 𝑇
𝑖 𝑉𝑖, 𝑉

𝑇
𝑖 𝑌 𝑖𝑉𝑖) = 𝛼𝑖(𝐼,𝑋) for some 𝛼𝑖 > 0.

In particular 𝑉 𝑇
𝑖 𝑉𝑖 = 𝛼𝑖𝐼, so 𝑊𝑖 = (𝛼

− 1
2

𝑖 )𝑉𝑖 is unitary, 𝑉𝑖 is surjective, and 𝑋 is

unitarily equivalent to 𝑌 𝑖 for 𝑖 = 1, 2, . . . ,𝑚. ■

Corollary 2.3. If a point 𝑋 is in a bounded free spectrahedron 𝒟𝐴, then the following

are equivalent

(1) 𝑋 is a matrix extreme point of 𝒟𝐴

(2) (𝐼,𝑋) is on an classical extreme ray of ℋ(𝐼,𝐴)

(3) (𝛽0, 𝛽) ∈ 𝑆𝑀𝑛(R)𝑔+1 and

kerΛ(𝐼,𝐴)(𝐼,𝑋) ⊆ kerΛ(𝐼,𝐴)((𝛽0, 𝛽)) =⇒ (𝛽0, 𝛽) ∈ span((𝐼,𝑋))

(4) For (𝛽0, 𝛽), (𝛾0, 𝛾) ∈ 𝑆𝑀𝑛(R)𝑔+1

(𝑌0, 𝑌 ) =

(︃
(𝐼,𝑋) (𝛽0, 𝛽)

(𝛽0, 𝛽) (𝛾0, 𝛾)

)︃
∈ ℋ(𝐼,𝐴)

implies (𝛽0, 𝛽) ∈ span((𝐼,𝑋)).

Proof. The equivalence of Item 1 and Item 2 follows from Theorem 2.2. The equiva-

lence of Item 2 and Item 3 is [RG95, Corollary 4] by viewing (𝐼,𝑋) as an element of

R
𝑛(𝑛+1)(𝑔+1)

2 .

To show the equivalence of Item 3 and Item 4, let (𝛽0, 𝛽), (𝛾0, 𝛾) ∈ 𝑆𝑀𝑛(R)𝑔+1

such that

(𝑌0, 𝑌 ) =

(︃
(𝐼,𝑋) (𝛽0, 𝛽)

(𝛽0, 𝛽) (𝛾0, 𝛾)

)︃
By conjugating by permutation matrices, sometimes called canonical shuffles, we can

show that Λ(𝐼,𝐴)((𝑌0, 𝑌 )) is unitarily equivalent to(︃
Λ(𝐼,𝐴)((𝐼,𝑋)) Λ(𝐼,𝐴)((𝛽0, 𝛽))

Λ(𝐼,𝐴)((𝛽0, 𝛽)) Λ(𝐼,𝐴)((𝛾0, 𝛾))

)︃
.(2.1)

A routine calculation using the above then shows that if (𝑌0, 𝑌 ) ∈ ℋ(𝐼,𝐴) implies

ker Λ(𝐼,𝐴)((𝐼,𝑋)) ⊆ kerΛ(𝐼,𝐴)((𝛽0, 𝛽)).

It follows that Item 3 implies Item 4.

Now assume that Item 4 holds. Taking the Schur complement the matrix in

Equation (2.1) shows that Λ(𝐼,𝐴)((𝑌0, 𝑌 )) ⪰ 0 if and only if

Λ(𝐼,𝐴)((𝐼,𝑋))− Λ(𝐼,𝐴)((𝛽0, 𝛽))(Λ(𝐼,𝐴)((𝛾0, 𝛾)))
†Λ(𝐼,𝐴)((𝛽0, 𝛽)) ⪰ 0(2.2)
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and

Λ(𝐼,𝐴)((𝛾0, 𝛾)) ⪰ 0(2.3)

where † denotes the Moore-Penrose pseudoinverse. Fix (𝑍0, 𝑍) ∈ 𝑆𝑀𝑛(R)𝑔+1 such

that

ker Λ(𝐼,𝐴)((𝐼,𝑋)) ⊆ kerΛ(𝐼,𝐴)((𝑍0, 𝑍)).

Then, considering equations Equation (2.2) and Equation (2.3) shows that there is

some 𝛼 > 0 such that for (𝛾0, 𝛾) = (𝐼, 0) and (𝛽0, 𝛽) = 𝛼(𝑍0, 𝑍) we have (𝑌0, 𝑌 ) ∈
ℋ(𝐼,𝐴). By assumption, (𝛽0, 𝛽) must be in the span of (𝐼,𝑋) and thus, (𝑍0, 𝑍) is too.

■

Using these characterizations of Euclidean and matrix extreme points, we can

arrive at the following known result, see [EHKM18, Theorem 1.1].

Proposition 2.4. Let 𝒟𝐴 be a bounded free spectrahedron.

(1) A tuple 𝑋 is a free extreme point of 𝒟𝐴 if and only if 𝑋 is an irreducible

Arveson extreme point of 𝒟𝐴.

(2) If a tuple 𝑋 is a free extreme point of 𝒟𝐴, then 𝑋 is a matrix extreme point

of 𝒟𝐴.

(3) If a tuple 𝑋 is a matrix extreme point of 𝒟𝐴, then 𝑋 is a Euclidean extreme

point of 𝒟𝐴.

(4) If a tuple 𝑋 is an Arveson extreme point of 𝒟𝐴, then 𝑋 is a Euclidean extreme

point of 𝒟𝐴.

Proof. Item 1 and Item 4 are the subject of [EHKM18, Theorem 1.1], where the proof

is given working over C. The proof of Item 4 can be used over R without modification,

and the proof of Item 1 over R is given by [EH19, Theorem 1.2]. Item 2 follows from

[EH19, Theorem 1.1] which is given as Theorem 1.3 here. Item 3 follows from the

observation that if 𝑋 can be written as a nontrivial classical convex combination

𝑋 = 𝛼1𝑋
1+𝛼2𝑋

2+ · · ·+𝛼ℓ𝑋
ℓ, then (𝐼,𝑋) = 𝛼1(𝐼,𝑋

1)+𝛼2(𝐼,𝑋
2)+ · · ·+𝛼ℓ(𝐼,𝑋

ℓ)

is a nontrivial classical convex combination of points in ℋ(𝐼,𝐴). ■

From this proposition, we get the following corollary immediately.

Corollary 2.5. Let 𝒟𝐴 be a bounded free spectrahedron. If 𝑋 is a matrix extreme

point of 𝒟𝐴, then 𝑋 is a free extreme point of 𝒟𝐴 if and only if 𝑋 is an Arveson

extreme point of 𝒟𝐴.
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Proof. A point in 𝒟𝐴 is free extreme if and only if it is irreducible and Arveson

extreme. If 𝑋 is a matrix extreme point of 𝒟𝐴, then in particular 𝑋 is irreducible

and thus 𝑋 is free extreme if and only if 𝑋 is Arveson extreme. ■

Thus, if𝑋 is a matrix extreme point of𝒟𝐴, to show that𝑋 is not free extreme it is

sufficient to show it is not Arveson extreme. This result is particularly important as it

is computationally easier to determine if a point is Arveson extreme than to show it is

free extreme. This is because checking if a tuple is Arveson extreme is straightforward,

indeed it is equivalent to solving the upcoming linear system Equation (2.4). For this

reason, we will refer to the set of matrix extreme points that are not free extreme

points as MnotA extreme.

2.2.1. Extreme points and linear systems. It is possible to determine if a point 𝑋

in the free spectrahedron 𝒟𝐴 is extreme by solving a linear system. Given a free

spectrahedron 𝒟𝐴 and a point 𝑋 ∈ 𝒟𝐴 we let

𝑘𝐴,𝑋 := dimker𝐿𝐴(𝑋)

and let 𝐾𝐴,𝑋 : R𝑛𝑑 → R𝑘𝐴,𝑋 be a matrix who’s columns form an orthonormal basis

for the kernel of 𝐿𝐴(𝑋).

Proposition 2.6. Let 𝒟𝐴 be a bounded free spectrahedron and 𝑋 ∈ 𝒟𝐴(𝑛).

(1) 𝑋 is an Arveson extreme point of 𝒟𝐴 if and only if the only solution to the

homogeneous linear equations

Λ𝐴(𝛽
𝑇 )𝐾𝐴,𝑋 = (𝐴1 ⊗ 𝛽𝑇

1 + · · ·+ 𝐴𝑛 ⊗ 𝛽𝑇
𝑔 )𝐾𝐴,𝑋 = 0(2.4)

in the unknown 𝛽 ∈ 𝑀𝑛×1(R)𝑔 is 𝛽 = 0.

(2) 𝑋 is a Euclidean extreme point of 𝒟𝐴 if and only if the only solution to the

homogeneous linear equations

Λ𝐴(𝛽)𝐾𝐴,𝑋 = (𝐴1 ⊗ 𝛽1 + · · ·+ 𝐴𝑛 ⊗ 𝛽𝑔)𝐾𝐴,𝑋 = 0(2.5)

in the unknown 𝛽 ∈ 𝑆𝑀𝑛(R)𝑔 is 𝛽 = 0.

(3) 𝑋 is a matrix extreme point of 𝒟𝐴 if and only if the only solution to the

homogeneous linear equations

Λ(𝐼,𝐴)(𝛽0, 𝛽)𝐾𝐴,𝑋 = (𝐼 ⊗ 𝛽0 + 𝐴1 ⊗ 𝛽1 + · · ·+ 𝐴𝑛 ⊗ 𝛽𝑔)𝐾𝐴,𝑋 = 0(2.6)

⟨(𝐼,𝑋), (𝛽0, 𝛽)⟩ = tr(𝛽0 +𝑋𝑇
1 𝛽1 + · · ·+𝑋𝑇

𝑔 𝛽𝑔) = 0(2.7)

in the unknown (𝛽0, 𝛽) ∈ 𝑆𝑀𝑛(R)𝑔+1 is 𝛽 = 0.
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Proof. The proofs for each of the above results are all quite similar, so details of the

proofs for Item 1 and Item 2 will be omitted.

The assertion given in Item 1 regarding Arveson extreme points is the content of

[EH19, Lemma 2.1 (3)]. It is due to Evert and Helton.

The assertion given in Item 2 regarding Euclidean extreme points is the content

of [EHKM18, Corollary 2.3]. It follows from [RG95, Corollary 3] which is due to

Ramana and Goldman.

To show Item 3, we note that by Theorem 2.2 and Corollary 2.3 𝑋 is matrix

extreme if and only if for (𝛽0, 𝛽), (𝛾0, 𝛾) ∈ 𝑆𝑀𝑛(R)𝑔+1

(𝑌0, 𝑌 ) =

(︃
(𝐼,𝑋) (𝛽0, 𝛽)

(𝛽0, 𝛽) (𝛾0, 𝛾)

)︃
∈ ℋ(𝐼,𝐴)

implies (𝛽0, 𝛽) ∈ span((𝐼,𝑋)).

Clearly ker Λ(𝐼,𝐴)((𝐼,𝑋)) = ker𝐿𝐴(𝑋) so 𝐾𝐴,𝑋 is a matrix whose columns form

an orthonormal basis of ker Λ(𝐼,𝐴)((𝐼,𝑋)) as well. If there is a (𝛽0, 𝛽) such that

(𝑌0, 𝑌 ) ∈ ℋ(𝐼,𝐴) and (𝛽0, 𝛽) is not in the span of (𝐼,𝑋), then by Equation (2.3) it

follows that

ker Λ(𝐼,𝐴)((𝐼,𝑋)) ⊆ kerΛ(𝐼,𝐴)((𝛽0, 𝛽)).

We can write (𝛽0, 𝛽) = (𝛽′
0, 𝛽

′) + 𝛼(𝐼,𝑋) for 𝛼 ∈ R and (𝛽′
0, 𝛽

′) ̸= 0 satisfying

Equation (2.7). The containment

ker Λ(𝐼,𝐴)((𝐼,𝑋)) ⊆ kerΛ(𝐼,𝐴)((𝛽0, 𝛽)) = ker(Λ(𝐼,𝐴)(𝛼(𝐼,𝑋)) + Λ(𝐼,𝐴)((𝛽
′
0, 𝛽

′)))

implies that

ker Λ(𝐼,𝐴)((𝐼,𝑋)) ⊆ kerΛ(𝐼,𝐴)((𝛽
′
0, 𝛽

′)).

Hence, there is a nonzero (𝛽′
0, 𝛽

′) satisfying Equation (2.6) and Equation (2.7).

Conversely, if there is (𝛽0, 𝛽) satisfying Equation (2.6) and Equation (2.7), then

by taking (𝛾0, 𝛾) = (𝐼, 0) the argument above reverses to show 𝑋 is not matrix

extreme. ■

We can use Proposition 2.6 to obtain the following corollary.

Corollary 2.7. Let 𝐴 ∈ 𝑆𝑀𝑑(R)𝑔 be a minimal defining tuple for 𝒟𝐴 and let 𝑋 ∈
𝒟𝐴(𝑛). We define 𝑘𝐴,𝑋 = ker𝐿𝐴(𝑋). Then,

(1) if 𝑋 is Arveson extreme then

𝑔𝑛 ≤ 𝑑𝑘𝐴,𝑋(2.8)
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(2) if 𝑋 is Euclidean extreme then

𝑔(𝑛+ 1)

2
≤ 𝑑𝑘𝐴,𝑋(2.9)

(3) if 𝑋 is matrix extreme then

𝑛(𝑛+ 1)(𝑔 + 1)

2
≤ 𝑑𝑛𝑘𝐴,𝑋 + 1(2.10)

where 𝑘𝐴,𝑋 is the dimension of the kernel of 𝐿𝐴(𝑋).

For brevity, we will often refer to

(1)
⌈︀
𝑔𝑛
𝑑

⌉︀
as the Arveson extreme equation count

(2)
⌈︁
𝑔(𝑛+1)

2𝑑

⌉︁
as the Euclidean extreme equation count

(3)
⌈︁
(𝑛+1)(𝑔+1)

2𝑑
− 1

𝑛𝑑

⌉︁
as the matrix extreme equation count.

In this terminology, for 𝑋 to be a certain type of extreme point, the kernel dimension

𝑘𝐴,𝑋 must be at least as large as the corresponding extreme equation count.

Proof. The above inequalities result from comparing number of equations to number

of unknowns in the homogeneous linear equations given in Proposition 2.6. As an

example the proof for Item 3 will be given below.

Equation (2.6) and Equation (2.7) are a set of homogeneous linear equations in

the unknown 𝛽 ∈ 𝑆𝑀𝑛(R)𝑔+1. The matrix 𝛽 has 𝑛(𝑛+ 1)(𝑔 + 1)/2 scalar unknowns

so Equation (2.6) and Equation (2.7) can be written in the form 𝑀𝛽′ = 0 where

𝛽 =

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
𝛽011 𝛽012 · · · 𝛽01𝑛

𝛽012 𝛽022 · · · 𝛽02𝑛

...
...

. . .
...

𝛽01𝑛 𝛽02𝑛 · · · 𝛽0𝑛𝑛

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
𝛽111 𝛽112 · · · 𝛽11𝑛

𝛽112 𝛽122 · · · 𝛽12𝑛

...
...

. . .
...

𝛽11𝑛 𝛽12𝑛 · · · 𝛽1𝑛𝑛

⎞⎟⎟⎟⎠ , . . . ,

⎛⎜⎜⎜⎝
𝛽𝑔11 𝛽𝑔12 · · · 𝛽𝑔1𝑛

𝛽𝑔12 𝛽𝑔22 · · · 𝛽𝑔2𝑛

...
...

. . .
...

𝛽𝑔1𝑛 𝛽𝑔2𝑛 · · · 𝛽𝑔𝑛𝑛

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

𝛽′ = (𝛽′
0, 𝛽

′
1, · · · , 𝛽′

𝑛) ∈ R
𝑛(𝑛+1)(𝑔+1)

2

𝛽′
𝑖 = (𝛽𝑖11, 𝛽𝑖12, · · · , 𝛽𝑖1𝑛, 𝛽𝑖22, 𝛽𝑖23, · · · , 𝛽𝑖2𝑛, 𝛽𝑖33, · · · , 𝛽𝑖𝑛𝑛)

and 𝑀 ∈ 𝑀
𝑑𝑛𝑘𝐴,𝑋+1×𝑛(𝑛+1)(𝑔+1)

2

(R) (Equation (2.6) has 𝑑𝑛𝑘𝐴,𝑋 equations and Equa-

tion (2.7) is one). By the rank-nullity theorem, 𝑀 has a nontrivial null space and

thus there is a nontrivial 𝛽 solving Equation (2.6) and Equation (2.7) if and only if

𝑛(𝑛+ 1)(𝑔 + 1)

2
> 𝑑𝑛𝑘𝐴,𝑋 + 1 ⇐⇒

⌈︂
(𝑛+ 1)(𝑔 + 1)

2𝑑
− 1

𝑛𝑑

⌉︂
> 𝑘𝐴,𝑋 .

So if Equation (2.10) holds, 𝑀 has a trivial null space and the only 𝛽 solving Equa-

tion (2.6) and Equation (2.7) is 𝛽 = 0. Hence by Proposition 2.6 𝑋 is not matrix

extreme. ■
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Lemma 2.8. Let 𝐴 ∈ 𝑆𝑀𝑛(R)𝑔. If 𝑔 ≥ 𝑛(𝑛 + 1)/2, then 𝒟𝐴 is not bounded and

𝒟𝐴 is not the matrix convex hull of its Arv/Euc/Mat extreme points. Furthermore,

if 𝑔 > 𝑛(𝑛+ 1)/2 then 𝒟𝐴 has no extreme points.

Proof. Note that dim(𝑆𝑀𝑑(R)) = 𝑑(𝑑+1)/2. Using this it is straightforward to show

that the span of 𝐴1, . . . , 𝐴𝑔 must contain a positive semidefinite matrix, hence 𝒟𝐴 is

not bounded and is not the matrix convex hull of its extreme points.

Now suppose 𝑔 > 𝑑(𝑑 + 1)/2. In this case there must exist (𝛼1, 𝛼2, . . . , 𝛼𝑔) ∈ R𝑔

such that
∑︀

𝛼𝑖𝐴𝑖 = 0. A straightforward check shows that for any𝑋 = (𝑋1, . . . , 𝑋𝑔) ∈
𝒟𝐴 one has (𝑋1 + 𝛾𝛼1𝐼𝑛, . . . , 𝑋𝑔 + 𝛾𝛼𝑔𝐼𝑛) ∈ 𝒟𝐴 for all 𝛾 ∈ R, hence 𝑋 cannot be

extreme.

■

3. Exact Points

To prove an example has our claimed properties, numerical calculations will not

suffice due to the presence of some numerical error. However, usually it is difficult to

find extreme points of free spectrahedra with exact arithmetic. Even in the smallest

nontrivial case where the defining tuple 𝐴 ∈ 𝑆𝑀2(R)2 and the desired extreme point

𝑋 ∈ 𝒟𝐴(2), exactly computing 𝑋 by optimizing a linear functional requires comput-

ing an exact arithmetic solution to a semidefinite program with six variables and the

constraint 𝐿𝐴(𝑋) ⪰ 0 where 𝐿𝐴(𝑋) ∈ 𝑆𝑀4(R). If the size of the defining tuple or

the extreme point is greater than two, then computing even just a boundary point

would require finding an exact solution to det(𝐿𝐴(𝑋)) = 0, a polynomial equation

of degree greater than five which is often impossible. For this reason, in a majority

of cases, we opt to compute numerical extreme points instead of exact arithmetic

extreme points. However, for some values of 𝑔, we do have exact arithmetic examples

of MnotA extreme points which we exhibit here.

3.1. 𝑔 = 3 MnotA extreme example. Now we give an example for 𝑔 = 3 of a

bounded free spectrahedron 𝒟𝐴 and a MnotA extreme point 𝑌 in it. In this case,

𝐴 and 𝑌 have entries which are algebraic numbers and we have proved using exact

arithmetic that 𝑌 is in 𝒟𝐴 and is not Arveson extreme. To prove that 𝑌 is not matrix

extreme one only needs to check that the Matrix Extreme Equation (2.6) has no so-

lution. This we proved via floating point arithmetic by checking that the appropriate

matrix has smallest singular value equal to 0.0318244 while largest singular value is

not very large (< 5), hence it has no null space. In principle, one could prove this
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using exact arithmetic, but after running the example for a while we stopped as exact

arithmetic is not essential for the proof.

Now we state our example. Let

𝐴 =

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

0 0 −1 1

0 0 1 0

−1 1 0 1

1 0 1 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
−1 −1 1 1

−1 0 0 1

1 0 −1 −1

1 1 −1 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
−1 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

be the defining tuple of the free spectrahedron 𝒟𝐴 and

𝑌 =

⎛⎜⎝
⎛⎜⎝ 1

4
27
100

𝑏
27
100

− 13
100

𝑏

𝑏 𝑏 0

⎞⎟⎠ ,

⎛⎜⎝ − 27
100

21
100

3𝑏
21
100

7
100

𝑏

3𝑏 𝑏 0

⎞⎟⎠ ,

⎛⎜⎝ 7
50

− 49
100

3𝑏

− 49
100

3
10

0

3𝑏 0 0

⎞⎟⎠
⎞⎟⎠

where 𝑏 is the smallest positive root of the polynomial

𝑝1(𝑡) =20828330523− 3649588559100𝑡2 + 132250437590000𝑡4

− 651404153000000𝑡6 + 748026200000000𝑡8.

Then 𝑌 is a MnotA extreme point of 𝒟𝐴. We know that 𝑝 has a positive real zero

as 𝑝1(0) = 20828330523 and 𝑝1(
1
8
) = −208047637414661

32768
. So by the intermediate value

theorem, there must be a zero between 0 and 1
8
. We go into detail on how this point

was computed and proved to be a non-Arveson extreme point of 𝒟𝐴 in Section 5.

3.2. Exact arithmetic MnotA extreme point for 𝑔 = 4. For 𝑔 = 4, we have an

exact arithmetic example of a MnotA extreme point. Let 𝐴 = (𝐴1, 𝐴2, 𝐴3, 𝐴4) for

𝐴1 = diag

(︂
2, 0,−4, 0, 0, 0,−4, 0,

8

3

)︂
, 𝐴2 = diag

(︂
0, 4,−4, 0, 0, 0, 0,−8

3
,
8

3

)︂
𝐴3 = diag

(︂
0, 0, 0, 4, 0,−8

3
,−4, 0,

8

3

)︂
, 𝐴4 = diag

(︂
0, 0, 0, 0,

8

3
,−8

3
, 0,−8

3
,
8

3

)︂
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where diag(𝑣) is the diagonal matrix whose diagonal is the vector 𝑣, be the defining

tuple of the free spectrahedron 𝒟𝐴. Then the tuple 𝑋 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) for

𝑋1 =

(︃
−1

2
0

0 3
10

)︃

𝑋2 =

⎛⎝ 1
2

√
3
5

4√
3
5

4
−1

5

⎞⎠
𝑋3 =

(︃
1521520

√
3−619599

√
182

1019200
√
3−1197204

√
182

0

0 −1
4

)︃

𝑋4 =

⎛⎝ 5(1664
√
546−124455)

3143688
−4(1820

√
15+669

√
910)

392961

−4(1820
√
15+669

√
910)

392961
11200

√
546−429603

3143688

⎞⎠
is a MnotA extreme point of 𝒟𝐴.

The tuple 𝑋 was computed by first taking an interior point of 𝒟𝐴 with rational

entries, and then perturbing each entry in order increase the kernel dimension 𝑘𝐴,𝑋

to a suitable size. We can see the result of this method in the structure of 𝑋, as each

of the 𝑋𝑖’s is progressively more complicated.

Of note in this example is that the defining tuple 𝐴 is a tuple of diagonal matrices,

and thus 𝒟𝐴 is a polytope.

4. How Common Are Matrix Extreme Points?

While there exist points that are MnotA extreme for free spectrahedra in 𝑆𝑀𝑛(R)3

and 𝑆𝑀𝑛(R)4, as demonstrated in Section 3, there is still the question of how fre-

quently these points occur. To answer this question, we turn from methods of gen-

erating exact arithmetic extreme points to generating extreme points numerically.

Numerical testing is an effective way of generating and testing a large number of

points relatively quickly in order to get an idea (without proof) of whether or not

example points are rare.

The most obvious method of generating an extreme point of a free spectrahe-

dron 𝒟𝐴 would be to optimize a random linear functional ℓ(𝑋) under the constraint

𝐿𝐴(𝑋) ⪰ 0. However, in practice a surprisingly large majority of points generated by

this method are Arveson extreme and have large 𝑘𝐴,𝑋 , as shown in [EFHY21]. Intu-

itively, and in fact empirically, we expect that points with large 𝑘𝐴,𝑋 are more likely

to be Arveson extreme. This intuition is based on the result given in Corollary 2.7.
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As such, we wish to employ a method of generating extreme points that yields points

with small kernels.

4.1. Extreme Point Generation. In the experiments detailed below, we will em-

ploy the following algorithm for numerical extreme point generation.

Algorithm 4.1. Let 𝐴 ∈ 𝑆𝑀𝑑(R)𝑔 such that 𝒟𝐴 is a bounded real free spectrahe-

dron. Given an interior point 𝑋 ∈ 𝒟𝐴(𝑛), set 𝑌
0 = 1

1−𝜆
𝑋, where 𝜆 is the smallest

eigenvalue of 𝐿𝐴(𝑋). If 𝜆 = 1, we instead pick some 𝛿 < 1 and take 𝑌 0 = 1
1−𝜆𝛿

𝛿𝑋

where 𝜆𝛿 is the smallest eigenvalues of 𝐿𝐴(𝛿𝑋). This multiplication guarantees 𝑌 0 is

a boundary point of 𝒟𝐴(𝑛). For integers 𝑗 = 0, 1, 2, . . . such that 𝑌 𝑗 is neither an

Arveson extreme point of 𝒟𝐴 nor a matrix extreme point of 𝒟𝐴, define

𝑌 𝑗+1 :=

(︃
𝑌 𝑗 𝑐𝑗𝛽

𝑗

𝑐𝑗(𝛽
𝑗)𝑇 𝛾𝑗

)︃
where 𝛽𝑗 is a nonzero solution to

ker𝐿𝐴(𝑌
𝑗) ⊆ kerΛ𝐴(𝛽

𝑇 ), 𝛽 ∈ 𝑀𝑛×1(R)𝑔

and where 𝑐𝑗 and 𝛾𝑗 are solutions to the sequence of maximization problems

𝑐𝑗 := Maximizer
𝑐∈R,𝛾∈R𝑔

𝑐

s.t. 𝐿𝐴

(︃
𝑌 𝑗 𝑐𝛽𝑗

𝑐(𝛽𝑗)𝑇 𝛾

)︃
⪰ 0

and 𝛾𝑗 := Maximizer
𝛾∈R𝑔

ℓ(𝛾)

s.t. 𝐿𝐴

(︃
𝑌 𝑗 𝑐𝑗𝛽

𝑗

𝑐𝑗(𝛽
𝑗)𝑇 𝛾

)︃
⪰ 0.

Here ℓ is a random linear functional mapping R𝑔 to R.

Theorem 4.2. Let 𝒟𝐴 be a bounded free spectrahedron and let 𝑋 ∈ 𝒟𝐴. Then, with

probability 1 Algorithm 4.1 terminates after some finite number 𝑘 many steps and 𝑌 𝑘

is either a matrix extreme or Arveson extreme point of 𝒟𝐴.

Proof. Algorithm 4.1 is almost identical to the dilation algorithm discussed in [EFHY21,

Proposition 2.8] with the primary difference between the two algorithms being the

construction of the initial point and the termination of Algorithm 4.1 in the case that

some 𝑌 𝑖 is matrix extreme. Thus, [EFHY21, Proposition 2.8] provides a finite upper

bound on the number of steps that Algorithm 4.1 can take.
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Moreover, if Algorithm 4.1 terminates after 𝑘 steps, then either 𝑌 𝑘 is matrix

extreme or 𝑌 𝑘 is Arveson extreme as these are the only conditions under which the

algorithm terminates. ■

Given some 𝑌 𝑗 as above, 𝑌 𝑗+1 can be computed by solving two semidefinite

programs. The first optimization computes the 𝑐𝑗+1 and the second computes the

𝛾𝑗+1. These semidefinite programs can then be solved numerically. The introduction

of numerical error into the problem requires some consideration. The first main

consideration it that a given dilation step can fail in the sense that the dilation is not

a maximal 1 dilation. In this case, we discard this failed dilation step and try again

with a different 𝛽𝑗+1. The 𝛽𝑗+1 in question is chosen by first computing a basis for

the space of all 𝛽 such that ker(𝐿𝐴(𝑌
𝑗+1)) ⊆ ker(Λ𝐴(𝛽

𝑇 ) and then taking a random

convex combination of the basis vectors. Thus unless this space is one dimensional, we

expect with probability 1 that the newly generated 𝛽𝑗+1 will not be a scalar multiple

of the original.

In order to prevent an infinite loop, we impose a limit on the number of failed

dilation attempts on a single point to some maximum number. For the experiments

below, this maximum was taken to be ten, meaning a point could fail to dilate ten

times before the process was aborted. This number was chosen to be low as the

importance of any particular point out of 10,000 trials is relatively low. In cases

where it is important to dilate a particular point of interest to an Arveson or matrix

extreme points, it may be appropriate to take a maximum which is much higher.

Another aspect of the algorithm is that there is a 𝛾 ∈ 𝑆𝑀1(R)𝑔 that is generated
when we compute 𝑐𝑗+1, but this 𝛾 is “thrown out” and replaced with 𝛾𝑗+1 in the 𝑌 𝑗+1.

In our experiments described below, we omit this second step and keep the original

𝛾. Importantly, Theorem 4.2 does not guarantee the termination of this modified

algorithm, but in practice it has been shown to be effective.

Given a bounded free spectrahedron 𝒟𝐴, we can use Algorithm 4.1 to generate

many extreme points 𝑋 ∈ 𝒟𝐴(𝑛) such that 𝑘𝐴,𝑋 is relatively small. By producing a

large number of extreme points in such a manner and then counting the number of

MnotA extreme points, we can get a sense for how common such extreme points are.

4.1.1. What Do We Call Zero? There is another issue resulting from the introduction

of numerical error, namely, what does it mean for a point 𝑋 with floating point entries

to be an extreme point. We can think of such an 𝑋 as a sum 𝑋 = ̂︀𝑋 +𝑋𝛿 where ̂︀𝑋
is an extreme point of 𝒟𝐴 and 𝑋𝛿 as some small, nonzero error term. Such an 𝑋 may

not even be in 𝒟𝐴, and is likely not an extreme point. The best result we can hope



MATRIX EXTREME VERSUS FREE EXTREME 21

to achieve is for the entries of 𝑋𝛿 to be very small. Thus, instead of aiming to show

that 𝑋 is extreme, we aim to show that 𝑋 is close to being extreme in the sense that

𝑋𝛿 is small. We will call such points extreme candidates.

We can determine if a point 𝑋 is an extreme candidate of 𝒟𝐴 using a modified

version of Proposition 2.6. As an example, suppose we are attempting to show that 𝑋

is a Euclidean extreme candidate. As a reminder, a point 𝑌 ∈ 𝒟𝐴(𝑛) is a Euclidean

extreme point if and only if the only solution to the linear equation

Λ𝐴(𝛽)𝐾𝐴,𝑌 = 0

in the unknown 𝛽 ∈ 𝑆𝑀𝑛(R)𝑔 is 𝛽 = 0. Thus, the first step in determining if 𝑋 is an

extreme candidate is to compute the null space 𝐾𝐴,𝑋 using some numerical method.

The linear equation Λ𝐴(𝛽)𝐾𝐴,𝑋 = 0 has a matrix representation which we will denote

𝑀𝐴,𝑋,𝐸𝑢𝑐𝛽
′ = 0. This equation has a nontrivial solution if and only if 𝑀𝐴,𝑋,𝐸𝑢𝑐 has a

nontrivial null space. Thus, determining if 𝑋 is a Euclidean extreme candidate of 𝒟𝐴

can be reduced to determining if 𝑀𝐴,𝑋,𝐸𝑢𝑐 has a a singular value that we call zero.

We use the algorithm below to determine if such a singular value exists. We also use

the algorithm below to determine which right singular vectors are in the null space

of 𝐿𝐴(𝑋).

Algorithm 4.3. Let the matrix 𝑀 ∈ 𝑀𝑛×𝑚(R) with singular values (or eigenvalues

if 𝑀 is symmetric) 𝜆1, 𝜆2, . . . , 𝜆ℓ where ℓ = min(𝑛,𝑚) such that |𝜆𝑖| > |𝜆𝑖+1|. Let

𝜖𝑚, 𝜖𝑔 > 0 be given (𝜖𝑚 will be referred to as the magnitude tolerance and 𝜖𝑔 will

be referred to as the gap tolerance throughout this paper). A singular value 𝜆𝑖, for

𝑖 = 2, 3, . . . , ℓ, is said to be the first numerical zero if all of the following are true

(1) for all 𝑗 < 𝑖, 𝜆𝑗 is not the first numerical zero

(2) |𝜆𝑖| < 𝜖𝑚
(3) |𝜆𝑖/𝜆𝑖−1| < 𝜖𝑔.

In other words, a singular value 𝜆𝑖 is the first numerical zero if it is the first singular

value to be both smaller than the magnitude tolerance and have a sufficiently large

gap between it and the previous singular value.

A singular value 𝜆𝑖 is called a numerical zero if there exists some 1 < 𝑗 < 𝑖

such that 𝜆𝑗 is the first numerical zero.

For all of our experiments, we take 𝜖𝑚 = 𝜖𝑔 = 10−15 when determining if a point

is extreme, and 𝜖𝑚 = 𝜖𝑔 = 10−13 when computing the null space of 𝐿𝐴(𝑋). These

choices were made after extensive experimentation.
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4.1.2. Null Space Purification. The discussion in Section 4.1.1 demonstrate the im-

portance of limiting the numerical when computing the null space of 𝐿𝐴(𝑋). Im-

proving the numerical accuracy of 𝐾𝐴,𝑋 can significantly improve the accuracy of the

Arveson, Euclidean, and matrix extreme equations. One potential avenue for this is

to slightly perturb the extreme candidate 𝑋 so that the first numerical zero of 𝐿𝐴(𝑋)

is small. The question then arises as to how to compute such a perturbation.

The following algorithm, which we callNull Space Purification is an algorithm

that computes such a perturbation by solving a linear program. Linear programs

can be solved quickly and to a high degree of accuracy which makes this method

particularly effective.

Algorithm 4.4 (Null Space Purification). Let 𝒟𝐴 be a bounded free spectrahedron

and pick an extreme candidate 𝑋 of 𝒟𝐴. Let 𝐾𝐴,𝑋 denote the null space of 𝐿𝐴(𝑋)

which we compute using floating point arithmetic, and let 𝑘𝐴,𝑋 be the dimension of

𝐾𝐴,𝑋 . We know that 𝑘𝐴,𝑋 ≥ 1

Now, fix some 𝜖 > 0 and let 𝜂𝜖 ∈ R, 𝑋𝜖 ∈ 𝑆𝑀𝑛(R)𝑔 be the solution to the linear

program

𝜂𝜖, 𝑋𝜖 := Minimizer
𝜂∈R 𝑌 ∈𝑆𝑀𝑛(R)𝑔

𝜂

s.t. 𝜂 ≥ 0

max
𝑖=1,2,...,𝑑𝑛

[︀
𝐾𝑇

𝐴,𝑋𝐿𝐴(𝑋 + 𝑌 )𝐾𝐴,𝑋

]︀
𝑖𝑖
≤ 𝜂

||𝑌 ||∞ ≤ 𝜖

(4.1)

where || · ||∞ : 𝑆𝑀𝑛(R)𝑔 → R is defined as ||𝑋||∞ = max
𝑖,𝑗,𝑘

|𝑋𝑘𝑖𝑗| and 𝑋𝑘𝑖𝑗 is the 𝑖, 𝑗

entry of the 𝑘th matrix in the tuple 𝑋.

The use of Algorithm 4.3 allows us to set a gap and magnitude tolerance when

determining the null space of 𝐿𝐴(𝑋). This can be done by first numerically comput-

ing the eigendecomposition of 𝐿𝐴(𝑋) = 𝑉 𝑇𝐷𝑉 , using Algorithm 4.3 to determine

which eigenvalues of 𝐿𝐴(𝑋) are numerically zero, and then letting 𝐾𝐴,𝑋 be the space

spanned by the eigenvectors corresponding to the numerically zero eigenvalues. 𝐾𝐴,𝑋

can be expressed as a matrix with floating point entries whose columns that the

eigevectors of 𝐿𝐴(𝑋) corresponding to the numerically zero eigenvalues of 𝐿𝐴(𝑋).

Proposition 4.5. If 𝜖 > 0 and 𝜂𝜖, 𝑋𝜖 are as above, then ̂︀𝑋𝜖 = 𝑋 + 𝑋𝜖 has the

following properties.

(1) If 𝜆 = ||𝐿𝐴(𝑋)𝐾𝐴,𝑋 ||2, then 𝜂𝜖 ≤ 𝜆.

(2) If 𝜖 is sufficiently small, then ||𝐿𝐴( ̂︀𝑋𝜖)𝐾𝐴,𝑋 ||2 ≤ 𝜂𝜖.
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(3) If 𝜖 is sufficiently small, then 𝐿𝐴( ̂︀𝑋𝜖) ⪰ 0 in the sense that the eigenvalues of

𝐿𝐴( ̂︀𝑋𝜖) that are not numerically zero are positive.

Proof. To show Item 1, we note that 𝜂 = 𝜆, 𝑌 = 0 is a feasible point for Equa-

tion (4.1).

Now let 𝜈1, 𝜈2, . . . , 𝜈𝑑𝑛 be the eigenvalues of Λ𝐴(𝑋𝜖), 𝜆1, 𝜆2, . . . , 𝜆𝑑𝑛 be the eigen-

values of 𝐿𝐴(𝑋), and �̂�1, �̂�2, . . . , �̂�𝑑𝑛 be the eigenvalues of 𝐿𝐴(�̂�𝜖) with the convention

that the eigenvalues are in decreasing order by magnitude. Let 𝜆𝑖 = ||𝐿𝐴(𝑋)𝐾𝐴,𝑋 ||
with gap tolerance 𝛿. Item 2 holds if and only if |�̂�𝑖| < 𝛿|�̂�𝑖−1|. By comparison

with the Frobenius norm, |𝜈𝑗| ≤ (𝑔𝑑𝑛||𝐴||∞)𝜖 for all 𝑗 = 1, 2, . . . , 𝑑𝑛. Moreover, by

assumption |𝜆𝑖| < 𝛿|𝜆𝑖−1|, so 𝜇 := 𝛿|𝜆𝑖−1| − |𝜆𝑖| > 0. Thus, if 𝜖 = 𝜇/(3𝑔𝑑𝑛||𝐴||∞),

|�̂�𝑖| ≤ |𝜆𝑖|+ |𝜈𝑖|

≤ |𝜆𝑖|+
𝜇

3

< 𝛿|𝜆𝑖−1| −
𝜇

3
≤ 𝛿|�̂�𝑖−1|,

which proves Item 2. If we take 𝜖 = min(𝜇/(3𝑔𝑑𝑛||𝐴||∞), |𝜆𝑖−1|/(𝑔𝑑𝑛||𝐴||∞)) then

Item 3 holds as the numerically nonzero eigenvalues of 𝐿𝐴(�̂�𝜖) are �̂�1, �̂�2, . . . , �̂�𝑖−1,

and for 1 ≤ 𝑗 ≤ 𝑖− 1, |𝜈𝑗| ≤ |𝜆𝑖−1|, 𝜆𝑗 > 0, and

�̂�𝑗 > 𝜆𝑗 − |𝜈𝑗| > 𝜆𝑖−1 − 𝜆𝑖−1 = 0.

Thus Item 3 holds. ■

In order to increase the numerical accuracy of the extreme point candidates that

we generate using Algorithm 4.1, after each dilation step we perturb the dilated point

using null space purification. As the goal of these experiments is to generate MnotA

extreme points without much consideration for the actual points generated, this per-

turbation is acceptable. If there is particular importance to the initial boundary

point, the algorithm can be modified to avoid perturbing the original point, instead

only perturbing the columns and rows added in the dilation. The use of null space

purification greatly decreases the rate of failure in our experiments, especially for

𝑔 = 2.

4.2. Data From Our Experiements: Guide to the Tables. In our experiments,

we consider three different parameters 𝑔, 𝑑, and 𝑛0 where the defining tuple 𝐴 ∈
𝑆𝑀𝑑(R)𝑔 and the initial point, discussed in Algorithm 4.1, 𝑌 0 ∈ 𝑆𝑀𝑛0(R)𝑔. For every
pair 𝑔 and 𝑛0, we generated 10,000 extreme point candidates using Algorithm 4.1.

The defining tuples used were randomly generated irreducible tuples 𝐴 ∈ 𝑆𝑀𝑑(R)𝑔
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where 𝑑 = 𝑔, 𝑔 + 1, 𝑔 + 2, 𝑔 + 3. For each defining tuple, 25 points were generated;

100 defining tuples were generated for every value of 𝑑. Moreover, the generated

spectrahedra were checked to ensure they were bounded.

Throughout Section 4, our experimental data will be presented in tables with the

same format as in Table 1. Importantly, the tables describe the properties of the final

points generated by the algorithm, not any intermediates. Thus, in the language of

Algorithm 4.1, if 𝑌 0 ∈ 𝒟𝐴(𝑛0) is the initial boundary point and 𝑌 𝑘 ∈ 𝒟𝐴(𝑛0 + 𝑘)

is the final point, only 𝑌 𝑘 and not 𝑌 𝑗 for any 0 ≤ 𝑗 < 𝑘 will be represented in the

table. For each table, all of the generated points started at the same level 𝑛0, and

the 𝑛 given in column 3 is the level that the points ended at after being dilated.

For any given 𝑔, 𝑑, and 𝑛,

(1) #Mat not Arv, #Euc, and #Arv columns give how many of the points where

MnotA extreme, Euclidean extreme, or Arveson extreme point candidates

respectively

(2) ArvCT,MatCT column gives the Arveson extreme equation and matrix ex-

treme equation counts in that order

(3) 𝐾𝐴,𝑋 columns count the number of points with kernel dimension 𝑘𝐴,𝑋 =

1, 2, 3, 4, 5, > 5 (second number is the dimension of the space of all 𝛽 ∈
𝑀𝑛×1(R) such that ker𝐿𝐴(𝑌

0) ⊆ kerΛ𝐴(𝛽
𝑇 ))

(4) #Fail column counts the number of points which failed to dilate to a Euclidean

extreme point

In one case, a point was determined to be a MnotA extreme point candidate,

but the kernel dimension was uncertain. This case is marked with a 1 * .
A summary of our conclusions from the experiments can be found in Section 6

4.3. Matrix extreme points of spectrahedra for 𝑔 = 2. We now narrow our

focus to the case where 𝑔 = 2. In this case, we conducted the experiment described

above, generating 10,000 extreme point candidates for 𝑑 = 2, 3, 4, 5. Extreme point

candidate generation for 𝑔 = 2 has a failure rate which is much higher (∼ 0.7%) than

any other value of 𝑔 that we tested. This higher rate of failure is the result of a large

number of failed dilation steps which results in the tests taking significantly longer.

A common theme throughout all of our experiments is that we only find examples

of MnotA extreme point candidates when the matrix extreme equation count is

strictly less than the Arveson extreme equation count. That is, we only find MnotA

extreme point candidates when the minimum kernel size of 𝐿𝐴(𝑋) necessary to be

matrix extreme is strictly less than the minimum kernel size necessary to be Arveson
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extreme. We would expect this behavior if the matrix extreme and Arveson extreme

equations were randomly generated, but they have structure.

We do, however, find parameter ranges where the matrix extreme equation count

is strictly smaller than the Arveson extreme equation count, but no MnotA extreme

point candidates were found. Stronger still, we find parameters, such as 𝑔 = 2, 𝑑 = 3,

𝑛 = 5, where we find Euclidean extreme points with kernel dimensions sufficiently

large to be called matrix extreme, yet none were determined to be matrix extreme

candidates.
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g = 2, Starting 𝑛0 = 3, 10000 Points

g d n
#Mat

#Euc #Arv
ArvCT, K𝐴,𝑋

#Fail
not Arv MatCT 1 2 3 4 5 >5

2

2

3 0 0 0 3,3 0 0 0 0 0 0 0

4 0 0 0 4,4 0 0 0 0 0 0 0

5 0 2500 2500 5,5 0 0 0 0 2500;4 0 0

6 0 0 0 6,6 0 0 0 0 0 0 0

7 0 0 0 7,6 0 0 0 0 0 0 0

3

3 0 0 0 2,2 4;3 0 0 0 0 0 4

4 0 1773 1746 3,3 0 27;3 1746;3 0 0 0 0

5 0 502 432 4,3 0 0 70;3 432;3 0 0 0

6 0 221 221 4,4 0 0 0 83;3 138;3 0 0

7 0 0 0 5,4 0 0 0 0 0 0 0

4

3 0 6 0 2,2 6;2 0 0 0 0 0 0

4 0 2494 2494 2,2 0 956;2 1537;2 0 0 0 0

5 0 0 0 3,3 0 0 0 0 0 0 0

6 0 0 0 3,3 0 0 0 0 0 0 0

7 0 0 0 4,3 0 0 0 0 0 0 0

5

3 0 519 0 2,2 519;1 0 0 0 0 0 0

4 0 1981 1981 2,2 0 828;1 1153;1 0 0 0 0

5 0 0 0 2,2 0 0 0 0 0 0 0

6 0 0 0 3,3 0 0 0 0 0 0 0

7 0 0 0 3,3 0 0 0 0 0 0 0

Table 1
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g = 2, Starting 𝑛0 = 4, 10000 Points

g d n
#Mat

#Euc #Arv
ArvCT, K𝐴,𝑋

#Fail
not Arv MatCT 1 2 3 4 5 >5

2

2

4 0 0 0 4,4 0 0 0 0 0 0 0

5 0 0 0 5,5 0 0 0 0 0 0 0

6 0 0 0 6,6 0 0 0 0 2;6 0 2

7 0 2498 2498 7,6 0 0 0 0 0 2498 0

8 0 0 0 8,7 0 0 0 0 0 0 0

3

4 0 0 0 3,3 9;5 0 0 0 0 0 9

5 0 178 0 4,3 0 14;5 178;5 0 0 0 14

6 0 1988 1973 4,4 0 0 15;5 713;5 1260;5 0 0

7 0 179 171 5,4 0 0 0 8;5 171;5 0 0

8 35 132 97 6,5 0 0 0 0 35;5 97 0

4

4 0 0 0 2,2 19;4 0 0 0 0 0 19

5 0 1816 1786 3,3 0 30;4 1786;4 0 0 0 0

6 0 665 665 3,3 0 0 291;4 374;4 0 0 0

7 0 0 0 4,3 0 0 0 0 0 0 0

8 0 0 0 4,4 0 0 0 0 0 0 0

5

4 0 25 0 2,2 25;3 0 0 0 0 0 0

5 0 2475 2475 2,2 0 727;3 1748;3 0 0 0 0

6 0 0 0 3,3 0 0 0 0 0 0 0

7 0 0 0 3,3 0 0 0 0 0 0 0

8 0 0 0 4,3 0 0 0 0 0 0 0

Table 2



28 AIDAN EPPERLY, ERIC EVERT, J. WILLIAM HELTON, IGOR KLEP

g = 2, Starting 𝑛0 = 5, 10000 Points

g d n
#Mat

#Euc #Arv
ArvCT, K𝐴,𝑋

#Fail
not Arv MatCT 1 2 3 4 5 >5

2

2

5 0 0 0 5,5 0 0 0 0 0 0 0

6 0 0 0 6,6 0 0 1;8 0 0 0 1

7 0 0 0 7,6 0 0 0 0 0 0 0

8 0 0 0 8,7 0 0 0 0 0 2 2

9 0 2497 2497 9,8 0 0 0 0 0 2497 0

3

5 0 0 0 4,3 18;7 0 0 0 0 0 18

6 0 30 0 4,4 0 26;7 30;7 0 0 0 26

7 0 1332 1293 5,4 0 0 36;7 39;7 1293;7 0 36

8 384 929 529 6,5 0 0 0 16;7 384;7 529 0

9 0 79 74 6,5 0 0 0 0 5;7 74 0

4

5 0 0 0 3,3 19;6 0 0 0 0 0 19

6 0 1744 1707 3,3 0 37;6 1707;6 0 0 0 0

7 0 498 447 4,3 0 0 51;6 447;6 0 0 0

8 0 239 239 4,4 0 0 0 119;6 120;6 0 0

9 0 0 0 5,4 0 0 0 0 0 0 0

5

5 0 0 0 2,2 59;5 0 0 0 0 0 59

6 0 1823 1724 3,3 0 99;5 1724;5 0 0 0 0

7 0 618 618 3,3 0 0 266;5 352;5 0 0 0

8 0 0 0 4,3 0 0 0 0 0 0 0

9 0 0 0 4,3 0 0 0 0 0 0 0

Table 3

4.4. Matrix Extreme Points of Spectrahedra for 𝑔 = 3. We conducted the

experiments analogous to those in Section 4.3 for defining tuples 𝐴 ∈ 𝑆𝑀𝑑(R)3 and

𝑑 = 3, 4, 5, 6. As in 𝑔 = 2, for parameters where the matrix extreme equation count

is equal to the Arveson extreme equation count, we do not find any MnotA extreme

point candidates. Aside from this, there are some notable distinctions between the

𝑔 = 2 and 𝑔 = 3 cases.

Firstly, we can see that only four points failed to dilate to either Arveson or

matrix extreme for 𝑔 = 3 compared to 209 points for 𝑔 = 2. Because of this, we

can see that for a given 𝑔, 𝑑, and 𝑛, we usually find points with only one of two

different kernel dimensions. The failed points in the 𝑔 = 2 data made it difficult for

this phenomenon to be seen.

Secondly, there is a much larger array of parameters at which we find MnotA

extreme point candidates. With the exception of 𝑔 = 3, 𝑑 = 4, 𝑛 = 5 (and higher
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values of 𝑛 which no points dilated to), for every 𝑔, 𝑑, and 𝑛 where the matrix

extreme equation count is strictly less than the Arveson extreme equation count we

find MnotA extreme point candidates. The 𝑑 = 4, 𝑛 = 5 exception may be due to

experimental design as all the points that started at 𝑛0 = 2 and 𝑛0 = 3 only needed

one dilation step to reach Arveson or matrix extreme, and all the points that started

at 𝑛0 = 4 needed at least 3.
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g = 3, Starting 𝑛0 = 2, 10000 Points

g d n
#Mat

#Euc #Arv
ArvCT, K𝐴,𝑋

#Fail
not Arv MatCT 1 2 3 4 5 >5

3

3

2 0 0 0 2,2 0 0 0 0 0 0 0

3 0 2500 2500 3,3 0 0 2500;3 0 0 0 0

4 0 0 0 4,4 0 0 0 0 0 0 0

5 0 0 0 5,4 0 0 0 0 0 0 0

6 0 0 0 6,5 0 0 0 0 0 0 0

4

2 0 0 0 2,2 0 0 0 0 0 0 0

3 261 2500 2239 3,2 0 261;2 2239;2 0 0 0 0

4 0 0 0 3,3 0 0 0 0 0 0 0

5 0 0 0 4,3 0 0 0 0 0 0 0

6 0 0 0 5,4 0 0 0 0 0 0 0

5

2 0 119 0 2,2 119;1 0 0 0 0 0 0

3 0 2381 2381 2,2 0 428;1 1953;1 0 0 0 0

4 0 0 0 3,2 0 0 0 0 0 0 0

5 0 0 0 3,3 0 0 0 0 0 0 0

6 0 0 0 4,3 0 0 0 0 0 0 0

6

2 0 2500 2500 1,1 2500;0 0 0 0 0 0 0

3 0 0 0 2,2 0 0 0 0 0 0 0

4 0 0 0 2,2 0 0 0 0 0 0 0

5 0 0 0 3,2 0 0 0 0 0 0 0

6 0 0 0 3,3 0 0 0 0 0 0 0

Table 4
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g = 3, Starting 𝑛0 = 3, 10000 Points

g d n
#Mat

#Euc #Arv
ArvCT, K𝐴,𝑋

#Fail
not Arv MatCT 1 2 3 4 5 >5

3

3

3 0 0 0 3,3 0 0 0 0 0 0 0

4 0 1 0 4,4 0 0 1;6 0 0 0 0

5 0 2499 2499 5,4 0 0 0 0 2499;6 0 0

6 0 0 0 6,5 0 0 0 0 0 0 0

7 0 0 0 7,6 0 0 0 0 0 0 0

4

3 0 0 0 3,2 0 0 0 0 0 0 0

4 0 2256 2256 3,3 0 0 2256;5 0 0 0 0

5 0 187 187 4,3 0 0 0 187;5 0 0 0

6 15 57 42 5,4 0 0 0 15;5 42;5 0 0

7 0 0 0 6,4 0 0 0 0 0 0 0

5

3 0 0 0 2,2 0 0 0 0 0 0 0

4 398 2500 2102 3,2 0 397;4 2102;4 0 0 0 1*

5 0 0 0 3,3 0 0 0 0 0 0 0

6 0 0 0 4,3 0 0 0 0 0 0 0

7 0 0 0 5,4 0 0 0 0 0 0 0

6

3 0 0 0 2,2 0 0 0 0 0 0 0

4 0 2500 2500 2,2 0 401;3 2099;3 0 0 0 0

5 0 0 0 3,2 0 0 0 0 0 0 0

6 0 0 0 3,3 0 0 0 0 0 0 0

7 0 0 0 4,3 0 0 0 0 0 0 0

Table 5
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g = 3, Starting 𝑛0 = 4, 10000 Points

g d n
#Mat

#Euc #Arv
ArvCT, K𝐴,𝑋

#Fail
not Free MatCT 1 2 3 4 5 >5

3

3

4 0 0 0 4,4 0 0 0 0 0 0 0

5 0 0 0 5,4 0 0 0 0 0 0 0

6 0 8 0 6,5 0 0 0 0 8 0 0

7 0 2492 2492 7,6 0 0 0 0 0 2492 0

8 0 0 0 8,6 0 0 0 0 0 0 0

4

4 0 0 0 3,3 0 0 0 0 0 0 0

5 0 0 0 4,3 0 0 0 0 0 0 0

6 284 2459 2175 5,4 0 0 0 284 2175 0 0

7 34 34 0 6,4 0 0 0 0 34 0 0

8 0 7 7 6,5 0 0 0 0 0 7 0

5

4 0 0 0 3,2 0 0 0 0 0 0 0

5 0 2165 2163 3,3 0 2 2163 0 0 0 0

6 64 335 271 4,3 0 0 64 271 0 0 0

7 0 0 0 5,4 0 0 0 0 0 0 0

8 0 0 0 5,4 0 0 0 0 0 0 0

6

4 0 0 0 2,2 3 0 0 0 0 0 3

5 361 2497 2136 3,2 0 361 2136 0 0 0 0

6 0 0 0 3,3 0 0 0 0 0 0 0

7 0 0 0 4,3 0 0 0 0 0 0 0

8 0 0 0 4,3 0 0 0 0 0 0 0

Table 6
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4.5. Matrix Extreme Points of Spectrahedra for 𝑔 = 4. We conducted the same

experiment described in Section 4.3 for defining tuples 𝐴 ∈ 𝑆𝑀𝑑(R)4 and 𝑑 = 4, 5, 6, 7.

Similarly to the 𝑔 = 3 case, we find that the only MnotA extreme points that

we find occur when the Arveson extreme equation count is strictly larger than the

matrix extreme equation count. Moreover, at a majority of parameters where we

do find the matrix extreme equation count to be strictly smaller than the Arveson

extreme equation count, we do find MnotA extremepoints.
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g = 4, Starting 𝑛0 = 2, 10000 Points

g d n
#Mat

#Euc #Arv
ArvCT, K𝐴,𝑋

#Fail
not Arv MatCT 1 2 3 4 5 >5

4

4

2 0 0 0 2,2 0 0 0 0 0 0 0

3 0 2500 2500 3,3 0 0 2500;4 0 0 0 0

4 0 0 0 4,4 0 0 0 0 0 0 0

5 0 0 0 5,4 0 0 0 0 0 0 0

6 0 0 0 6,5 0 0 0 0 0 0 0

5

2 0 0 0 2,2 0 0 0 0 0 0 0

3 98 2500 2402 3,2 0 98;3 2402;3 0 0 0 0

4 0 0 0 4,3 0 0 0 0 0 0 0

5 0 0 0 4,3 0 0 0 0 0 0 0

6 0 0 0 5,4 0 0 0 0 0 0 0

6

2 0 0 0 2,2 0 0 0 0 0 0 0

3 0 2500 2500 2,2 0 179;2 2321;2 0 0 0 0

4 0 0 0 3,3 0 0 0 0 0 0 0

5 0 0 0 4,3 0 0 0 0 0 0 0

6 0 0 0 4,3 0 0 0 0 0 0 0

7

2 2500 2500 0 2,1 2500;1 0 0 0 0 0 0

3 0 0 0 2,2 0 0 0 0 0 0 0

4 0 0 0 3,2 0 0 0 0 0 0 0

5 0 0 0 3,3 0 0 0 0 0 0 0

6 0 0 0 4,3 0 0 0 0 0 0 0

Table 7
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g = 4, Starting 𝑛0 = 3, 10000 Points

g d n
#Mat

#Euc #Arv
ArvCT, K𝐴,𝑋

#Fail
not Arv MatCT 1 2 3 4 5 >5

4

4

3 0 0 0 3,3 0 0 0 0 0 0 0

4 0 0 0 4,4 0 0 0 0 0 0 0

5 0 2500 2500 5,4 0 0 0 0 2500;8 0 0

6 0 0 0 6,5 0 0 0 0 0 0 0

7 0 0 0 7,5 0 0 0 0 0 0 0

5

3 0 0 0 3,2 0 0 0 0 0 0 0

4 2424 2424 0 4,3 0 0 2424;7 0 0 0 0

5 0 70 70 4,3 0 0 0 70;7 0 0 0

6 1 6 5 5,4 0 0 0 1;7 5;7 0 0

7 0 0 0 6,4 0 0 0 0 0 0 0

6

3 0 0 0 2,2 0 0 0 0 0 0 0

4 0 2380 2380 3,3 0 0 2380;6 0 0 0 0

5 16 120 104 4,3 0 0 16;6 104;6 0 0 0

6 0 0 0 4,3 0 0 0 0 0 0 0

7 0 0 0 5,4 0 0 0 0 0 0 0

7

3 0 0 0 2,2 0 0 0 0 0 0 0

4 188 2500 2312 3,2 0 188;5 2311;5 0 0 0 0

5 0 0 0 3,3 0 0 0 0 0 0 0

6 0 0 0 4,3 0 0 0 0 0 0 0

7 0 0 0 4,3 0 0 0 0 0 0 0

Table 8
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4.6. Summary of experimental findings. Our experiments explored 𝑔 = 2, 3, 4

with 𝑑 ranging from 𝑑 = 𝑔 to 𝑑 = 𝑔 + 3 with 𝑛 varying but never exceeding 8. We

primarily focused on these parameter ranges both as a way of supporting the process

of constructing exact examples and because for larger values of 𝑔, the dilation steps

take significantly longer to solve. From the data we can make a number of empirical

observations.

(1) For 𝑔 = 2, 3, 4, we do find values of 𝑑 and 𝑛 where there are MnotA extreme

points.

(2) 𝑔 strictly greater than 𝑑 we do not find any MnotA extreme points for

𝑔 = 𝑑. In this case, we see that for 𝑔 = 2, 3, 4 all of the points generated at

𝑑 = 𝑔 that dilated to Arveson extreme ended at the exact same level 𝑛. We

do not see this phenomenon happening in general for 𝑑 > 𝑔.

(3) Strict count inequalities. Assume 3 ≤ 𝑔 < 𝑑. The only MnotA extreme

points that we find occur when the Arveson extreme equation count is strictly

larger than the matrix extreme equation count.1

Conversely, in thirteen of twenty cases, if the matrix extreme equation count

is less than the Arveson extreme equation count for some 𝑔, 𝑑, and 𝑛, for 𝑛

not too large, then we find a MnotA extremepoint for that set of parameters.

The cases are described below.

(4) (a) 𝑔 = 2

(i) 𝑑 = 3, 𝑛 = 5

(ii) 𝑑 = 3, 𝑛 = 7

(iii) 𝑑 = 3, 𝑛 = 9

(iv) 𝑑 = 4, 𝑛 = 7

(b) 𝑔 = 3

(i) 𝑑 = 4, 𝑛 = 5

(ii) 𝑑 = 4, 𝑛 = 7 (only 7 points were found with 𝑛 = 7, which is a

very small sample. It is likely, considering the dimensions, that the

only points that can reach this level for the given 𝑛0 are Arveson

extreme candidates)

(c) 𝑔 = 4

(i) 𝑑 = 5, 𝑛 = 5 (only 70 points)

Aside from these main observations, the following are also of interest.

(1) MnotA extreme points are only observed at

1We would expect this behaviour if the equations were randomly generated; however, the systems

have structure.



MATRIX EXTREME VERSUS FREE EXTREME 37

(a) 𝑔 = 2

(i) 𝑑 = 3, 𝑛 = 8.

(b) 𝑔 = 3

(i) 𝑑 = 4, 𝑛 = 3

(ii) 𝑑 = 4, 𝑛 = 6

(iii) 𝑑 = 4, 𝑛 = 7

(iv) 𝑑 = 5, 𝑛 = 4

(v) 𝑑 = 5, 𝑛 = 4

(vi) 𝑑 = 5, 𝑛 = 6

(vii) 𝑑 = 6, 𝑛 = 5

(c) 𝑔 = 4

(i) 𝑑 = 5, 𝑛 = 3

(ii) 𝑑 = 5, 𝑛 = 4

(iii) 𝑑 = 5, 𝑛 = 6

(iv) 𝑑 = 6, 𝑛 = 5

(v) 𝑑 = 7, 𝑛 = 2

(vi) 𝑑 = 7, 𝑛 = 4

Beware we can not conclude that for larger 𝑔 matrix extreme points are more

plentiful. For small 𝑔, particularly 𝑔 = 2, a larger percent of points fail to

dilate as in Algorithm 4.1. This causes our experiments to run slower and

produce fewer extreme points per fixed number of start points.

(2) In each of our experiments we produce a point at level 𝑛 (over which we have

no control except for the starting level). Bounds on 𝑛 are:

(a) for 𝑔 = 2 the largest 𝑛 we found was 8. Here, starting size was 5

(b) for 𝑔 = 3 the largest 𝑛 we found was 8. Here, starting size was 4

(c) for 𝑔 = 4 the largest 𝑛 we found was 6. Here, starting size was 3

5. Exact Arithmetic Point Generation

This section gives a method for producing provable examples of MnotA extreme

points. In experiments it has been effective at producing lots of examples when 𝑔 = 3,

𝑑 = 3, and 𝑛 = 3. (Beyond these parameters we have not explored the algorithm

much.) Recall one such example is in Section 3.

5.1. An algorithm for finding exact arithmetic extreme points.

Algorithm 5.1. Let 𝐴 ∈ 𝑆𝑀𝑑({−1, 0, 1})𝑔 such that 𝒟𝐴 is a bounded real free spec-

trahedron and fix 𝑛 ∈ N. Pick a 𝐾 ∈ {−1, 0, 1}𝑑𝑛 uniformly at random and solve the
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linear systems

𝐿𝐴(𝑋)𝐾 = 0

Λ𝐴(𝛽
𝑇 )𝐾 = 0

for 𝑋 ∈ 𝑆𝑀𝑛(Q)𝑔 and 𝛽 ∈ 𝑀𝑛×1(Q)𝑔.

(1) If no solution exists for this 𝐾, choose a new 𝐾 ∈ {−1, 0, 1}𝑑𝑛 uniformly at random

and solve the linear systems.

(2) If one solution exists for this 𝐾, we must then check that 𝐿𝐴(𝑋) is positive semi-

definite. If 𝐿𝐴(𝑋) is not positive semidefinite, we discard this 𝐾 and choose a new

𝐾 ∈ {−1, 0, 1}𝑑𝑛 uniformly at random and solve the linear systems.

(3) If there are infinitely many solutions, we then pick a tuple 𝑋 in the solution space

such that 𝐿𝐴(𝑋) is positive semidefinite.

(4) Once we have such an 𝑋 and 𝛽, we let

𝑌 (�̂�) =

(︃
𝑋 �̂�𝛽

�̂�𝛽𝑇 0

)︃

where �̂� ∈ R. Let 𝛼 denote the smallest non zero root of the derivative 𝑝1(�̂�) :=
𝑑𝜒�̂�(𝑡)

𝑑𝑡 |𝑡=0
of the characteristic polynomial 𝜒�̂�(𝑡) of 𝐿𝐴(𝑌 (�̂�)).

(5) Denote 𝑝2(�̂�) :=
𝑑2𝜒�̂�(𝑡)

𝑑2𝑡 |𝑡=0
. If 𝑝2(�̂�) = 0, then we generate a new 𝑋 and 𝐾 and repeat

the process; if not then we conclude our search by setting

𝑌 := 𝑌 (𝛼).

The algorithm uses exact arithmetic so that 𝐴, 𝑌 , and 𝐾 have entries which are

algebraic numbers.

Theorem 5.2. If the above algorithm terminates, the generated point 𝑌 will belong

to 𝒟𝐴 and have 𝑘𝐴,𝑌 ≥ 2. Hence, if 𝑔 = 3, 𝑑 = 4, and 𝑌 ∈ 𝑆𝑀3(R)3, we have that

the Arveson Equation (2.4) has more unknowns than constraints, so implies 𝑌 is not

an Arveson extreme point.

Proof. Let 𝑋, 𝛽, 𝐾, and 𝛼 be given by the algorithm above and let

𝑌 =

(︃
𝑋 𝛼𝛽

𝛼𝛽𝑇 0

)︃
.
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We know that

𝐿𝐴(𝑌 ) = Π𝑇

(︃
𝐿𝐴(𝑋) 𝛼Λ𝐴(𝛽)

𝛼Λ𝐴(𝛽
𝑇 ) 𝐼

)︃
Π

for some Π unitary (namely the canonical shuffle), so letting

𝐾 ′ = Π𝑇

(︃
𝐾

0

)︃
,

we see that 𝐿𝐴(𝑌 )𝐾 ′ = 0 as

𝐿𝐴(𝑌 ) = Π𝑇

(︃
𝐿𝐴(𝑋) 𝛼Λ𝐴(𝛽)

𝛼Λ𝐴(𝛽
𝑇 ) 𝐼

)︃
Π𝐾 ′

= Π𝑇

(︃
𝐿𝐴(𝑋)𝐾 0

𝛼Λ𝐴(𝛽
𝑇 )𝐾 0

)︃
= 0

as 𝐿𝐴(𝑋)𝐾 = Λ𝐴(𝛽
𝑇 )𝐾 = 0. Thus, the characteristic polynomial 𝜒𝛼(𝑡) of 𝐿𝐴(𝑌 ) has

no constant term. Moreover, by the definition of 𝛼, we have 𝜒′
𝛼(0) = 0 and 𝜒′′

𝛼(0) ̸= 0.

Thus 𝜒𝛼(𝑡) = 𝑡2𝑞𝛼(𝑡) for some polynomial 𝑞𝛼 such that 𝑞𝛼(0) ̸= 0, consequently 𝐿𝐴(𝑌 )

has a null space of dimension 2.

We now aim to show that 𝑌 ∈ 𝒟𝐴. To do this, we first note that taking �̂� = 0,

we get that 𝐿𝐴(𝑌 (0)) is unitarily equivalent to(︃
𝐿𝐴(𝑋) 0

0 𝐼

)︃

which is clearly positive semidefinite. Moreover, since for all �̂�, a 𝐿𝐴(𝑌 (�̂�))𝐾 ′ = 0,

we have 𝜒�̂�(𝑡) = 𝑡(𝑡 − 𝜆2(�̂�)) · · · (𝑡 − 𝜆𝑛𝑑+𝑑(�̂�)) where the 𝜆𝑖(�̂�) are the eigenvalues

of 𝐿𝐴(𝑌 (�̂�)). Thus, 𝑝1(�̂�) = (−1)(𝑛+1)𝑑−1𝜆2(�̂�) · · ·𝜆𝑛𝑑+𝑑(�̂�). We note that 𝑝1(�̂�) = 0

if and only if 𝜆𝑖(�̂�) = 0 for some 𝑖 = 2, 3, . . . , 𝑛𝑑 + 𝑑 and we pick 𝛼 so that it is

the smallest positive root of 𝑝1(�̂�). Thus, there must be some 𝑖 such that 𝜆𝑖(𝛼) = 0.

Moreover, if 𝜆𝑗(𝛼) < 0, then, by the intermediate value theorem since 𝜆𝑗(0) > 0,

there must exist some 0 < 𝛼0 < 𝛼 where 𝜆𝑗(𝛼0) = 0. This implies 𝑝1(𝛼0) = 0, a

contradiction to the assumption that 𝛼 is the smallest positive root. Thus for 𝑗 ̸= 𝑖,

𝜆𝑗(𝛼) ≥ 0 and hence 𝑌 ∈ 𝒟𝐴.

The Arveson equation count (2.8) for 𝑔 = 3, 𝑑 = 4, and 𝑛 = 3 is 3. So by

Corollary 2.7 if 𝑌 ∈ 𝒟𝐴(3) then 𝑘𝐴,𝑌 = 2 < 3 implies that 𝑌 is not Arveson extreme.

■
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Thus, any point produced with this algorithm at these parameters cannot be

Arveson extreme, but is potentially matrix extreme. The matrix 𝐿𝐴(𝑌 ) will have

entries that are algebraic numbers, and so the kernel and matrix extreme equations

can, in principle, be computed in exact arithmetic.

5.2. A property of 𝜒𝛼.

Lemma 5.3. If

𝑌 =

(︃
𝑋 𝛼𝛽

𝛼𝛽𝑇 0

)︃
for 𝑋 ∈ 𝑆𝑀𝑛(R)𝑔, 𝛽 ∈ 𝑀𝑛×1, and 𝛼 ∈ R, then the characteristic polynomial 𝜒𝛼(𝑡) of

𝐿𝐴(𝑌 ) has coefficients that are degree 𝑑𝑛 polynomials in 𝛼2.

Proof. Using the canonical shuffle, we can show that 𝐿𝐴(𝑌 ) is unitarily equivalent to

𝑍 =

(︃
𝐿𝐴(𝑋) 𝛼Λ𝐴(𝛽)

𝛼Λ𝐴(𝛽
𝑇 ) 𝐼

)︃
.

The eigenvalues of a matrix, and thus the characteristic polynomial, are invariant

under unitary equivalence, so it is sufficient to compute the characteristic polynomial

of 𝑍. Note that 𝑍 ∈ 𝑆𝑀𝑑(𝑛+1)(R[𝛼]) and thus 𝜒𝛼(𝑡) ∈ R[𝛼][𝑡].

𝜒𝛼(𝑡) = det

(︃
𝐿𝐴(𝑋)− 𝑡𝐼 𝛼Λ𝐴(𝛽)

𝛼Λ𝐴(𝛽
𝑇 ) (1− 𝑡)𝐼

)︃
so for 𝑡 ̸= 1, we can use the Schur determinant formula to show that

det

(︃
𝐿𝐴(𝑋)− 𝑡𝐼 𝛼Λ𝐴(𝛽)

𝛼Λ𝐴(𝛽
𝑇 ) (1− 𝑡)𝐼

)︃
= det((1− 𝑡)𝐼) det(𝐿𝐴(𝑋)− 𝑡𝐼 − 𝛼2

(1− 𝑡)
Λ𝐴(𝛽)Λ𝐴(𝛽

𝑇 ))

= (1− 𝑡)𝑑 det(𝐿𝐴(𝑋)− 𝑡𝐼 − 𝛼2

(1− 𝑡)
Λ𝐴(𝛽)Λ𝐴(𝛽

𝑇 )).

Thus 𝜒𝛼(𝑡) depends only on 𝛼2 for 𝑡 ̸= 1. ■

5.2.1. Experiments with method of fixed kernel. We ran the procedure one hundred

times; every time an 𝑋, 𝛽, and 𝐾 were found. Each time the procedure was run,

multiple kernels 𝐾 were generated until an 𝑋 and 𝛽 could be found such that

𝐿𝐴(𝑋)𝐾 = 0 and Λ𝐴(𝛽
𝑇 )𝐾 = 0. We have only run this method for a single fixed 𝐴.

On two randomly chosen occasions, we went through the hour long process of

trying to compute the matrix extreme equations exactly. While the equations could

in princple be computed in exact arithmetic, the calculation for determining if the

matrix extreme equations had a null space became too difficult to solve.
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We then numerically determined the singular values of the matrix extreme equa-

tions, Equation (2.6). In every case, the largest singular value was less than 4 and 80

of the points had smallest singular value on the order of 10−4. Hence, we are confident

that those 80 points are matrix extreme. In order to be Arveson extreme, the points

would require a kernel dimension of at least 3. However, in all cases, we computed

the eigenvalues of 𝐿𝐴(𝑋) numerically determined two of the eigenvalues to be zero.

This determination was made as the smallest two eigenvalues were on the order of

10−15 in all cases, and the next smallest eigenvalue was on the order of 100. Thus,

the points could have a kernel of at most dimension 2.

Remark 5.4. Nowhere in Theorem 5.2 do we use the fact that 𝐾 was chosen from

{−1, 0, 1} . In fact, we may pick 𝐾 ∈ Q𝑑𝑛. The kernel 𝐾 was picked in this manner

to reduce the computational complexity of the problem.

6. Conclusions

We have algorithms which reliably produced MnotA extreme points when 𝑔 = 3.

In addition when 𝑔 = 4 we have produced “by hand” a MnotA extreme point.

We have “perfected” a numerical algorithm for producing MnotA extreme can-

didates as described in Section 4.1. The reliability of this algorithm relies on a new

technique we call null space purification. This modified algorithm has a much lower

rate of failure to the unmodified algorithm used previously [EH19], especially in the

𝑔 = 2 case. The null space purification algorithm yields extreme point candidates

with numerical accuracy on the order of 10−13 as opposed to the 10−7 accuracy that we

find using semidefinite programming alone which allows us to use tighter tolerances

when determining if a point is an extreme candidate.

The experiments described in Section 4 yield the following interesting results.

Firstly and most importantly, for 𝑔 = 2, 3, 4 we find MnotA extreme candidates.

Secondly, we never find any MnotA extreme candidates when 𝑔 = 𝑑. Thirdly, we

only find MnotA extreme candidates when the Arveson extreme equation count is

strictly greater than the matrix extreme equation count. Conversely, for 𝑔 = 3, 4 and

𝑑 > 𝑔, in thirteen of sixteen cases, when the Arveson extreme equation count
⌈︀
𝑔𝑛
𝑑

⌉︀
is

larger than the matrix extreme equation count
⌈︁
𝑔𝑛(𝑛+1)−2

2𝑑𝑛

⌉︁
, we find MnotA extreme

candidates. The three exceptions are potentially explainable through experimental

design. We speculate that for 𝑔 = 3, 4 and 𝑑 > 4, if the Arveson extreme count

is strictly greater than the matrix extreme equation count, then there is a MnotA

extreme for that value of 𝑔, 𝑑, 𝑛.
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Appendix Contributions of Aidan Epperly

Eric Evert, a Ph.D. student of mine and now a postdoc, began some experiments

on optimizing linear functionals over free spectrahedra (the solution set of a free linear

matrix inequality). Of course the maximizer is an extreme point. However, for free

spectrahedra there are three natural types of extreme points:

ordinary Euclidean extreme ⊃ matrix extreme ⊃ free extreme .

Extensive experiments show that: Fixing a dimension of a free spectrahedron

and randomly generating a linear functional yields a maximizer which is very likely

free extreme. (When Epperly became involved he read this paper and understood

it quickly with almost no help.) One never even sees serious evidence that a matrix

extreme point exists, hence there was the possibility that they do not exist for free

spectrahedra. This has been an open question for a few years or longer depending on

how one counts.

Alas matrix extreme points do exist which is the subject of this work. It started

when Evert found an exact arithmetic formula for the example given here when 𝑔 = 4.

This is remarkable in that it involves exact eigenvalue/vectors for 15 × 15 matrices.

Validating the example required converting a theorem of Kriel to an algorithm which

Evert , Klep and Epperly did and perfected.

Epperly is outstanding at scientific computation; he has made serious contribu-

tions to Evert’s extreme point package. First he found an inefficiency with the code

that reduced its numerical precision. Also he greatly improved passing of information

inside the code, so now we can see more aspects of extreme points. The next release

of the package will be seriously influenced by Epperly.

Now to the case of 𝑔 = 2, 3. Epperly set up algorithms and experiments and he

produced the data and conclusions of Chapter 4. Here a big tool where Epperly did

much of the development was ‘null space purification’. This taking precision from

10−7 to 10−12 was critical to finding many candidates for matrix but not free extreme

points. In the course of this he found numerical example spectrahedra with very

simple coefficient matrices (all 0, 1, -1 entries).

Section 5 gave an exact arithmetic approach Klep developed which, when applied

to Epperly’s simple numerical examples above, gave many 𝑔 = 3 exact examples.

I would also add that Epperly, being an articulate fellow, did much more of the

actual writing of the paper than is usual in the honors theses I have directed.

J. William Helton


