Department of Mathematics,
University of California San Diego
****************************
Seminar on Cheeger-Colding theory, Ricci flow, Einstein metrics, and Related Topics
Yi Lai
UC Berkeley
A family of 3-dimensional steady gradient Ricci solitons that are flying wings
Abstract:
We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at infinity. The 3d flying wings are collapsed. For dimension $n \geq 4$, we find a family of $\mathbb{Z}_2 \times O(n − 1)$-symmetric but non-rotationally symmetric n-dimensional steady gradient solitons with positive curvature operator. We show that these solitons are non-collapsed.
-
Email bechow@ucsd.edu for Zoom information.
Email bechow@ucsd.edu for Zoom information.
****************************
Department of Mathematics,
University of California San Diego
****************************
Math 278B - Mathematics of Information, Data, and Signals Seminar
Rachel Ward
University of Texas at Austin
Function Approximation via Sparse Random Features
Abstract:
Random feature methods have been successful in various machine learning tasks, are easy to compute, and come with theoretical accuracy bounds. They serve as an alternative approach to standard neural networks since they can represent similar function spaces without a costly training phase. However, for accuracy, random feature methods require more measurements than trainable parameters, limiting their use for data-scarce applications or problems in scientific machine learning. This paper introduces the sparse random feature method that learns parsimonious random feature models utilizing techniques from compressive sensing. We provide uniform bounds on the approximation error for functions in a reproducing kernel Hilbert space depending on the number of samples and the distribution of features. The error bounds improve with additional structural conditions, such as coordinate sparsity, compact clusters of the spectrum, or rapid spectral decay. We show that the sparse random feature method outperforms shallow networks for well-structured functions and applications to scientific machine learning tasks.
-
Zoom link: https://msu.zoom.us/j/96421373881 (passcode: first prime number $>$ 100)
Zoom link: https://msu.zoom.us/j/96421373881 (passcode: first prime number $>$ 100)
****************************